llvm-project/lldb/source/Symbol/CompactUnwindInfo.cpp

1234 lines
48 KiB
C++
Raw Normal View History

//===-- CompactUnwindInfo.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <algorithm>
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Symbol/CompactUnwindInfo.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "llvm/Support/MathExtras.h"
using namespace lldb;
using namespace lldb_private;
namespace lldb_private {
// Constants from <mach-o/compact_unwind_encoding.h>
FLAGS_ANONYMOUS_ENUM()
{
UNWIND_IS_NOT_FUNCTION_START = 0x80000000,
UNWIND_HAS_LSDA = 0x40000000,
UNWIND_PERSONALITY_MASK = 0x30000000,
};
FLAGS_ANONYMOUS_ENUM()
{
UNWIND_X86_MODE_MASK = 0x0F000000,
UNWIND_X86_MODE_EBP_FRAME = 0x01000000,
UNWIND_X86_MODE_STACK_IMMD = 0x02000000,
UNWIND_X86_MODE_STACK_IND = 0x03000000,
UNWIND_X86_MODE_DWARF = 0x04000000,
UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF,
UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000,
UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000,
UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000,
UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF,
};
enum
{
UNWIND_X86_REG_NONE = 0,
UNWIND_X86_REG_EBX = 1,
UNWIND_X86_REG_ECX = 2,
UNWIND_X86_REG_EDX = 3,
UNWIND_X86_REG_EDI = 4,
UNWIND_X86_REG_ESI = 5,
UNWIND_X86_REG_EBP = 6,
};
FLAGS_ANONYMOUS_ENUM()
{
UNWIND_X86_64_MODE_MASK = 0x0F000000,
UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000,
UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000,
UNWIND_X86_64_MODE_STACK_IND = 0x03000000,
UNWIND_X86_64_MODE_DWARF = 0x04000000,
UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF,
UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000,
UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000,
UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000,
UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
};
enum
{
UNWIND_X86_64_REG_NONE = 0,
UNWIND_X86_64_REG_RBX = 1,
UNWIND_X86_64_REG_R12 = 2,
UNWIND_X86_64_REG_R13 = 3,
UNWIND_X86_64_REG_R14 = 4,
UNWIND_X86_64_REG_R15 = 5,
UNWIND_X86_64_REG_RBP = 6,
};
}
#ifndef UNWIND_SECOND_LEVEL_REGULAR
#define UNWIND_SECOND_LEVEL_REGULAR 2
#endif
#ifndef UNWIND_SECOND_LEVEL_COMPRESSED
#define UNWIND_SECOND_LEVEL_COMPRESSED 3
#endif
#ifndef UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET
#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF)
#endif
#ifndef UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX
#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF)
#endif
#define EXTRACT_BITS(value, mask) \
( (value >> llvm::countTrailingZeros(static_cast<uint32_t>(mask), llvm::ZB_Width)) & \
(((1 << llvm::countPopulation(static_cast<uint32_t>(mask))))-1) )
//----------------------
// constructor
//----------------------
CompactUnwindInfo::CompactUnwindInfo(ObjectFile& objfile, SectionSP& section_sp) :
m_objfile (objfile),
m_section_sp (section_sp),
m_section_contents_if_encrypted (),
m_mutex (),
m_indexes (),
m_indexes_computed (eLazyBoolCalculate),
m_unwindinfo_data (),
m_unwindinfo_data_computed (false),
m_unwind_header ()
{
}
//----------------------
// destructor
//----------------------
CompactUnwindInfo::~CompactUnwindInfo()
{
}
bool
CompactUnwindInfo::GetUnwindPlan (Target &target, Address addr, UnwindPlan& unwind_plan)
{
if (!IsValid (target.GetProcessSP()))
{
return false;
}
FunctionInfo function_info;
if (GetCompactUnwindInfoForFunction (target, addr, function_info))
{
// shortcut return for functions that have no compact unwind
if (function_info.encoding == 0)
return false;
ArchSpec arch;
if (m_objfile.GetArchitecture (arch))
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose())
{
StreamString strm;
addr.Dump (&strm, NULL, Address::DumpStyle::DumpStyleResolvedDescriptionNoFunctionArguments, Address::DumpStyle::DumpStyleFileAddress, arch.GetAddressByteSize());
log->Printf ("Got compact unwind encoding 0x%x for function %s", function_info.encoding, strm.GetData());
}
if (function_info.valid_range_offset_start != 0 && function_info.valid_range_offset_end != 0)
{
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
addr_t func_range_start_file_addr =
function_info.valid_range_offset_start + m_objfile.GetHeaderAddress().GetFileAddress();
AddressRange func_range (func_range_start_file_addr,
function_info.valid_range_offset_end - function_info.valid_range_offset_start,
sl);
unwind_plan.SetPlanValidAddressRange (func_range);
}
}
if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
{
return CreateUnwindPlan_x86_64 (target, function_info, unwind_plan, addr);
}
if (arch.GetTriple().getArch() == llvm::Triple::x86)
{
return CreateUnwindPlan_i386 (target, function_info, unwind_plan, addr);
}
}
}
return false;
}
bool
CompactUnwindInfo::IsValid (const ProcessSP &process_sp)
{
if (m_section_sp.get() == nullptr)
return false;
if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed)
return true;
ScanIndex (process_sp);
return m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed;
}
void
CompactUnwindInfo::ScanIndex (const ProcessSP &process_sp)
{
Mutex::Locker locker(m_mutex);
if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed)
return;
// We can't read the index for some reason.
if (m_indexes_computed == eLazyBoolNo)
{
return;
}
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log)
m_objfile.GetModule()->LogMessage(log, "Reading compact unwind first-level indexes");
if (m_unwindinfo_data_computed == false)
{
if (m_section_sp->IsEncrypted())
{
// Can't get section contents of a protected/encrypted section until we have a live
// process and can read them out of memory.
if (process_sp.get() == nullptr)
return;
m_section_contents_if_encrypted.reset (new DataBufferHeap (m_section_sp->GetByteSize(), 0));
Error error;
if (process_sp->ReadMemory (
m_section_sp->GetLoadBaseAddress (&process_sp->GetTarget()),
m_section_contents_if_encrypted->GetBytes(),
m_section_sp->GetByteSize(), error) == m_section_sp->GetByteSize() && error.Success())
{
m_unwindinfo_data.SetAddressByteSize (process_sp->GetTarget().GetArchitecture().GetAddressByteSize());
m_unwindinfo_data.SetByteOrder (process_sp->GetTarget().GetArchitecture().GetByteOrder());
m_unwindinfo_data.SetData (m_section_contents_if_encrypted, 0);
}
}
else
{
m_objfile.ReadSectionData (m_section_sp.get(), m_unwindinfo_data);
}
if (m_unwindinfo_data.GetByteSize() != m_section_sp->GetByteSize())
return;
m_unwindinfo_data_computed = true;
}
if (m_unwindinfo_data.GetByteSize() > 0)
{
offset_t offset = 0;
// struct unwind_info_section_header
// {
// uint32_t version; // UNWIND_SECTION_VERSION
// uint32_t commonEncodingsArraySectionOffset;
// uint32_t commonEncodingsArrayCount;
// uint32_t personalityArraySectionOffset;
// uint32_t personalityArrayCount;
// uint32_t indexSectionOffset;
// uint32_t indexCount;
m_unwind_header.version = m_unwindinfo_data.GetU32(&offset);
m_unwind_header.common_encodings_array_offset = m_unwindinfo_data.GetU32(&offset);
m_unwind_header.common_encodings_array_count = m_unwindinfo_data.GetU32(&offset);
m_unwind_header.personality_array_offset = m_unwindinfo_data.GetU32(&offset);
m_unwind_header.personality_array_count = m_unwindinfo_data.GetU32(&offset);
uint32_t indexSectionOffset = m_unwindinfo_data.GetU32(&offset);
uint32_t indexCount = m_unwindinfo_data.GetU32(&offset);
if (m_unwind_header.common_encodings_array_offset > m_unwindinfo_data.GetByteSize()
|| m_unwind_header.personality_array_offset > m_unwindinfo_data.GetByteSize()
|| indexSectionOffset > m_unwindinfo_data.GetByteSize()
|| offset > m_unwindinfo_data.GetByteSize())
{
Host::SystemLog (Host::eSystemLogError,
"error: Invalid offset encountered in compact unwind info, skipping\n");
// don't trust anything from this compact_unwind section if it looks
// blatantly invalid data in the header.
m_indexes_computed = eLazyBoolNo;
return;
}
// Parse the basic information from the indexes
// We wait to scan the second level page info until it's needed
// struct unwind_info_section_header_index_entry
// {
// uint32_t functionOffset;
// uint32_t secondLevelPagesSectionOffset;
// uint32_t lsdaIndexArraySectionOffset;
// };
offset = indexSectionOffset;
for (uint32_t idx = 0; idx < indexCount; idx++)
{
uint32_t function_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset
uint32_t second_level_offset = m_unwindinfo_data.GetU32(&offset); // secondLevelPagesSectionOffset
uint32_t lsda_offset = m_unwindinfo_data.GetU32(&offset); // lsdaIndexArraySectionOffset
if (second_level_offset > m_section_sp->GetByteSize() || lsda_offset > m_section_sp->GetByteSize())
{
m_indexes_computed = eLazyBoolNo;
}
UnwindIndex this_index;
this_index.function_offset = function_offset; //
this_index.second_level = second_level_offset;
this_index.lsda_array_start = lsda_offset;
if (m_indexes.size() > 0)
{
m_indexes[m_indexes.size() - 1].lsda_array_end = lsda_offset;
}
if (second_level_offset == 0)
{
this_index.sentinal_entry = true;
}
m_indexes.push_back (this_index);
}
m_indexes_computed = eLazyBoolYes;
}
else
{
m_indexes_computed = eLazyBoolNo;
}
}
uint32_t
CompactUnwindInfo::GetLSDAForFunctionOffset (uint32_t lsda_offset, uint32_t lsda_count, uint32_t function_offset)
{
// struct unwind_info_section_header_lsda_index_entry
// {
// uint32_t functionOffset;
// uint32_t lsdaOffset;
// };
offset_t first_entry = lsda_offset;
uint32_t low = 0;
uint32_t high = lsda_count;
while (low < high)
{
uint32_t mid = (low + high) / 2;
offset_t offset = first_entry + (mid * 8);
uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset
uint32_t mid_lsda_offset = m_unwindinfo_data.GetU32(&offset); // lsdaOffset
if (mid_func_offset == function_offset)
{
return mid_lsda_offset;
}
if (mid_func_offset < function_offset)
{
low = mid + 1;
}
else
{
high = mid;
}
}
return 0;
}
lldb::offset_t
CompactUnwindInfo::BinarySearchRegularSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset, uint32_t *entry_func_start_offset, uint32_t *entry_func_end_offset)
{
// typedef uint32_t compact_unwind_encoding_t;
// struct unwind_info_regular_second_level_entry
// {
// uint32_t functionOffset;
// compact_unwind_encoding_t encoding;
offset_t first_entry = entry_page_offset;
uint32_t low = 0;
uint32_t high = entry_count;
uint32_t last = high - 1;
while (low < high)
{
uint32_t mid = (low + high) / 2;
offset_t offset = first_entry + (mid * 8);
uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset
uint32_t next_func_offset = 0;
if (mid < last)
{
offset = first_entry + ((mid + 1) * 8);
next_func_offset = m_unwindinfo_data.GetU32(&offset); // functionOffset
}
if (mid_func_offset <= function_offset)
{
if (mid == last || (next_func_offset > function_offset))
{
if (entry_func_start_offset)
*entry_func_start_offset = mid_func_offset;
if (mid != last && entry_func_end_offset)
*entry_func_end_offset = next_func_offset;
return first_entry + (mid * 8);
}
else
{
low = mid + 1;
}
}
else
{
high = mid;
}
}
return LLDB_INVALID_OFFSET;
}
uint32_t
CompactUnwindInfo::BinarySearchCompressedSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset_to_find, uint32_t function_offset_base, uint32_t *entry_func_start_offset, uint32_t *entry_func_end_offset)
{
offset_t first_entry = entry_page_offset;
uint32_t low = 0;
uint32_t high = entry_count;
uint32_t last = high - 1;
while (low < high)
{
uint32_t mid = (low + high) / 2;
offset_t offset = first_entry + (mid * 4);
uint32_t entry = m_unwindinfo_data.GetU32(&offset); // entry
uint32_t mid_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (entry);
mid_func_offset += function_offset_base;
uint32_t next_func_offset = 0;
if (mid < last)
{
offset = first_entry + ((mid + 1) * 4);
uint32_t next_entry = m_unwindinfo_data.GetU32(&offset); // entry
next_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (next_entry);
next_func_offset += function_offset_base;
}
if (mid_func_offset <= function_offset_to_find)
{
if (mid == last || (next_func_offset > function_offset_to_find))
{
if (entry_func_start_offset)
*entry_func_start_offset = mid_func_offset;
if (mid != last && entry_func_end_offset)
*entry_func_end_offset = next_func_offset;
return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX (entry);
}
else
{
low = mid + 1;
}
}
else
{
high = mid;
}
}
return UINT32_MAX;
}
bool
CompactUnwindInfo::GetCompactUnwindInfoForFunction (Target &target, Address address, FunctionInfo &unwind_info)
{
unwind_info.encoding = 0;
unwind_info.lsda_address.Clear();
unwind_info.personality_ptr_address.Clear();
if (!IsValid (target.GetProcessSP()))
return false;
addr_t text_section_file_address = LLDB_INVALID_ADDRESS;
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
SectionSP text_sect = sl->FindSectionByType (eSectionTypeCode, true);
if (text_sect.get())
{
text_section_file_address = text_sect->GetFileAddress();
}
}
if (text_section_file_address == LLDB_INVALID_ADDRESS)
return false;
addr_t function_offset = address.GetFileAddress() - m_objfile.GetHeaderAddress().GetFileAddress();
UnwindIndex key;
key.function_offset = function_offset;
std::vector<UnwindIndex>::const_iterator it;
it = std::lower_bound (m_indexes.begin(), m_indexes.end(), key);
if (it == m_indexes.end())
{
return false;
}
if (it->function_offset != key.function_offset)
{
if (it != m_indexes.begin())
--it;
}
if (it->sentinal_entry == true)
{
return false;
}
auto next_it = it + 1;
if (next_it != m_indexes.end())
{
// initialize the function offset end range to be the start of the
// next index offset. If we find an entry which is at the end of
// the index table, this will establish the range end.
unwind_info.valid_range_offset_end = next_it->function_offset;
}
offset_t second_page_offset = it->second_level;
offset_t lsda_array_start = it->lsda_array_start;
offset_t lsda_array_count = (it->lsda_array_end - it->lsda_array_start) / 8;
offset_t offset = second_page_offset;
uint32_t kind = m_unwindinfo_data.GetU32(&offset); // UNWIND_SECOND_LEVEL_REGULAR or UNWIND_SECOND_LEVEL_COMPRESSED
if (kind == UNWIND_SECOND_LEVEL_REGULAR)
{
// struct unwind_info_regular_second_level_page_header
// {
// uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR
// uint16_t entryPageOffset;
// uint16_t entryCount;
// typedef uint32_t compact_unwind_encoding_t;
// struct unwind_info_regular_second_level_entry
// {
// uint32_t functionOffset;
// compact_unwind_encoding_t encoding;
uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset
uint16_t entry_count = m_unwindinfo_data.GetU16(&offset); // entryCount
offset_t entry_offset = BinarySearchRegularSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
if (entry_offset == LLDB_INVALID_OFFSET)
{
return false;
}
entry_offset += 4; // skip over functionOffset
unwind_info.encoding = m_unwindinfo_data.GetU32(&entry_offset); // encoding
if (unwind_info.encoding & UNWIND_HAS_LSDA)
{
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
}
}
if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
{
uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);
if (personality_index > 0)
{
personality_index--;
if (personality_index < m_unwind_header.personality_array_count)
{
offset_t offset = m_unwind_header.personality_array_offset;
offset += 4 * personality_index;
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
}
}
}
}
return true;
}
else if (kind == UNWIND_SECOND_LEVEL_COMPRESSED)
{
// struct unwind_info_compressed_second_level_page_header
// {
// uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED
// uint16_t entryPageOffset; // offset from this 2nd lvl page idx to array of entries
// // (an entry has a function offset and index into the encodings)
// // NB function offset from the entry in the compressed page
// // must be added to the index's functionOffset value.
// uint16_t entryCount;
// uint16_t encodingsPageOffset; // offset from this 2nd lvl page idx to array of encodings
// uint16_t encodingsCount;
uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset
uint16_t entry_count = m_unwindinfo_data.GetU16(&offset); // entryCount
uint16_t encodings_page_offset = m_unwindinfo_data.GetU16(&offset); // encodingsPageOffset
uint16_t encodings_count = m_unwindinfo_data.GetU16(&offset); // encodingsCount
uint32_t encoding_index = BinarySearchCompressedSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, it->function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
if (encoding_index == UINT32_MAX || encoding_index >= encodings_count + m_unwind_header.common_encodings_array_count)
{
return false;
}
uint32_t encoding = 0;
if (encoding_index < m_unwind_header.common_encodings_array_count)
{
offset = m_unwind_header.common_encodings_array_offset + (encoding_index * sizeof (uint32_t));
encoding = m_unwindinfo_data.GetU32(&offset); // encoding entry from the commonEncodingsArray
}
else
{
uint32_t page_specific_entry_index = encoding_index - m_unwind_header.common_encodings_array_count;
offset = second_page_offset + encodings_page_offset + (page_specific_entry_index * sizeof (uint32_t));
encoding = m_unwindinfo_data.GetU32(&offset); // encoding entry from the page-specific encoding array
}
if (encoding == 0)
return false;
unwind_info.encoding = encoding;
if (unwind_info.encoding & UNWIND_HAS_LSDA)
{
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
}
}
if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
{
uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);
if (personality_index > 0)
{
personality_index--;
if (personality_index < m_unwind_header.personality_array_count)
{
offset_t offset = m_unwind_header.personality_array_offset;
offset += 4 * personality_index;
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
}
}
}
}
return true;
}
return false;
}
enum x86_64_eh_regnum {
rax = 0,
rdx = 1,
rcx = 2,
rbx = 3,
rsi = 4,
rdi = 5,
rbp = 6,
rsp = 7,
r8 = 8,
r9 = 9,
r10 = 10,
r11 = 11,
r12 = 12,
r13 = 13,
r14 = 14,
r15 = 15,
rip = 16 // this is officially the Return Address register number, but close enough
};
// Convert the compact_unwind_info.h register numbering scheme
// to eRegisterKindGCC (eh_frame) register numbering scheme.
uint32_t
translate_to_eh_frame_regnum_x86_64 (uint32_t unwind_regno)
{
switch (unwind_regno)
{
case UNWIND_X86_64_REG_RBX:
return x86_64_eh_regnum::rbx;
case UNWIND_X86_64_REG_R12:
return x86_64_eh_regnum::r12;
case UNWIND_X86_64_REG_R13:
return x86_64_eh_regnum::r13;
case UNWIND_X86_64_REG_R14:
return x86_64_eh_regnum::r14;
case UNWIND_X86_64_REG_R15:
return x86_64_eh_regnum::r15;
case UNWIND_X86_64_REG_RBP:
return x86_64_eh_regnum::rbp;
default:
return LLDB_INVALID_REGNUM;
}
}
bool
CompactUnwindInfo::CreateUnwindPlan_x86_64 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
{
unwind_plan.SetSourceName ("compact unwind info");
unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
A messy bit of cleanup: Move towards more descriptive names for eh_frame and stabs register numberings. This is not complete but it's a step in the right direction. It's almost entirely mechanical. lldb informally uses "gcc register numbering" to mean eh_frame. Why? Probably because there's a notorious bug with gcc on i386 darwin where the register numbers in eh_frame were incorrect. In all other cases, eh_frame register numbering is identical to dwarf. lldb informally uses "gdb register numbering" to mean stabs. There are no official definitions of stabs register numbers for different architectures, so the implementations of gdb and gcc are the de facto reference source. There were some incorrect uses of these register number types in lldb already. I fixed the ones that I saw as I made this change. This commit changes all references to "gcc" and "gdb" register numbers in lldb to "eh_frame" and "stabs" to make it clear what is actually being represented. lldb cannot parse the stabs debug format, and given that no one is using stabs any more, it is unlikely that it ever will. A more comprehensive cleanup would remove the stabs register numbers altogether - it's unnecessary cruft / complication to all of our register structures. In ProcessGDBRemote, when we get register definitions from the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo) or "gcc_regnum" (qXfer:features:read: packet to get xml payload). This patch changes ProcessGDBRemote to also accept "ehframe:" and "ehframe_regnum" from these remotes. I did not change GDBRemoteCommunicationServerLLGS or debugserver to send these new packets. I don't know what kind of interoperability constraints we might be working under. At some point in the future we should transition to using the more descriptive names. Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0", for eh_frame and stabs register numberings. These should be cleaned up eventually too. The sources link cleanly on macosx native with xcode build. I don't think we'll see problems on other platforms but please let me know if I broke anyone. llvm-svn: 245141
2015-08-15 09:21:01 +08:00
unwind_plan.SetRegisterKind (eRegisterKindEHFrame);
unwind_plan.SetLSDAAddress (function_info.lsda_address);
unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);
UnwindPlan::RowSP row (new UnwindPlan::Row);
const int wordsize = 8;
int mode = function_info.encoding & UNWIND_X86_64_MODE_MASK;
switch (mode)
{
case UNWIND_X86_64_MODE_RBP_FRAME:
{
row->GetCFAValue().SetIsRegisterPlusOffset (
translate_to_eh_frame_regnum_x86_64 (UNWIND_X86_64_REG_RBP),
2 * wordsize);
row->SetOffset (0);
row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rbp, wordsize * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_OFFSET);
uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);
saved_registers_offset += 2;
for (int i = 0; i < 5; i++)
{
uint32_t regnum = saved_registers_locations & 0x7;
switch (regnum)
{
case UNWIND_X86_64_REG_NONE:
break;
case UNWIND_X86_64_REG_RBX:
case UNWIND_X86_64_REG_R12:
case UNWIND_X86_64_REG_R13:
case UNWIND_X86_64_REG_R14:
case UNWIND_X86_64_REG_R15:
row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (regnum), wordsize * -saved_registers_offset, true);
break;
}
saved_registers_offset--;
saved_registers_locations >>= 3;
}
unwind_plan.AppendRow (row);
return true;
}
break;
case UNWIND_X86_64_MODE_STACK_IND:
{
// The clang in Xcode 6 is emitting incorrect compact unwind encodings for this
// style of unwind. It was fixed in llvm r217020.
// The clang in Xcode 7 has this fixed.
return false;
}
break;
case UNWIND_X86_64_MODE_STACK_IMMD:
{
uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT);
uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION);
if (mode == UNWIND_X86_64_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
{
uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST);
// offset into the function instructions; 0 == beginning of first instruction
uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
ProcessSP process_sp = target.GetProcessSP();
if (process_sp)
{
Address subl_payload_addr (function_info.valid_range_offset_start, sl);
subl_payload_addr.Slide (offset_to_subl_insn);
Error error;
uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
4, 0, error);
if (large_stack_size != 0 && error.Success ())
{
// Got the large stack frame size correctly - use it
stack_size = large_stack_size + (stack_adjust * wordsize);
}
else
{
return false;
}
}
else
{
return false;
}
}
else
{
return false;
}
}
int32_t offset = mode == UNWIND_X86_64_MODE_STACK_IND ? stack_size : stack_size * wordsize;
row->GetCFAValue().SetIsRegisterPlusOffset (x86_64_eh_regnum::rsp, offset);
row->SetOffset (0);
row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
if (register_count > 0)
{
// We need to include (up to) 6 registers in 10 bits.
// That would be 18 bits if we just used 3 bits per reg to indicate
// the order they're saved on the stack.
//
// This is done with Lehmer code permutation, e.g. see
// http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
int permunreg[6] = {0, 0, 0, 0, 0, 0};
// This decodes the variable-base number in the 10 bits
// and gives us the Lehmer code sequence which can then
// be decoded.
switch (register_count)
{
case 6:
permunreg[0] = permutation/120; // 120 == 5!
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24; // 24 == 4!
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6; // 6 == 3!
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2; // 2 == 2!
permutation -= (permunreg[3]*2);
permunreg[4] = permutation; // 1 == 1!
permunreg[5] = 0;
break;
case 5:
permunreg[0] = permutation/120;
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24;
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6;
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2;
permutation -= (permunreg[3]*2);
permunreg[4] = permutation;
break;
case 4:
permunreg[0] = permutation/60;
permutation -= (permunreg[0]*60);
permunreg[1] = permutation/12;
permutation -= (permunreg[1]*12);
permunreg[2] = permutation/3;
permutation -= (permunreg[2]*3);
permunreg[3] = permutation;
break;
case 3:
permunreg[0] = permutation/20;
permutation -= (permunreg[0]*20);
permunreg[1] = permutation/4;
permutation -= (permunreg[1]*4);
permunreg[2] = permutation;
break;
case 2:
permunreg[0] = permutation/5;
permutation -= (permunreg[0]*5);
permunreg[1] = permutation;
break;
case 1:
permunreg[0] = permutation;
break;
}
// Decode the Lehmer code for this permutation of
// the registers v. http://en.wikipedia.org/wiki/Lehmer_code
int registers[6] = { UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE };
bool used[7] = { false, false, false, false, false, false, false };
for (uint32_t i = 0; i < register_count; i++)
{
int renum = 0;
for (int j = 1; j < 7; j++)
{
if (used[j] == false)
{
if (renum == permunreg[i])
{
registers[i] = j;
used[j] = true;
break;
}
renum++;
}
}
}
uint32_t saved_registers_offset = 1;
saved_registers_offset++;
for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
{
switch (registers[i])
{
case UNWIND_X86_64_REG_NONE:
break;
case UNWIND_X86_64_REG_RBX:
case UNWIND_X86_64_REG_R12:
case UNWIND_X86_64_REG_R13:
case UNWIND_X86_64_REG_R14:
case UNWIND_X86_64_REG_R15:
case UNWIND_X86_64_REG_RBP:
row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (registers[i]), wordsize * -saved_registers_offset, true);
saved_registers_offset++;
break;
}
}
}
unwind_plan.AppendRow (row);
return true;
}
break;
case UNWIND_X86_64_MODE_DWARF:
{
return false;
}
break;
case 0:
{
return false;
}
break;
}
return false;
}
enum i386_eh_regnum {
eax = 0,
ecx = 1,
edx = 2,
ebx = 3,
ebp = 4,
esp = 5,
esi = 6,
edi = 7,
eip = 8 // this is officially the Return Address register number, but close enough
};
// Convert the compact_unwind_info.h register numbering scheme
// to eRegisterKindGCC (eh_frame) register numbering scheme.
uint32_t
translate_to_eh_frame_regnum_i386 (uint32_t unwind_regno)
{
switch (unwind_regno)
{
case UNWIND_X86_REG_EBX:
return i386_eh_regnum::ebx;
case UNWIND_X86_REG_ECX:
return i386_eh_regnum::ecx;
case UNWIND_X86_REG_EDX:
return i386_eh_regnum::edx;
case UNWIND_X86_REG_EDI:
return i386_eh_regnum::edi;
case UNWIND_X86_REG_ESI:
return i386_eh_regnum::esi;
case UNWIND_X86_REG_EBP:
return i386_eh_regnum::ebp;
default:
return LLDB_INVALID_REGNUM;
}
}
bool
CompactUnwindInfo::CreateUnwindPlan_i386 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
{
unwind_plan.SetSourceName ("compact unwind info");
unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
A messy bit of cleanup: Move towards more descriptive names for eh_frame and stabs register numberings. This is not complete but it's a step in the right direction. It's almost entirely mechanical. lldb informally uses "gcc register numbering" to mean eh_frame. Why? Probably because there's a notorious bug with gcc on i386 darwin where the register numbers in eh_frame were incorrect. In all other cases, eh_frame register numbering is identical to dwarf. lldb informally uses "gdb register numbering" to mean stabs. There are no official definitions of stabs register numbers for different architectures, so the implementations of gdb and gcc are the de facto reference source. There were some incorrect uses of these register number types in lldb already. I fixed the ones that I saw as I made this change. This commit changes all references to "gcc" and "gdb" register numbers in lldb to "eh_frame" and "stabs" to make it clear what is actually being represented. lldb cannot parse the stabs debug format, and given that no one is using stabs any more, it is unlikely that it ever will. A more comprehensive cleanup would remove the stabs register numbers altogether - it's unnecessary cruft / complication to all of our register structures. In ProcessGDBRemote, when we get register definitions from the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo) or "gcc_regnum" (qXfer:features:read: packet to get xml payload). This patch changes ProcessGDBRemote to also accept "ehframe:" and "ehframe_regnum" from these remotes. I did not change GDBRemoteCommunicationServerLLGS or debugserver to send these new packets. I don't know what kind of interoperability constraints we might be working under. At some point in the future we should transition to using the more descriptive names. Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0", for eh_frame and stabs register numberings. These should be cleaned up eventually too. The sources link cleanly on macosx native with xcode build. I don't think we'll see problems on other platforms but please let me know if I broke anyone. llvm-svn: 245141
2015-08-15 09:21:01 +08:00
unwind_plan.SetRegisterKind (eRegisterKindEHFrame);
unwind_plan.SetLSDAAddress (function_info.lsda_address);
unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);
UnwindPlan::RowSP row (new UnwindPlan::Row);
const int wordsize = 4;
int mode = function_info.encoding & UNWIND_X86_MODE_MASK;
switch (mode)
{
case UNWIND_X86_MODE_EBP_FRAME:
{
row->GetCFAValue().SetIsRegisterPlusOffset (
translate_to_eh_frame_regnum_i386 (UNWIND_X86_REG_EBP), 2 * wordsize);
row->SetOffset (0);
row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::ebp, wordsize * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true);
uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_OFFSET);
uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_REGISTERS);
saved_registers_offset += 2;
for (int i = 0; i < 5; i++)
{
uint32_t regnum = saved_registers_locations & 0x7;
switch (regnum)
{
case UNWIND_X86_REG_NONE:
break;
case UNWIND_X86_REG_EBX:
case UNWIND_X86_REG_ECX:
case UNWIND_X86_REG_EDX:
case UNWIND_X86_REG_EDI:
case UNWIND_X86_REG_ESI:
row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (regnum), wordsize * -saved_registers_offset, true);
break;
}
saved_registers_offset--;
saved_registers_locations >>= 3;
}
unwind_plan.AppendRow (row);
return true;
}
break;
case UNWIND_X86_MODE_STACK_IND:
case UNWIND_X86_MODE_STACK_IMMD:
{
uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT);
uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION);
if (mode == UNWIND_X86_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
{
uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST);
// offset into the function instructions; 0 == beginning of first instruction
uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
SectionList *sl = m_objfile.GetSectionList ();
if (sl)
{
ProcessSP process_sp = target.GetProcessSP();
if (process_sp)
{
Address subl_payload_addr (function_info.valid_range_offset_start, sl);
subl_payload_addr.Slide (offset_to_subl_insn);
Error error;
uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
4, 0, error);
if (large_stack_size != 0 && error.Success ())
{
// Got the large stack frame size correctly - use it
stack_size = large_stack_size + (stack_adjust * wordsize);
}
else
{
return false;
}
}
else
{
return false;
}
}
else
{
return false;
}
}
int32_t offset = mode == UNWIND_X86_MODE_STACK_IND ? stack_size : stack_size * wordsize;
row->GetCFAValue().SetIsRegisterPlusOffset (i386_eh_regnum::esp, offset);
row->SetOffset (0);
row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true);
if (register_count > 0)
{
// We need to include (up to) 6 registers in 10 bits.
// That would be 18 bits if we just used 3 bits per reg to indicate
// the order they're saved on the stack.
//
// This is done with Lehmer code permutation, e.g. see
// http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
int permunreg[6] = {0, 0, 0, 0, 0, 0};
// This decodes the variable-base number in the 10 bits
// and gives us the Lehmer code sequence which can then
// be decoded.
switch (register_count)
{
case 6:
permunreg[0] = permutation/120; // 120 == 5!
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24; // 24 == 4!
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6; // 6 == 3!
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2; // 2 == 2!
permutation -= (permunreg[3]*2);
permunreg[4] = permutation; // 1 == 1!
permunreg[5] = 0;
break;
case 5:
permunreg[0] = permutation/120;
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24;
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6;
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2;
permutation -= (permunreg[3]*2);
permunreg[4] = permutation;
break;
case 4:
permunreg[0] = permutation/60;
permutation -= (permunreg[0]*60);
permunreg[1] = permutation/12;
permutation -= (permunreg[1]*12);
permunreg[2] = permutation/3;
permutation -= (permunreg[2]*3);
permunreg[3] = permutation;
break;
case 3:
permunreg[0] = permutation/20;
permutation -= (permunreg[0]*20);
permunreg[1] = permutation/4;
permutation -= (permunreg[1]*4);
permunreg[2] = permutation;
break;
case 2:
permunreg[0] = permutation/5;
permutation -= (permunreg[0]*5);
permunreg[1] = permutation;
break;
case 1:
permunreg[0] = permutation;
break;
}
// Decode the Lehmer code for this permutation of
// the registers v. http://en.wikipedia.org/wiki/Lehmer_code
int registers[6] = { UNWIND_X86_REG_NONE, UNWIND_X86_REG_NONE, UNWIND_X86_REG_NONE, UNWIND_X86_REG_NONE, UNWIND_X86_REG_NONE, UNWIND_X86_REG_NONE };
bool used[7] = { false, false, false, false, false, false, false };
for (uint32_t i = 0; i < register_count; i++)
{
int renum = 0;
for (int j = 1; j < 7; j++)
{
if (used[j] == false)
{
if (renum == permunreg[i])
{
registers[i] = j;
used[j] = true;
break;
}
renum++;
}
}
}
uint32_t saved_registers_offset = 1;
saved_registers_offset++;
for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
{
switch (registers[i])
{
case UNWIND_X86_REG_NONE:
break;
case UNWIND_X86_REG_EBX:
case UNWIND_X86_REG_ECX:
case UNWIND_X86_REG_EDX:
case UNWIND_X86_REG_EDI:
case UNWIND_X86_REG_ESI:
case UNWIND_X86_REG_EBP:
row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (registers[i]), wordsize * -saved_registers_offset, true);
saved_registers_offset++;
break;
}
}
}
unwind_plan.AppendRow (row);
return true;
}
break;
case UNWIND_X86_MODE_DWARF:
{
return false;
}
break;
}
return false;
}