llvm-project/clang/CodeGen/CodeGenModule.cpp

476 lines
18 KiB
C++
Raw Normal View History

//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CodeGenFunction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO,
llvm::Module &M, const llvm::TargetData &TD)
: Context(C), Features(LO), TheModule(M), TheTargetData(TD),
Types(C, M, TD), MemCpyFn(0), CFConstantStringClassRef(0) {}
llvm::Constant *CodeGenModule::GetAddrOfGlobalDecl(const ValueDecl *D) {
// See if it is already in the map.
llvm::Constant *&Entry = GlobalDeclMap[D];
if (Entry) return Entry;
QualType ASTTy = cast<ValueDecl>(D)->getType();
const llvm::Type *Ty = getTypes().ConvertType(ASTTy);
if (isa<FunctionDecl>(D)) {
const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
// FIXME: param attributes for sext/zext etc.
return Entry = new llvm::Function(FTy, llvm::Function::ExternalLinkage,
D->getName(), &getModule());
}
assert(isa<FileVarDecl>(D) && "Unknown global decl!");
return Entry = new llvm::GlobalVariable(Ty, false,
llvm::GlobalValue::ExternalLinkage,
0, D->getName(), &getModule());
}
void CodeGenModule::EmitFunction(const FunctionDecl *FD) {
// If this is not a prototype, emit the body.
if (FD->getBody())
CodeGenFunction(*this).GenerateCode(FD);
}
static llvm::Constant *GenerateConstantExpr(const Expr *Expression,
CodeGenModule& CGModule);
/// GenerateConversionToBool - Generate comparison to zero for conversion to
/// bool
static llvm::Constant *GenerateConversionToBool(llvm::Constant *Expression,
QualType Source) {
if (Source->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType());
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Expression,
Zero);
}
assert((Source->isIntegerType() || Source->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType());
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Expression, Zero);
}
/// GenerateConstantCast - Generates a constant cast to convert the Expression
/// into the Target type.
static llvm::Constant *GenerateConstantCast(const Expr *Expression,
QualType Target,
CodeGenModule& CGModule) {
CodeGenTypes& Types = CGModule.getTypes();
QualType Source = Expression->getType().getCanonicalType();
Target = Target.getCanonicalType();
assert (!Target->isVoidType());
llvm::Constant *SubExpr = GenerateConstantExpr(Expression, CGModule);
if (Source == Target)
return SubExpr;
// Handle conversions to bool first, they are special: comparisons against 0.
if (Target->isBooleanType())
return GenerateConversionToBool(SubExpr, Source);
const llvm::Type *SourceType = Types.ConvertType(Source);
const llvm::Type *TargetType = Types.ConvertType(Target);
// Ignore conversions like int -> uint.
if (SubExpr->getType() == TargetType)
return SubExpr;
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<llvm::PointerType>(TargetType)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(SubExpr->getType()))
return llvm::ConstantExpr::getBitCast(SubExpr, TargetType);
assert(Source->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return llvm::ConstantExpr::getIntToPtr(SubExpr, TargetType);
}
if (isa<llvm::PointerType>(SourceType)) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(TargetType) && "not ptr->int?");
return llvm::ConstantExpr::getPtrToInt(SubExpr, TargetType);
}
if (Source->isRealFloatingType() && Target->isRealFloatingType()) {
return llvm::ConstantExpr::getFPCast(SubExpr, TargetType);
}
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(SourceType)) {
bool InputSigned = Source->isSignedIntegerType();
if (isa<llvm::IntegerType>(TargetType))
return llvm::ConstantExpr::getIntegerCast(SubExpr, TargetType,
InputSigned);
else if (InputSigned)
return llvm::ConstantExpr::getSIToFP(SubExpr, TargetType);
else
return llvm::ConstantExpr::getUIToFP(SubExpr, TargetType);
}
assert(SubExpr->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(TargetType)) {
if (Target->isSignedIntegerType())
return llvm::ConstantExpr::getFPToSI(SubExpr, TargetType);
else
return llvm::ConstantExpr::getFPToUI(SubExpr, TargetType);
}
assert(TargetType->isFloatingPoint() && "Unknown real conversion");
if (TargetType->getTypeID() < SubExpr->getType()->getTypeID())
return llvm::ConstantExpr::getFPTrunc(SubExpr, TargetType);
else
return llvm::ConstantExpr::getFPExtend(SubExpr, TargetType);
assert (!"Unsupported cast type in global intialiser.");
return 0;
}
/// GenerateAggregateInit - Generate a Constant initaliser for global array or
/// struct typed variables.
static llvm::Constant *GenerateAggregateInit(const InitListExpr *ILE,
CodeGenModule& CGModule) {
assert (ILE->getType()->isArrayType() || ILE->getType()->isStructureType());
CodeGenTypes& Types = CGModule.getTypes();
unsigned NumInitElements = ILE->getNumInits();
const llvm::CompositeType *CType =
cast<llvm::CompositeType>(Types.ConvertType(ILE->getType()));
assert(CType);
std::vector<llvm::Constant*> Elts;
// Copy initializer elements.
unsigned i = 0;
for (i = 0; i < NumInitElements; ++i) {
llvm::Constant *C = GenerateConstantExpr(ILE->getInit(i), CGModule);
assert (C && "Failed to create initialiser expression");
Elts.push_back(C);
}
if (ILE->getType()->isStructureType())
return llvm::ConstantStruct::get(cast<llvm::StructType>(CType), Elts);
// Initialising an array requires us to automatically initialise any
// elements that have not been initialised explicitly
const llvm::ArrayType *AType = cast<llvm::ArrayType>(CType);
assert(AType);
const llvm::Type *AElemTy = AType->getElementType();
unsigned NumArrayElements = AType->getNumElements();
// Initialize remaining array elements.
for (; i < NumArrayElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(AElemTy));
return llvm::ConstantArray::get(AType, Elts);
}
/// GenerateConstantExpr - Recursively builds a constant initialiser for the
/// given expression.
static llvm::Constant *GenerateConstantExpr(const Expr* Expression,
CodeGenModule& CGModule) {
CodeGenTypes& Types = CGModule.getTypes();
ASTContext& Context = CGModule.getContext();
assert ((Expression->isConstantExpr(Context, 0) ||
Expression->getStmtClass() == Stmt::InitListExprClass) &&
"Only constant global initialisers are supported.");
QualType type = Expression->getType().getCanonicalType();
if (type->isIntegerType()) {
llvm::APSInt
Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation())));
if (Expression->isIntegerConstantExpr(Value, Context)) {
return llvm::ConstantInt::get(Value);
}
}
switch (Expression->getStmtClass()) {
// Generate constant for floating point literal values.
case Stmt::FloatingLiteralClass: {
const FloatingLiteral *FLiteral = cast<FloatingLiteral>(Expression);
return llvm::ConstantFP::get(Types.ConvertType(type), FLiteral->getValue());
}
// Generate constant for string literal values.
case Stmt::StringLiteralClass: {
const StringLiteral *SLiteral = cast<StringLiteral>(Expression);
const char *StrData = SLiteral->getStrData();
unsigned Len = SLiteral->getByteLength();
return CGModule.GetAddrOfConstantString(std::string(StrData,
StrData + Len));
}
// Elide parenthesis.
case Stmt::ParenExprClass:
return GenerateConstantExpr(cast<ParenExpr>(Expression)->getSubExpr(),
CGModule);
// Generate constant for sizeof operator.
// FIXME: Need to support AlignOf
case Stmt::SizeOfAlignOfTypeExprClass: {
const SizeOfAlignOfTypeExpr *SOExpr =
cast<SizeOfAlignOfTypeExpr>(Expression);
assert (SOExpr->isSizeOf());
return llvm::ConstantExpr::getSizeOf(Types.ConvertType(type));
}
// Generate constant cast expressions.
case Stmt::CastExprClass:
return GenerateConstantCast(cast<CastExpr>(Expression)->getSubExpr(), type,
CGModule);
case Stmt::ImplicitCastExprClass: {
const ImplicitCastExpr *ICExpr = cast<ImplicitCastExpr>(Expression);
return GenerateConstantCast(ICExpr->getSubExpr(), type, CGModule);
}
// Generate a constant array access expression
// FIXME: Clang's semantic analysis incorrectly prevents array access in
// global initialisers, preventing us from testing this.
case Stmt::ArraySubscriptExprClass: {
const ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(Expression);
llvm::Constant *Base = GenerateConstantExpr(ASExpr->getBase(), CGModule);
llvm::Constant *Index = GenerateConstantExpr(ASExpr->getIdx(), CGModule);
return llvm::ConstantExpr::getExtractElement(Base, Index);
}
// Generate a constant expression to initialise an aggregate type, such as
// an array or struct.
case Stmt::InitListExprClass:
return GenerateAggregateInit(cast<InitListExpr>(Expression), CGModule);
default:
assert (!"Unsupported expression in global initialiser.");
}
return 0;
}
llvm::Constant *CodeGenModule::EmitGlobalInit(const Expr *Expression) {
return GenerateConstantExpr(Expression, *this);
}
void CodeGenModule::EmitGlobalVar(const FileVarDecl *D) {
llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalDecl(D));
// If the storage class is external and there is no initializer, just leave it
// as a declaration.
if (D->getStorageClass() == VarDecl::Extern && D->getInit() == 0)
return;
// Otherwise, convert the initializer, or use zero if appropriate.
llvm::Constant *Init = 0;
if (D->getInit() == 0) {
Init = llvm::Constant::getNullValue(GV->getType()->getElementType());
} else if (D->getType()->isIntegerType()) {
llvm::APSInt Value(static_cast<uint32_t>(
getContext().getTypeSize(D->getInit()->getType(), SourceLocation())));
if (D->getInit()->isIntegerConstantExpr(Value, Context))
Init = llvm::ConstantInt::get(Value);
}
if (!Init)
Init = EmitGlobalInit(D->getInit());
assert(Init && "FIXME: Global variable initializers unimp!");
GV->setInitializer(Init);
// Set the llvm linkage type as appropriate.
// FIXME: This isn't right. This should handle common linkage and other
// stuff.
switch (D->getStorageClass()) {
case VarDecl::Auto:
case VarDecl::Register:
assert(0 && "Can't have auto or register globals");
case VarDecl::None:
case VarDecl::Extern:
// todo: common
break;
case VarDecl::Static:
GV->setLinkage(llvm::GlobalVariable::InternalLinkage);
break;
}
}
/// EmitGlobalVarDeclarator - Emit all the global vars attached to the specified
/// declarator chain.
void CodeGenModule::EmitGlobalVarDeclarator(const FileVarDecl *D) {
for (; D; D = cast_or_null<FileVarDecl>(D->getNextDeclarator()))
EmitGlobalVar(D);
}
/// getBuiltinLibFunction
llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
if (BuiltinFunctions.size() <= BuiltinID)
BuiltinFunctions.resize(BuiltinID);
// Already available?
llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID];
if (FunctionSlot)
return FunctionSlot;
assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn");
// Get the name, skip over the __builtin_ prefix.
const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10;
// Get the type for the builtin.
QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context);
const llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(Type));
// FIXME: This has a serious problem with code like this:
// void abs() {}
// ... __builtin_abs(x);
// The two versions of abs will collide. The fix is for the builtin to win,
// and for the existing one to be turned into a constantexpr cast of the
// builtin. In the case where the existing one is a static function, it
// should just be renamed.
if (llvm::Function *Existing = getModule().getFunction(Name)) {
if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage())
return FunctionSlot = Existing;
assert(Existing == 0 && "FIXME: Name collision");
}
// FIXME: param attributes for sext/zext etc.
return FunctionSlot = new llvm::Function(Ty, llvm::Function::ExternalLinkage,
Name, &getModule());
}
llvm::Function *CodeGenModule::getMemCpyFn() {
if (MemCpyFn) return MemCpyFn;
llvm::Intrinsic::ID IID;
uint64_t Size; unsigned Align;
Context.Target.getPointerInfo(Size, Align, SourceLocation());
switch (Size) {
default: assert(0 && "Unknown ptr width");
case 32: IID = llvm::Intrinsic::memcpy_i32; break;
case 64: IID = llvm::Intrinsic::memcpy_i64; break;
}
return MemCpyFn = llvm::Intrinsic::getDeclaration(&TheModule, IID);
}
llvm::Constant *CodeGenModule::
GetAddrOfConstantCFString(const std::string &str) {
llvm::StringMapEntry<llvm::Constant *> &Entry =
CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
if (Entry.getValue())
return Entry.getValue();
std::vector<llvm::Constant*> Fields;
if (!CFConstantStringClassRef) {
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Ty = llvm::ArrayType::get(Ty, 0);
CFConstantStringClassRef =
new llvm::GlobalVariable(Ty, false,
llvm::GlobalVariable::ExternalLinkage, 0,
"__CFConstantStringClassReference",
&getModule());
}
// Class pointer.
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
llvm::Constant *C =
llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2);
Fields.push_back(C);
// Flags.
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Fields.push_back(llvm::ConstantInt::get(Ty, 1992));
// String pointer.
C = llvm::ConstantArray::get(str);
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, ".str", &getModule());
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
Fields.push_back(C);
// String length.
Ty = getTypes().ConvertType(getContext().LongTy);
Fields.push_back(llvm::ConstantInt::get(Ty, str.length()));
// The struct.
Ty = getTypes().ConvertType(getContext().getCFConstantStringType());
C = llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Fields);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalVariable::InternalLinkage,
C, "", &getModule());
GV->setSection("__DATA,__cfstring");
Entry.setValue(GV);
return GV;
}
/// GenerateWritableString -- Creates storage for a string literal
static llvm::Constant *GenerateStringLiteral(const std::string &str,
bool constant,
CodeGenModule& CGModule) {
// Create Constant for this string literal
llvm::Constant *C=llvm::ConstantArray::get(str);
// Create a global variable for this string
C = new llvm::GlobalVariable(C->getType(), constant,
llvm::GlobalValue::InternalLinkage,
C, ".str", &CGModule.getModule());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return C;
}
/// CodeGenModule::GetAddrOfConstantString -- returns a pointer to the first
/// element of a character array containing the literal.
llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) {
// Don't share any string literals if writable-strings is turned on.
if (Features.WritableStrings)
return GenerateStringLiteral(str, false, *this);
llvm::StringMapEntry<llvm::Constant *> &Entry =
ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
if (Entry.getValue())
return Entry.getValue();
// Create a global variable for this.
llvm::Constant *C = GenerateStringLiteral(str, true, *this);
Entry.setValue(C);
return C;
}