llvm-project/llvm/lib/Analysis/LoopInfo.cpp

113 lines
3.6 KiB
C++
Raw Normal View History

//===- LoopInfo.cpp - Natural Loop Calculator -------------------------------=//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG. Note that the
// loops identified may actually be several natural loops that share the same
// header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "Support/DepthFirstIterator.h"
#include <algorithm>
static RegisterAnalysis<LoopInfo>
X("loops", "Natural Loop Construction");
AnalysisID LoopInfo::ID(AnalysisID::create<LoopInfo>(), true);
//===----------------------------------------------------------------------===//
// Loop implementation
//
bool Loop::contains(const BasicBlock *BB) const {
return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
}
void LoopInfo::releaseMemory() {
for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
E = TopLevelLoops.end(); I != E; ++I)
delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear();
}
//===----------------------------------------------------------------------===//
// LoopInfo implementation
//
bool LoopInfo::runOnFunction(Function &) {
releaseMemory();
Calculate(getAnalysis<DominatorSet>()); // Update
return false;
}
void LoopInfo::Calculate(const DominatorSet &DS) {
BasicBlock *RootNode = DS.getRoot();
for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
NE = df_end(RootNode); NI != NE; ++NI)
if (Loop *L = ConsiderForLoop(*NI, DS))
TopLevelLoops.push_back(L);
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->setLoopDepth(1);
}
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired(DominatorSet::ID);
AU.addProvided(ID);
}
Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) {
if (BBMap.find(BB) != BBMap.end()) return 0; // Havn't processed this node?
std::vector<BasicBlock *> TodoStack;
// Scan the predecessors of BB, checking to see if BB dominates any of
// them.
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
if (DS.dominates(BB, *I)) // If BB dominates it's predecessor...
TodoStack.push_back(*I);
if (TodoStack.empty()) return 0; // Doesn't dominate any predecessors...
// Create a new loop to represent this basic block...
Loop *L = new Loop(BB);
BBMap[BB] = L;
while (!TodoStack.empty()) { // Process all the nodes in the loop
BasicBlock *X = TodoStack.back();
TodoStack.pop_back();
if (!L->contains(X)) { // As of yet unprocessed??
L->Blocks.push_back(X);
// Add all of the predecessors of X to the end of the work stack...
TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
}
}
// Add the basic blocks that comprise this loop to the BBMap so that this
// loop can be found for them. Also check subsidary basic blocks to see if
// they start subloops of their own.
//
for (std::vector<BasicBlock*>::reverse_iterator I = L->Blocks.rbegin(),
E = L->Blocks.rend(); I != E; ++I) {
// Check to see if this block starts a new loop
if (Loop *NewLoop = ConsiderForLoop(*I, DS)) {
L->SubLoops.push_back(NewLoop);
NewLoop->ParentLoop = L;
}
if (BBMap.find(*I) == BBMap.end())
BBMap.insert(std::make_pair(*I, L));
}
return L;
}