llvm-project/llvm/tools/opt/NewPMDriver.cpp

360 lines
14 KiB
C++
Raw Normal View History

[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
//===- NewPMDriver.cpp - Driver for opt with new PM -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file is just a split of the code that logically belongs in opt.cpp but
/// that includes the new pass manager headers.
///
//===----------------------------------------------------------------------===//
#include "NewPMDriver.h"
#include "Debugify.h"
#include "PassPrinters.h"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRPrintingPasses.h"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 17:02:36 +08:00
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
using namespace llvm;
using namespace opt_tool;
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
static cl::opt<bool>
DebugPM("debug-pass-manager", cl::Hidden,
cl::desc("Print pass management debugging information"));
static cl::list<std::string>
PassPlugins("load-pass-plugin",
cl::desc("Load passes from plugin library"));
// This flag specifies a textual description of the alias analysis pipeline to
// use when querying for aliasing information. It only works in concert with
// the "passes" flag above.
static cl::opt<std::string>
AAPipeline("aa-pipeline",
cl::desc("A textual description of the alias analysis "
"pipeline for handling managed aliasing queries"),
cl::Hidden);
/// {{@ These options accept textual pipeline descriptions which will be
/// inserted into default pipelines at the respective extension points
static cl::opt<std::string> PeepholeEPPipeline(
"passes-ep-peephole",
cl::desc("A textual description of the function pass pipeline inserted at "
"the Peephole extension points into default pipelines"),
cl::Hidden);
static cl::opt<std::string> LateLoopOptimizationsEPPipeline(
"passes-ep-late-loop-optimizations",
cl::desc(
"A textual description of the loop pass pipeline inserted at "
"the LateLoopOptimizations extension point into default pipelines"),
cl::Hidden);
static cl::opt<std::string> LoopOptimizerEndEPPipeline(
"passes-ep-loop-optimizer-end",
cl::desc("A textual description of the loop pass pipeline inserted at "
"the LoopOptimizerEnd extension point into default pipelines"),
cl::Hidden);
static cl::opt<std::string> ScalarOptimizerLateEPPipeline(
"passes-ep-scalar-optimizer-late",
cl::desc("A textual description of the function pass pipeline inserted at "
"the ScalarOptimizerLate extension point into default pipelines"),
cl::Hidden);
static cl::opt<std::string> CGSCCOptimizerLateEPPipeline(
"passes-ep-cgscc-optimizer-late",
cl::desc("A textual description of the cgscc pass pipeline inserted at "
"the CGSCCOptimizerLate extension point into default pipelines"),
cl::Hidden);
static cl::opt<std::string> VectorizerStartEPPipeline(
"passes-ep-vectorizer-start",
cl::desc("A textual description of the function pass pipeline inserted at "
"the VectorizerStart extension point into default pipelines"),
cl::Hidden);
static cl::opt<std::string> PipelineStartEPPipeline(
"passes-ep-pipeline-start",
cl::desc("A textual description of the function pass pipeline inserted at "
"the PipelineStart extension point into default pipelines"),
cl::Hidden);
static cl::opt<std::string> OptimizerLastEPPipeline(
"passes-ep-optimizer-last",
cl::desc("A textual description of the function pass pipeline inserted at "
"the OptimizerLast extension point into default pipelines"),
cl::Hidden);
enum PGOKind { NoPGO, InstrGen, InstrUse, SampleUse };
static cl::opt<PGOKind> PGOKindFlag(
"pgo-kind", cl::init(NoPGO), cl::Hidden,
cl::desc("The kind of profile guided optimization"),
cl::values(clEnumValN(NoPGO, "nopgo", "Do not use PGO."),
clEnumValN(InstrGen, "new-pm-pgo-instr-gen-pipeline",
"Instrument the IR to generate profile."),
clEnumValN(InstrUse, "new-pm-pgo-instr-use-pipeline",
"Use instrumented profile to guide PGO."),
clEnumValN(SampleUse, "new-pm-pgo-sample-use-pipeline",
"Use sampled profile to guide PGO.")));
static cl::opt<std::string> ProfileFile(
"profile-file", cl::desc("Path to the profile."), cl::Hidden);
static cl::opt<std::string>
ProfileRemappingFile("profile-remapping-file",
cl::desc("Path to the profile remapping file."),
cl::Hidden);
static cl::opt<bool> DebugInfoForProfiling(
"new-pm-debug-info-for-profiling", cl::init(false), cl::Hidden,
cl::desc("Emit special debug info to enable PGO profile generation."));
/// @}}
template <typename PassManagerT>
bool tryParsePipelineText(PassBuilder &PB,
const cl::opt<std::string> &PipelineOpt) {
if (PipelineOpt.empty())
return false;
// Verify the pipeline is parseable:
PassManagerT PM;
if (auto Err = PB.parsePassPipeline(PM, PipelineOpt)) {
errs() << "Could not parse -" << PipelineOpt.ArgStr
<< " pipeline: " << toString(std::move(Err))
<< "... I'm going to ignore it.\n";
return false;
}
return true;
}
/// If one of the EPPipeline command line options was given, register callbacks
/// for parsing and inserting the given pipeline
static void registerEPCallbacks(PassBuilder &PB, bool VerifyEachPass,
bool DebugLogging) {
if (tryParsePipelineText<FunctionPassManager>(PB, PeepholeEPPipeline))
PB.registerPeepholeEPCallback(
[&PB, VerifyEachPass, DebugLogging](
FunctionPassManager &PM, PassBuilder::OptimizationLevel Level) {
ExitOnError Err("Unable to parse PeepholeEP pipeline: ");
Err(PB.parsePassPipeline(PM, PeepholeEPPipeline, VerifyEachPass,
DebugLogging));
});
if (tryParsePipelineText<LoopPassManager>(PB,
LateLoopOptimizationsEPPipeline))
PB.registerLateLoopOptimizationsEPCallback(
[&PB, VerifyEachPass, DebugLogging](
LoopPassManager &PM, PassBuilder::OptimizationLevel Level) {
ExitOnError Err("Unable to parse LateLoopOptimizationsEP pipeline: ");
Err(PB.parsePassPipeline(PM, LateLoopOptimizationsEPPipeline,
VerifyEachPass, DebugLogging));
});
if (tryParsePipelineText<LoopPassManager>(PB, LoopOptimizerEndEPPipeline))
PB.registerLoopOptimizerEndEPCallback(
[&PB, VerifyEachPass, DebugLogging](
LoopPassManager &PM, PassBuilder::OptimizationLevel Level) {
ExitOnError Err("Unable to parse LoopOptimizerEndEP pipeline: ");
Err(PB.parsePassPipeline(PM, LoopOptimizerEndEPPipeline,
VerifyEachPass, DebugLogging));
});
if (tryParsePipelineText<FunctionPassManager>(PB,
ScalarOptimizerLateEPPipeline))
PB.registerScalarOptimizerLateEPCallback(
[&PB, VerifyEachPass, DebugLogging](
FunctionPassManager &PM, PassBuilder::OptimizationLevel Level) {
ExitOnError Err("Unable to parse ScalarOptimizerLateEP pipeline: ");
Err(PB.parsePassPipeline(PM, ScalarOptimizerLateEPPipeline,
VerifyEachPass, DebugLogging));
});
if (tryParsePipelineText<CGSCCPassManager>(PB, CGSCCOptimizerLateEPPipeline))
PB.registerCGSCCOptimizerLateEPCallback(
[&PB, VerifyEachPass, DebugLogging](
CGSCCPassManager &PM, PassBuilder::OptimizationLevel Level) {
ExitOnError Err("Unable to parse CGSCCOptimizerLateEP pipeline: ");
Err(PB.parsePassPipeline(PM, CGSCCOptimizerLateEPPipeline,
VerifyEachPass, DebugLogging));
});
if (tryParsePipelineText<FunctionPassManager>(PB, VectorizerStartEPPipeline))
PB.registerVectorizerStartEPCallback(
[&PB, VerifyEachPass, DebugLogging](
FunctionPassManager &PM, PassBuilder::OptimizationLevel Level) {
ExitOnError Err("Unable to parse VectorizerStartEP pipeline: ");
Err(PB.parsePassPipeline(PM, VectorizerStartEPPipeline,
VerifyEachPass, DebugLogging));
});
if (tryParsePipelineText<ModulePassManager>(PB, PipelineStartEPPipeline))
PB.registerPipelineStartEPCallback(
[&PB, VerifyEachPass, DebugLogging](ModulePassManager &PM) {
ExitOnError Err("Unable to parse PipelineStartEP pipeline: ");
Err(PB.parsePassPipeline(PM, PipelineStartEPPipeline, VerifyEachPass,
DebugLogging));
});
if (tryParsePipelineText<FunctionPassManager>(PB, OptimizerLastEPPipeline))
PB.registerOptimizerLastEPCallback(
[&PB, VerifyEachPass, DebugLogging](FunctionPassManager &PM,
PassBuilder::OptimizationLevel) {
PB.parsePassPipeline(PM, OptimizerLastEPPipeline, VerifyEachPass,
DebugLogging);
});
}
#ifdef LINK_POLLY_INTO_TOOLS
namespace polly {
void RegisterPollyPasses(PassBuilder &);
}
#endif
bool llvm::runPassPipeline(StringRef Arg0, Module &M, TargetMachine *TM,
ToolOutputFile *Out, ToolOutputFile *ThinLTOLinkOut,
ToolOutputFile *OptRemarkFile,
StringRef PassPipeline, OutputKind OK,
VerifierKind VK,
bool ShouldPreserveAssemblyUseListOrder,
bool ShouldPreserveBitcodeUseListOrder,
bool EmitSummaryIndex, bool EmitModuleHash,
bool EnableDebugify) {
bool VerifyEachPass = VK == VK_VerifyEachPass;
Optional<PGOOptions> P;
switch (PGOKindFlag) {
case InstrGen:
P = PGOOptions(ProfileFile, "", "", "", true);
break;
case InstrUse:
P = PGOOptions("", ProfileFile, "", ProfileRemappingFile, false);
break;
case SampleUse:
P = PGOOptions("", "", ProfileFile, ProfileRemappingFile, false);
break;
case NoPGO:
if (DebugInfoForProfiling)
P = PGOOptions("", "", "", "", false, true);
else
P = None;
}
PassInstrumentationCallbacks PIC;
StandardInstrumentations SI;
SI.registerCallbacks(PIC);
PassBuilder PB(TM, P, &PIC);
registerEPCallbacks(PB, VerifyEachPass, DebugPM);
// Load requested pass plugins and let them register pass builder callbacks
for (auto &PluginFN : PassPlugins) {
auto PassPlugin = PassPlugin::Load(PluginFN);
if (!PassPlugin) {
errs() << "Failed to load passes from '" << PluginFN
<< "'. Request ignored.\n";
continue;
}
PassPlugin->registerPassBuilderCallbacks(PB);
}
// Register a callback that creates the debugify passes as needed.
PB.registerPipelineParsingCallback(
[](StringRef Name, ModulePassManager &MPM,
ArrayRef<PassBuilder::PipelineElement>) {
if (Name == "debugify") {
MPM.addPass(NewPMDebugifyPass());
return true;
} else if (Name == "check-debugify") {
MPM.addPass(NewPMCheckDebugifyPass());
return true;
}
return false;
});
#ifdef LINK_POLLY_INTO_TOOLS
polly::RegisterPollyPasses(PB);
#endif
// Specially handle the alias analysis manager so that we can register
// a custom pipeline of AA passes with it.
AAManager AA;
if (auto Err = PB.parseAAPipeline(AA, AAPipeline)) {
errs() << Arg0 << ": " << toString(std::move(Err)) << "\n";
return false;
}
LoopAnalysisManager LAM(DebugPM);
FunctionAnalysisManager FAM(DebugPM);
CGSCCAnalysisManager CGAM(DebugPM);
ModuleAnalysisManager MAM(DebugPM);
// Register the AA manager first so that our version is the one used.
FAM.registerPass([&] { return std::move(AA); });
// Register all the basic analyses with the managers.
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 17:02:36 +08:00
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM(DebugPM);
if (VK > VK_NoVerifier)
MPM.addPass(VerifierPass());
if (EnableDebugify)
MPM.addPass(NewPMDebugifyPass());
if (auto Err =
PB.parsePassPipeline(MPM, PassPipeline, VerifyEachPass, DebugPM)) {
errs() << Arg0 << ": " << toString(std::move(Err)) << "\n";
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
return false;
}
if (VK > VK_NoVerifier)
MPM.addPass(VerifierPass());
if (EnableDebugify)
MPM.addPass(NewPMCheckDebugifyPass());
// Add any relevant output pass at the end of the pipeline.
switch (OK) {
case OK_NoOutput:
break; // No output pass needed.
case OK_OutputAssembly:
MPM.addPass(
PrintModulePass(Out->os(), "", ShouldPreserveAssemblyUseListOrder));
break;
case OK_OutputBitcode:
MPM.addPass(BitcodeWriterPass(Out->os(), ShouldPreserveBitcodeUseListOrder,
EmitSummaryIndex, EmitModuleHash));
break;
case OK_OutputThinLTOBitcode:
MPM.addPass(ThinLTOBitcodeWriterPass(
Out->os(), ThinLTOLinkOut ? &ThinLTOLinkOut->os() : nullptr));
break;
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
// Now that we have all of the passes ready, run them.
MPM.run(M, MAM);
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
// Declare success.
if (OK != OK_NoOutput) {
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
Out->keep();
if (OK == OK_OutputThinLTOBitcode && ThinLTOLinkOut)
ThinLTOLinkOut->keep();
}
if (OptRemarkFile)
OptRemarkFile->keep();
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 16:16:35 +08:00
return true;
}