llvm-project/clang/lib/StaticAnalyzer/Core/MemRegion.cpp

989 lines
30 KiB
C++
Raw Normal View History

//== MemRegion.cpp - Abstract memory regions for static analysis --*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines MemRegion and its subclasses. MemRegion defines a
// partially-typed abstraction of memory useful for path-sensitive dataflow
// analyses.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/Support/BumpVector.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
//===----------------------------------------------------------------------===//
// MemRegion Construction.
//===----------------------------------------------------------------------===//
template<typename RegionTy> struct MemRegionManagerTrait;
template <typename RegionTy, typename A1>
RegionTy* MemRegionManager::getRegion(const A1 a1) {
const typename MemRegionManagerTrait<RegionTy>::SuperRegionTy *superRegion =
MemRegionManagerTrait<RegionTy>::getSuperRegion(*this, a1);
llvm::FoldingSetNodeID ID;
RegionTy::ProfileRegion(ID, a1, superRegion);
void* InsertPos;
RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
InsertPos));
if (!R) {
R = (RegionTy*) A.Allocate<RegionTy>();
new (R) RegionTy(a1, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
template <typename RegionTy, typename A1>
RegionTy* MemRegionManager::getSubRegion(const A1 a1,
const MemRegion *superRegion) {
llvm::FoldingSetNodeID ID;
RegionTy::ProfileRegion(ID, a1, superRegion);
void* InsertPos;
RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
InsertPos));
if (!R) {
R = (RegionTy*) A.Allocate<RegionTy>();
new (R) RegionTy(a1, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
template <typename RegionTy, typename A1, typename A2>
RegionTy* MemRegionManager::getRegion(const A1 a1, const A2 a2) {
const typename MemRegionManagerTrait<RegionTy>::SuperRegionTy *superRegion =
MemRegionManagerTrait<RegionTy>::getSuperRegion(*this, a1, a2);
llvm::FoldingSetNodeID ID;
RegionTy::ProfileRegion(ID, a1, a2, superRegion);
void* InsertPos;
RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
InsertPos));
if (!R) {
R = (RegionTy*) A.Allocate<RegionTy>();
new (R) RegionTy(a1, a2, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
template <typename RegionTy, typename A1, typename A2>
RegionTy* MemRegionManager::getSubRegion(const A1 a1, const A2 a2,
const MemRegion *superRegion) {
llvm::FoldingSetNodeID ID;
RegionTy::ProfileRegion(ID, a1, a2, superRegion);
void* InsertPos;
RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
InsertPos));
if (!R) {
R = (RegionTy*) A.Allocate<RegionTy>();
new (R) RegionTy(a1, a2, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
template <typename RegionTy, typename A1, typename A2, typename A3>
RegionTy* MemRegionManager::getSubRegion(const A1 a1, const A2 a2, const A3 a3,
const MemRegion *superRegion) {
llvm::FoldingSetNodeID ID;
RegionTy::ProfileRegion(ID, a1, a2, a3, superRegion);
void* InsertPos;
RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
InsertPos));
if (!R) {
R = (RegionTy*) A.Allocate<RegionTy>();
new (R) RegionTy(a1, a2, a3, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
//===----------------------------------------------------------------------===//
// Object destruction.
//===----------------------------------------------------------------------===//
MemRegion::~MemRegion() {}
MemRegionManager::~MemRegionManager() {
// All regions and their data are BumpPtrAllocated. No need to call
// their destructors.
}
//===----------------------------------------------------------------------===//
// Basic methods.
//===----------------------------------------------------------------------===//
bool SubRegion::isSubRegionOf(const MemRegion* R) const {
const MemRegion* r = getSuperRegion();
while (r != 0) {
if (r == R)
return true;
if (const SubRegion* sr = dyn_cast<SubRegion>(r))
r = sr->getSuperRegion();
else
break;
}
return false;
}
MemRegionManager* SubRegion::getMemRegionManager() const {
const SubRegion* r = this;
do {
const MemRegion *superRegion = r->getSuperRegion();
if (const SubRegion *sr = dyn_cast<SubRegion>(superRegion)) {
r = sr;
continue;
}
return superRegion->getMemRegionManager();
} while (1);
}
const StackFrameContext *VarRegion::getStackFrame() const {
const StackSpaceRegion *SSR = dyn_cast<StackSpaceRegion>(getMemorySpace());
return SSR ? SSR->getStackFrame() : NULL;
}
//===----------------------------------------------------------------------===//
// Region extents.
//===----------------------------------------------------------------------===//
DefinedOrUnknownSVal DeclRegion::getExtent(SValBuilder &svalBuilder) const {
ASTContext& Ctx = svalBuilder.getContext();
QualType T = getDesugaredValueType(Ctx);
if (isa<VariableArrayType>(T))
return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
if (isa<IncompleteArrayType>(T))
return UnknownVal();
CharUnits size = Ctx.getTypeSizeInChars(T);
QualType sizeTy = svalBuilder.getArrayIndexType();
return svalBuilder.makeIntVal(size.getQuantity(), sizeTy);
}
DefinedOrUnknownSVal FieldRegion::getExtent(SValBuilder &svalBuilder) const {
DefinedOrUnknownSVal Extent = DeclRegion::getExtent(svalBuilder);
// A zero-length array at the end of a struct often stands for dynamically-
// allocated extra memory.
if (Extent.isZeroConstant()) {
QualType T = getDesugaredValueType(svalBuilder.getContext());
if (isa<ConstantArrayType>(T))
return UnknownVal();
}
return Extent;
}
DefinedOrUnknownSVal AllocaRegion::getExtent(SValBuilder &svalBuilder) const {
return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
}
DefinedOrUnknownSVal SymbolicRegion::getExtent(SValBuilder &svalBuilder) const {
return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
}
DefinedOrUnknownSVal StringRegion::getExtent(SValBuilder &svalBuilder) const {
return svalBuilder.makeIntVal(getStringLiteral()->getByteLength()+1,
svalBuilder.getArrayIndexType());
}
QualType CXXBaseObjectRegion::getValueType() const {
return QualType(decl->getTypeForDecl(), 0);
}
//===----------------------------------------------------------------------===//
// FoldingSet profiling.
//===----------------------------------------------------------------------===//
void MemSpaceRegion::Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddInteger((unsigned)getKind());
}
void StackSpaceRegion::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger((unsigned)getKind());
ID.AddPointer(getStackFrame());
}
void StaticGlobalSpaceRegion::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger((unsigned)getKind());
ID.AddPointer(getCodeRegion());
}
void StringRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const StringLiteral* Str,
const MemRegion* superRegion) {
ID.AddInteger((unsigned) StringRegionKind);
ID.AddPointer(Str);
ID.AddPointer(superRegion);
}
void AllocaRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const Expr* Ex, unsigned cnt,
const MemRegion *) {
ID.AddInteger((unsigned) AllocaRegionKind);
ID.AddPointer(Ex);
ID.AddInteger(cnt);
}
void AllocaRegion::Profile(llvm::FoldingSetNodeID& ID) const {
ProfileRegion(ID, Ex, Cnt, superRegion);
}
void CompoundLiteralRegion::Profile(llvm::FoldingSetNodeID& ID) const {
CompoundLiteralRegion::ProfileRegion(ID, CL, superRegion);
}
void CompoundLiteralRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const CompoundLiteralExpr* CL,
const MemRegion* superRegion) {
ID.AddInteger((unsigned) CompoundLiteralRegionKind);
ID.AddPointer(CL);
ID.AddPointer(superRegion);
}
void CXXThisRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
const PointerType *PT,
const MemRegion *sRegion) {
ID.AddInteger((unsigned) CXXThisRegionKind);
ID.AddPointer(PT);
ID.AddPointer(sRegion);
}
void CXXThisRegion::Profile(llvm::FoldingSetNodeID &ID) const {
CXXThisRegion::ProfileRegion(ID, ThisPointerTy, superRegion);
}
void DeclRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, const Decl* D,
const MemRegion* superRegion, Kind k) {
ID.AddInteger((unsigned) k);
ID.AddPointer(D);
ID.AddPointer(superRegion);
}
void DeclRegion::Profile(llvm::FoldingSetNodeID& ID) const {
DeclRegion::ProfileRegion(ID, D, superRegion, getKind());
}
void VarRegion::Profile(llvm::FoldingSetNodeID &ID) const {
VarRegion::ProfileRegion(ID, getDecl(), superRegion);
}
void SymbolicRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, SymbolRef sym,
const MemRegion *sreg) {
ID.AddInteger((unsigned) MemRegion::SymbolicRegionKind);
ID.Add(sym);
ID.AddPointer(sreg);
}
void SymbolicRegion::Profile(llvm::FoldingSetNodeID& ID) const {
SymbolicRegion::ProfileRegion(ID, sym, getSuperRegion());
}
void ElementRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
QualType ElementType, SVal Idx,
const MemRegion* superRegion) {
ID.AddInteger(MemRegion::ElementRegionKind);
ID.Add(ElementType);
ID.AddPointer(superRegion);
Idx.Profile(ID);
}
void ElementRegion::Profile(llvm::FoldingSetNodeID& ID) const {
ElementRegion::ProfileRegion(ID, ElementType, Index, superRegion);
}
void FunctionTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const FunctionDecl *FD,
const MemRegion*) {
ID.AddInteger(MemRegion::FunctionTextRegionKind);
ID.AddPointer(FD);
}
void FunctionTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
FunctionTextRegion::ProfileRegion(ID, FD, superRegion);
}
void BlockTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const BlockDecl *BD, CanQualType,
const AnalysisContext *AC,
const MemRegion*) {
ID.AddInteger(MemRegion::BlockTextRegionKind);
ID.AddPointer(BD);
}
void BlockTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
BlockTextRegion::ProfileRegion(ID, BD, locTy, AC, superRegion);
}
void BlockDataRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const BlockTextRegion *BC,
const LocationContext *LC,
const MemRegion *sReg) {
ID.AddInteger(MemRegion::BlockDataRegionKind);
ID.AddPointer(BC);
ID.AddPointer(LC);
ID.AddPointer(sReg);
}
void BlockDataRegion::Profile(llvm::FoldingSetNodeID& ID) const {
BlockDataRegion::ProfileRegion(ID, BC, LC, getSuperRegion());
}
void CXXTempObjectRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
Expr const *Ex,
const MemRegion *sReg) {
ID.AddPointer(Ex);
ID.AddPointer(sReg);
}
void CXXTempObjectRegion::Profile(llvm::FoldingSetNodeID &ID) const {
ProfileRegion(ID, Ex, getSuperRegion());
}
void CXXBaseObjectRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
const CXXRecordDecl *decl,
const MemRegion *sReg) {
ID.AddPointer(decl);
ID.AddPointer(sReg);
}
void CXXBaseObjectRegion::Profile(llvm::FoldingSetNodeID &ID) const {
ProfileRegion(ID, decl, superRegion);
}
//===----------------------------------------------------------------------===//
// Region pretty-printing.
//===----------------------------------------------------------------------===//
void MemRegion::dump() const {
dumpToStream(llvm::errs());
}
std::string MemRegion::getString() const {
std::string s;
llvm::raw_string_ostream os(s);
dumpToStream(os);
return os.str();
}
void MemRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "<Unknown Region>";
}
void AllocaRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "alloca{" << (void*) Ex << ',' << Cnt << '}';
}
void FunctionTextRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "code{" << getDecl()->getDeclName().getAsString() << '}';
}
void BlockTextRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "block_code{" << (void*) this << '}';
}
void BlockDataRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "block_data{" << BC << '}';
}
void CompoundLiteralRegion::dumpToStream(llvm::raw_ostream& os) const {
// FIXME: More elaborate pretty-printing.
os << "{ " << (void*) CL << " }";
}
void CXXTempObjectRegion::dumpToStream(llvm::raw_ostream &os) const {
2010-11-25 10:07:24 +08:00
os << "temp_object";
}
void CXXBaseObjectRegion::dumpToStream(llvm::raw_ostream &os) const {
os << "base " << decl->getName();
}
void CXXThisRegion::dumpToStream(llvm::raw_ostream &os) const {
os << "this";
}
void ElementRegion::dumpToStream(llvm::raw_ostream& os) const {
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
os << "element{" << superRegion << ','
<< Index << ',' << getElementType().getAsString() << '}';
}
void FieldRegion::dumpToStream(llvm::raw_ostream& os) const {
os << superRegion << "->" << getDecl();
}
void NonStaticGlobalSpaceRegion::dumpToStream(llvm::raw_ostream &os) const {
os << "NonStaticGlobalSpaceRegion";
}
void ObjCIvarRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "ivar{" << superRegion << ',' << getDecl() << '}';
}
void StringRegion::dumpToStream(llvm::raw_ostream& os) const {
Str->printPretty(os, 0, PrintingPolicy(getContext().getLangOptions()));
}
void SymbolicRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "SymRegion{" << sym << '}';
}
void VarRegion::dumpToStream(llvm::raw_ostream& os) const {
os << cast<VarDecl>(D);
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
void RegionRawOffset::dump() const {
dumpToStream(llvm::errs());
}
void RegionRawOffset::dumpToStream(llvm::raw_ostream& os) const {
os << "raw_offset{" << getRegion() << ',' << getOffset().getQuantity() << '}';
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
}
void StaticGlobalSpaceRegion::dumpToStream(llvm::raw_ostream &os) const {
os << "StaticGlobalsMemSpace{" << CR << '}';
}
//===----------------------------------------------------------------------===//
// MemRegionManager methods.
//===----------------------------------------------------------------------===//
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
template <typename REG>
const REG *MemRegionManager::LazyAllocate(REG*& region) {
if (!region) {
region = (REG*) A.Allocate<REG>();
new (region) REG(this);
}
return region;
}
template <typename REG, typename ARG>
const REG *MemRegionManager::LazyAllocate(REG*& region, ARG a) {
if (!region) {
region = (REG*) A.Allocate<REG>();
new (region) REG(this, a);
}
return region;
}
const StackLocalsSpaceRegion*
MemRegionManager::getStackLocalsRegion(const StackFrameContext *STC) {
assert(STC);
StackLocalsSpaceRegion *&R = StackLocalsSpaceRegions[STC];
if (R)
return R;
R = A.Allocate<StackLocalsSpaceRegion>();
new (R) StackLocalsSpaceRegion(this, STC);
return R;
}
const StackArgumentsSpaceRegion *
MemRegionManager::getStackArgumentsRegion(const StackFrameContext *STC) {
assert(STC);
StackArgumentsSpaceRegion *&R = StackArgumentsSpaceRegions[STC];
if (R)
return R;
R = A.Allocate<StackArgumentsSpaceRegion>();
new (R) StackArgumentsSpaceRegion(this, STC);
return R;
}
const GlobalsSpaceRegion
*MemRegionManager::getGlobalsRegion(const CodeTextRegion *CR) {
if (!CR)
return LazyAllocate(globals);
StaticGlobalSpaceRegion *&R = StaticsGlobalSpaceRegions[CR];
if (R)
return R;
R = A.Allocate<StaticGlobalSpaceRegion>();
new (R) StaticGlobalSpaceRegion(this, CR);
return R;
}
const HeapSpaceRegion *MemRegionManager::getHeapRegion() {
return LazyAllocate(heap);
}
const MemSpaceRegion *MemRegionManager::getUnknownRegion() {
return LazyAllocate(unknown);
}
const MemSpaceRegion *MemRegionManager::getCodeRegion() {
return LazyAllocate(code);
}
//===----------------------------------------------------------------------===//
// Constructing regions.
//===----------------------------------------------------------------------===//
const StringRegion* MemRegionManager::getStringRegion(const StringLiteral* Str){
return getSubRegion<StringRegion>(Str, getGlobalsRegion());
}
const VarRegion* MemRegionManager::getVarRegion(const VarDecl *D,
const LocationContext *LC) {
const MemRegion *sReg = 0;
if (D->hasGlobalStorage() && !D->isStaticLocal())
sReg = getGlobalsRegion();
else {
// FIXME: Once we implement scope handling, we will need to properly lookup
// 'D' to the proper LocationContext.
const DeclContext *DC = D->getDeclContext();
const StackFrameContext *STC = LC->getStackFrameForDeclContext(DC);
if (!STC)
sReg = getUnknownRegion();
else {
if (D->hasLocalStorage()) {
sReg = isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)
? static_cast<const MemRegion*>(getStackArgumentsRegion(STC))
: static_cast<const MemRegion*>(getStackLocalsRegion(STC));
}
else {
assert(D->isStaticLocal());
const Decl *D = STC->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
sReg = getGlobalsRegion(getFunctionTextRegion(FD));
else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
const BlockTextRegion *BTR =
getBlockTextRegion(BD,
C.getCanonicalType(BD->getSignatureAsWritten()->getType()),
STC->getAnalysisContext());
sReg = getGlobalsRegion(BTR);
}
else {
// FIXME: For ObjC-methods, we need a new CodeTextRegion. For now
// just use the main global memspace.
sReg = getGlobalsRegion();
}
}
}
}
return getSubRegion<VarRegion>(D, sReg);
}
const VarRegion *MemRegionManager::getVarRegion(const VarDecl *D,
const MemRegion *superR) {
return getSubRegion<VarRegion>(D, superR);
}
const BlockDataRegion *
MemRegionManager::getBlockDataRegion(const BlockTextRegion *BC,
const LocationContext *LC) {
const MemRegion *sReg = 0;
if (LC) {
// FIXME: Once we implement scope handling, we want the parent region
// to be the scope.
const StackFrameContext *STC = LC->getCurrentStackFrame();
assert(STC);
sReg = getStackLocalsRegion(STC);
}
else {
// We allow 'LC' to be NULL for cases where want BlockDataRegions
// without context-sensitivity.
sReg = getUnknownRegion();
}
return getSubRegion<BlockDataRegion>(BC, LC, sReg);
}
const CompoundLiteralRegion*
MemRegionManager::getCompoundLiteralRegion(const CompoundLiteralExpr* CL,
const LocationContext *LC) {
const MemRegion *sReg = 0;
if (CL->isFileScope())
sReg = getGlobalsRegion();
else {
const StackFrameContext *STC = LC->getCurrentStackFrame();
assert(STC);
sReg = getStackLocalsRegion(STC);
}
return getSubRegion<CompoundLiteralRegion>(CL, sReg);
}
const ElementRegion*
MemRegionManager::getElementRegion(QualType elementType, NonLoc Idx,
const MemRegion* superRegion,
ASTContext& Ctx){
QualType T = Ctx.getCanonicalType(elementType).getUnqualifiedType();
llvm::FoldingSetNodeID ID;
ElementRegion::ProfileRegion(ID, T, Idx, superRegion);
void* InsertPos;
MemRegion* data = Regions.FindNodeOrInsertPos(ID, InsertPos);
ElementRegion* R = cast_or_null<ElementRegion>(data);
if (!R) {
R = (ElementRegion*) A.Allocate<ElementRegion>();
new (R) ElementRegion(T, Idx, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
const FunctionTextRegion *
MemRegionManager::getFunctionTextRegion(const FunctionDecl *FD) {
return getSubRegion<FunctionTextRegion>(FD, getCodeRegion());
}
const BlockTextRegion *
MemRegionManager::getBlockTextRegion(const BlockDecl *BD, CanQualType locTy,
AnalysisContext *AC) {
return getSubRegion<BlockTextRegion>(BD, locTy, AC, getCodeRegion());
}
/// getSymbolicRegion - Retrieve or create a "symbolic" memory region.
const SymbolicRegion *MemRegionManager::getSymbolicRegion(SymbolRef sym) {
return getSubRegion<SymbolicRegion>(sym, getUnknownRegion());
}
const FieldRegion*
MemRegionManager::getFieldRegion(const FieldDecl* d,
const MemRegion* superRegion){
return getSubRegion<FieldRegion>(d, superRegion);
}
const ObjCIvarRegion*
MemRegionManager::getObjCIvarRegion(const ObjCIvarDecl* d,
const MemRegion* superRegion) {
return getSubRegion<ObjCIvarRegion>(d, superRegion);
}
const CXXTempObjectRegion*
MemRegionManager::getCXXTempObjectRegion(Expr const *E,
LocationContext const *LC) {
const StackFrameContext *SFC = LC->getCurrentStackFrame();
assert(SFC);
return getSubRegion<CXXTempObjectRegion>(E, getStackLocalsRegion(SFC));
}
const CXXBaseObjectRegion *
MemRegionManager::getCXXBaseObjectRegion(const CXXRecordDecl *decl,
const MemRegion *superRegion) {
return getSubRegion<CXXBaseObjectRegion>(decl, superRegion);
}
const CXXThisRegion*
MemRegionManager::getCXXThisRegion(QualType thisPointerTy,
const LocationContext *LC) {
const StackFrameContext *STC = LC->getCurrentStackFrame();
assert(STC);
const PointerType *PT = thisPointerTy->getAs<PointerType>();
assert(PT);
return getSubRegion<CXXThisRegion>(PT, getStackArgumentsRegion(STC));
}
const AllocaRegion*
MemRegionManager::getAllocaRegion(const Expr* E, unsigned cnt,
const LocationContext *LC) {
const StackFrameContext *STC = LC->getCurrentStackFrame();
assert(STC);
return getSubRegion<AllocaRegion>(E, cnt, getStackLocalsRegion(STC));
}
const MemSpaceRegion *MemRegion::getMemorySpace() const {
const MemRegion *R = this;
const SubRegion* SR = dyn_cast<SubRegion>(this);
while (SR) {
R = SR->getSuperRegion();
SR = dyn_cast<SubRegion>(R);
}
return dyn_cast<MemSpaceRegion>(R);
}
bool MemRegion::hasStackStorage() const {
return isa<StackSpaceRegion>(getMemorySpace());
}
bool MemRegion::hasStackNonParametersStorage() const {
return isa<StackLocalsSpaceRegion>(getMemorySpace());
}
bool MemRegion::hasStackParametersStorage() const {
return isa<StackArgumentsSpaceRegion>(getMemorySpace());
}
bool MemRegion::hasGlobalsOrParametersStorage() const {
const MemSpaceRegion *MS = getMemorySpace();
return isa<StackArgumentsSpaceRegion>(MS) ||
isa<GlobalsSpaceRegion>(MS);
}
// getBaseRegion strips away all elements and fields, and get the base region
// of them.
const MemRegion *MemRegion::getBaseRegion() const {
const MemRegion *R = this;
while (true) {
switch (R->getKind()) {
case MemRegion::ElementRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
case MemRegion::CXXBaseObjectRegionKind:
R = cast<SubRegion>(R)->getSuperRegion();
continue;
default:
break;
}
break;
}
return R;
}
//===----------------------------------------------------------------------===//
// View handling.
//===----------------------------------------------------------------------===//
const MemRegion *MemRegion::StripCasts() const {
const MemRegion *R = this;
while (true) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
// FIXME: generalize. Essentially we want to strip away ElementRegions
// that were layered on a symbolic region because of casts. We only
// want to strip away ElementRegions, however, where the index is 0.
SVal index = ER->getIndex();
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&index)) {
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
if (CI->getValue().getSExtValue() == 0) {
R = ER->getSuperRegion();
continue;
}
}
}
break;
}
return R;
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// FIXME: Merge with the implementation of the same method in Store.cpp
static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *D = RT->getDecl();
if (!D->getDefinition())
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
return false;
}
return true;
}
RegionRawOffset ElementRegion::getAsArrayOffset() const {
CharUnits offset = CharUnits::Zero();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
const ElementRegion *ER = this;
const MemRegion *superR = NULL;
ASTContext &C = getContext();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// FIXME: Handle multi-dimensional arrays.
while (ER) {
superR = ER->getSuperRegion();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// FIXME: generalize to symbolic offsets.
SVal index = ER->getIndex();
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&index)) {
// Update the offset.
int64_t i = CI->getValue().getSExtValue();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
if (i != 0) {
QualType elemType = ER->getElementType();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// If we are pointing to an incomplete type, go no further.
if (!IsCompleteType(C, elemType)) {
superR = ER;
break;
}
CharUnits size = C.getTypeSizeInChars(elemType);
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
offset += (i * size);
}
// Go to the next ElementRegion (if any).
ER = dyn_cast<ElementRegion>(superR);
continue;
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
return NULL;
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
assert(superR && "super region cannot be NULL");
return RegionRawOffset(superR, offset);
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
}
RegionOffset MemRegion::getAsOffset() const {
const MemRegion *R = this;
int64_t Offset = 0;
while (1) {
switch (R->getKind()) {
default:
return RegionOffset(0);
case SymbolicRegionKind:
case AllocaRegionKind:
case CompoundLiteralRegionKind:
case CXXThisRegionKind:
case StringRegionKind:
case VarRegionKind:
case CXXTempObjectRegionKind:
goto Finish;
case ElementRegionKind: {
const ElementRegion *ER = cast<ElementRegion>(R);
QualType EleTy = ER->getValueType();
if (!IsCompleteType(getContext(), EleTy))
return RegionOffset(0);
SVal Index = ER->getIndex();
if (const nonloc::ConcreteInt *CI=dyn_cast<nonloc::ConcreteInt>(&Index)) {
int64_t i = CI->getValue().getSExtValue();
CharUnits Size = getContext().getTypeSizeInChars(EleTy);
Offset += i * Size.getQuantity() * 8;
} else {
// We cannot compute offset for non-concrete index.
return RegionOffset(0);
}
R = ER->getSuperRegion();
break;
}
case FieldRegionKind: {
const FieldRegion *FR = cast<FieldRegion>(R);
const RecordDecl *RD = FR->getDecl()->getParent();
if (!RD->isDefinition())
// We cannot compute offset for incomplete type.
return RegionOffset(0);
// Get the field number.
unsigned idx = 0;
for (RecordDecl::field_iterator FI = RD->field_begin(),
FE = RD->field_end(); FI != FE; ++FI, ++idx)
if (FR->getDecl() == *FI)
break;
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
// This is offset in bits.
Offset += Layout.getFieldOffset(idx);
R = FR->getSuperRegion();
break;
}
}
}
Finish:
return RegionOffset(R, Offset);
}
//===----------------------------------------------------------------------===//
// BlockDataRegion
//===----------------------------------------------------------------------===//
void BlockDataRegion::LazyInitializeReferencedVars() {
if (ReferencedVars)
return;
AnalysisContext *AC = getCodeRegion()->getAnalysisContext();
AnalysisContext::referenced_decls_iterator I, E;
llvm::tie(I, E) = AC->getReferencedBlockVars(BC->getDecl());
if (I == E) {
ReferencedVars = (void*) 0x1;
return;
}
MemRegionManager &MemMgr = *getMemRegionManager();
llvm::BumpPtrAllocator &A = MemMgr.getAllocator();
BumpVectorContext BC(A);
typedef BumpVector<const MemRegion*> VarVec;
VarVec *BV = (VarVec*) A.Allocate<VarVec>();
new (BV) VarVec(BC, E - I);
for ( ; I != E; ++I) {
const VarDecl *VD = *I;
const VarRegion *VR = 0;
if (!VD->getAttr<BlocksAttr>() && VD->hasLocalStorage())
VR = MemMgr.getVarRegion(VD, this);
else {
if (LC)
VR = MemMgr.getVarRegion(VD, LC);
else {
VR = MemMgr.getVarRegion(VD, MemMgr.getUnknownRegion());
}
}
assert(VR);
BV->push_back(VR, BC);
}
ReferencedVars = BV;
}
BlockDataRegion::referenced_vars_iterator
BlockDataRegion::referenced_vars_begin() const {
const_cast<BlockDataRegion*>(this)->LazyInitializeReferencedVars();
BumpVector<const MemRegion*> *Vec =
static_cast<BumpVector<const MemRegion*>*>(ReferencedVars);
return BlockDataRegion::referenced_vars_iterator(Vec == (void*) 0x1 ?
NULL : Vec->begin());
}
BlockDataRegion::referenced_vars_iterator
BlockDataRegion::referenced_vars_end() const {
const_cast<BlockDataRegion*>(this)->LazyInitializeReferencedVars();
BumpVector<const MemRegion*> *Vec =
static_cast<BumpVector<const MemRegion*>*>(ReferencedVars);
return BlockDataRegion::referenced_vars_iterator(Vec == (void*) 0x1 ?
NULL : Vec->end());
}