llvm-project/llvm/lib/Target/R600/AMDGPUStructurizeCFG.cpp

715 lines
21 KiB
C++
Raw Normal View History

//===-- AMDGPUStructurizeCFG.cpp - ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The pass implemented in this file transforms the programs control flow
/// graph into a form that's suitable for code generation on hardware that
/// implements control flow by execution masking. This currently includes all
/// AMD GPUs but may as well be useful for other types of hardware.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
namespace {
// Definition of the complex types used in this pass.
typedef std::pair<BasicBlock *, Value *> BBValuePair;
typedef ArrayRef<BasicBlock*> BBVecRef;
typedef SmallVector<RegionNode*, 8> RNVector;
typedef SmallVector<BasicBlock*, 8> BBVector;
typedef SmallVector<BBValuePair, 2> BBValueVector;
typedef DenseMap<PHINode *, BBValueVector> PhiMap;
typedef DenseMap<BasicBlock *, PhiMap> BBPhiMap;
typedef DenseMap<BasicBlock *, Value *> BBPredicates;
typedef DenseMap<BasicBlock *, BBPredicates> PredMap;
typedef DenseMap<BasicBlock *, unsigned> VisitedMap;
// The name for newly created blocks.
static const char *FlowBlockName = "Flow";
/// @brief Transforms the control flow graph on one single entry/exit region
/// at a time.
///
/// After the transform all "If"/"Then"/"Else" style control flow looks like
/// this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 |
/// | /
/// |/
/// 3
/// || Where:
/// | | 1 = "If" block, calculates the condition
/// 4 | 2 = "Then" subregion, runs if the condition is true
/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
/// |/ 4 = "Else" optional subregion, runs if the condition is false
/// 5 5 = "End" block, also rejoins the control flow
/// \endverbatim
///
/// Control flow is expressed as a branch where the true exit goes into the
/// "Then"/"Else" region, while the false exit skips the region
/// The condition for the optional "Else" region is expressed as a PHI node.
/// The incomming values of the PHI node are true for the "If" edge and false
/// for the "Then" edge.
///
/// Additionally to that even complicated loops look like this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 ^ Where:
/// | / 1 = "Entry" block
/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
/// 3 3 = "Flow" block, with back edge to entry block
/// |
/// \endverbatim
///
/// The back edge of the "Flow" block is always on the false side of the branch
/// while the true side continues the general flow. So the loop condition
/// consist of a network of PHI nodes where the true incoming values expresses
/// breaks and the false values expresses continue states.
class AMDGPUStructurizeCFG : public RegionPass {
static char ID;
Type *Boolean;
ConstantInt *BoolTrue;
ConstantInt *BoolFalse;
UndefValue *BoolUndef;
Function *Func;
Region *ParentRegion;
DominatorTree *DT;
RNVector Order;
VisitedMap Visited;
PredMap Predicates;
BBPhiMap DeletedPhis;
BBVector FlowsInserted;
BasicBlock *LoopStart;
BasicBlock *LoopEnd;
BBPredicates LoopPred;
void orderNodes();
void buildPredicate(BranchInst *Term, unsigned Idx,
BBPredicates &Pred, bool Invert);
void analyzeBlock(BasicBlock *BB);
void analyzeLoop(BasicBlock *BB, unsigned &LoopIdx);
void collectInfos();
bool dominatesPredicates(BasicBlock *A, BasicBlock *B);
void killTerminator(BasicBlock *BB);
RegionNode *skipChained(RegionNode *Node);
void delPhiValues(BasicBlock *From, BasicBlock *To);
void addPhiValues(BasicBlock *From, BasicBlock *To);
BasicBlock *getNextFlow(BasicBlock *Prev);
bool isPredictableTrue(BasicBlock *Prev, BasicBlock *Node);
BasicBlock *wireFlowBlock(BasicBlock *Prev, RegionNode *Node);
void createFlow();
void insertConditions();
void rebuildSSA();
public:
AMDGPUStructurizeCFG():
RegionPass(ID) {
initializeRegionInfoPass(*PassRegistry::getPassRegistry());
}
virtual bool doInitialization(Region *R, RGPassManager &RGM);
virtual bool runOnRegion(Region *R, RGPassManager &RGM);
virtual const char *getPassName() const {
return "AMDGPU simplify control flow";
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addPreserved<DominatorTree>();
RegionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char AMDGPUStructurizeCFG::ID = 0;
/// \brief Initialize the types and constants used in the pass
bool AMDGPUStructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
LLVMContext &Context = R->getEntry()->getContext();
Boolean = Type::getInt1Ty(Context);
BoolTrue = ConstantInt::getTrue(Context);
BoolFalse = ConstantInt::getFalse(Context);
BoolUndef = UndefValue::get(Boolean);
return false;
}
/// \brief Build up the general order of nodes
void AMDGPUStructurizeCFG::orderNodes() {
scc_iterator<Region *> I = scc_begin(ParentRegion),
E = scc_end(ParentRegion);
for (Order.clear(); I != E; ++I) {
std::vector<RegionNode *> &Nodes = *I;
Order.append(Nodes.begin(), Nodes.end());
}
}
/// \brief Build blocks and loop predicates
void AMDGPUStructurizeCFG::buildPredicate(BranchInst *Term, unsigned Idx,
BBPredicates &Pred, bool Invert) {
Value *True = Invert ? BoolFalse : BoolTrue;
Value *False = Invert ? BoolTrue : BoolFalse;
RegionInfo *RI = ParentRegion->getRegionInfo();
BasicBlock *BB = Term->getParent();
// Handle the case where multiple regions start at the same block
Region *R = BB != ParentRegion->getEntry() ?
RI->getRegionFor(BB) : ParentRegion;
if (R == ParentRegion) {
// It's a top level block in our region
Value *Cond = True;
if (Term->isConditional()) {
BasicBlock *Other = Term->getSuccessor(!Idx);
if (Visited.count(Other)) {
if (!Pred.count(Other))
Pred[Other] = False;
if (!Pred.count(BB))
Pred[BB] = True;
return;
}
Cond = Term->getCondition();
if (Idx != Invert)
Cond = BinaryOperator::CreateNot(Cond, "", Term);
}
Pred[BB] = Cond;
} else if (ParentRegion->contains(R)) {
// It's a block in a sub region
while(R->getParent() != ParentRegion)
R = R->getParent();
Pred[R->getEntry()] = True;
} else {
// It's a branch from outside into our parent region
Pred[BB] = True;
}
}
/// \brief Analyze the successors of each block and build up predicates
void AMDGPUStructurizeCFG::analyzeBlock(BasicBlock *BB) {
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
BBPredicates &Pred = Predicates[BB];
for (; PI != PE; ++PI) {
BranchInst *Term = cast<BranchInst>((*PI)->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
if (Succ != BB)
continue;
buildPredicate(Term, i, Pred, false);
}
}
}
/// \brief Analyze the conditions leading to loop to a previous block
void AMDGPUStructurizeCFG::analyzeLoop(BasicBlock *BB, unsigned &LoopIdx) {
BranchInst *Term = cast<BranchInst>(BB->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
// Ignore it if it's not a back edge
if (!Visited.count(Succ))
continue;
buildPredicate(Term, i, LoopPred, true);
LoopEnd = BB;
if (Visited[Succ] < LoopIdx) {
LoopIdx = Visited[Succ];
LoopStart = Succ;
}
}
}
/// \brief Collect various loop and predicate infos
void AMDGPUStructurizeCFG::collectInfos() {
unsigned Number = 0, LoopIdx = ~0;
// Reset predicate
Predicates.clear();
// and loop infos
LoopStart = LoopEnd = 0;
LoopPred.clear();
RNVector::reverse_iterator OI = Order.rbegin(), OE = Order.rend();
for (Visited.clear(); OI != OE; Visited[(*OI++)->getEntry()] = ++Number) {
// Analyze all the conditions leading to a node
analyzeBlock((*OI)->getEntry());
if ((*OI)->isSubRegion())
continue;
// Find the first/last loop nodes and loop predicates
analyzeLoop((*OI)->getNodeAs<BasicBlock>(), LoopIdx);
}
}
/// \brief Does A dominate all the predicates of B ?
bool AMDGPUStructurizeCFG::dominatesPredicates(BasicBlock *A, BasicBlock *B) {
BBPredicates &Preds = Predicates[B];
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
if (!DT->dominates(A, PI->first))
return false;
}
return true;
}
/// \brief Remove phi values from all successors and the remove the terminator.
void AMDGPUStructurizeCFG::killTerminator(BasicBlock *BB) {
TerminatorInst *Term = BB->getTerminator();
if (!Term)
return;
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
delPhiValues(BB, *SI);
}
Term->eraseFromParent();
}
/// First: Skip forward to the first region node that either isn't a subregion or not
/// dominating it's exit, remove all the skipped nodes from the node order.
///
/// Second: Handle the first successor directly if the resulting nodes successor
/// predicates are still dominated by the original entry
RegionNode *AMDGPUStructurizeCFG::skipChained(RegionNode *Node) {
BasicBlock *Entry = Node->getEntry();
// Skip forward as long as it is just a linear flow
while (true) {
BasicBlock *Entry = Node->getEntry();
BasicBlock *Exit;
if (Node->isSubRegion()) {
Exit = Node->getNodeAs<Region>()->getExit();
} else {
TerminatorInst *Term = Entry->getTerminator();
if (Term->getNumSuccessors() != 1)
break;
Exit = Term->getSuccessor(0);
}
// It's a back edge, break here so we can insert a loop node
if (!Visited.count(Exit))
return Node;
// More than node edges are pointing to exit
if (!DT->dominates(Entry, Exit))
return Node;
RegionNode *Next = ParentRegion->getNode(Exit);
RNVector::iterator I = std::find(Order.begin(), Order.end(), Next);
assert(I != Order.end());
Visited.erase(Next->getEntry());
Order.erase(I);
Node = Next;
}
BasicBlock *BB = Node->getEntry();
TerminatorInst *Term = BB->getTerminator();
if (Term->getNumSuccessors() != 2)
return Node;
// Our node has exactly two succesors, check if we can handle
// any of them directly
BasicBlock *Succ = Term->getSuccessor(0);
if (!Visited.count(Succ) || !dominatesPredicates(Entry, Succ)) {
Succ = Term->getSuccessor(1);
if (!Visited.count(Succ) || !dominatesPredicates(Entry, Succ))
return Node;
} else {
BasicBlock *Succ2 = Term->getSuccessor(1);
if (Visited.count(Succ2) && Visited[Succ] > Visited[Succ2] &&
dominatesPredicates(Entry, Succ2))
Succ = Succ2;
}
RegionNode *Next = ParentRegion->getNode(Succ);
RNVector::iterator E = Order.end();
RNVector::iterator I = std::find(Order.begin(), E, Next);
assert(I != E);
killTerminator(BB);
FlowsInserted.push_back(BB);
Visited.erase(Succ);
Order.erase(I);
return ParentRegion->getNode(wireFlowBlock(BB, Next));
}
/// \brief Remove all PHI values coming from "From" into "To" and remember
/// them in DeletedPhis
void AMDGPUStructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
PhiMap &Map = DeletedPhis[To];
for (BasicBlock::iterator I = To->begin(), E = To->end();
I != E && isa<PHINode>(*I);) {
PHINode &Phi = cast<PHINode>(*I++);
while (Phi.getBasicBlockIndex(From) != -1) {
Value *Deleted = Phi.removeIncomingValue(From, false);
Map[&Phi].push_back(std::make_pair(From, Deleted));
}
}
}
/// \brief Add the PHI values back once we knew the new predecessor
void AMDGPUStructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
if (!DeletedPhis.count(To))
return;
PhiMap &Map = DeletedPhis[To];
SSAUpdater Updater;
for (PhiMap::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
PHINode *Phi = I->first;
Updater.Initialize(Phi->getType(), "");
BasicBlock *Fallback = To;
bool HaveFallback = false;
for (BBValueVector::iterator VI = I->second.begin(), VE = I->second.end();
VI != VE; ++VI) {
Updater.AddAvailableValue(VI->first, VI->second);
BasicBlock *Dom = DT->findNearestCommonDominator(Fallback, VI->first);
if (Dom == VI->first)
HaveFallback = true;
else if (Dom != Fallback)
HaveFallback = false;
Fallback = Dom;
}
if (!HaveFallback) {
Value *Undef = UndefValue::get(Phi->getType());
Updater.AddAvailableValue(Fallback, Undef);
}
Phi->addIncoming(Updater.GetValueAtEndOfBlock(From), From);
}
DeletedPhis.erase(To);
}
/// \brief Create a new flow node and update dominator tree and region info
BasicBlock *AMDGPUStructurizeCFG::getNextFlow(BasicBlock *Prev) {
LLVMContext &Context = Func->getContext();
BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
Order.back()->getEntry();
BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
Func, Insert);
DT->addNewBlock(Flow, Prev);
ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
FlowsInserted.push_back(Flow);
return Flow;
}
/// \brief Can we predict that this node will always be called?
bool AMDGPUStructurizeCFG::isPredictableTrue(BasicBlock *Prev,
BasicBlock *Node) {
BBPredicates &Preds = Predicates[Node];
bool Dominated = false;
for (BBPredicates::iterator I = Preds.begin(), E = Preds.end();
I != E; ++I) {
if (I->second != BoolTrue)
return false;
if (!Dominated && DT->dominates(I->first, Prev))
Dominated = true;
}
return Dominated;
}
/// \brief Wire up the new control flow by inserting or updating the branch
/// instructions at node exits
BasicBlock *AMDGPUStructurizeCFG::wireFlowBlock(BasicBlock *Prev,
RegionNode *Node) {
BasicBlock *Entry = Node->getEntry();
if (LoopStart == Entry) {
LoopStart = Prev;
LoopPred[Prev] = BoolTrue;
}
// Wire it up temporary, skipChained may recurse into us
BranchInst::Create(Entry, Prev);
DT->changeImmediateDominator(Entry, Prev);
addPhiValues(Prev, Entry);
Node = skipChained(Node);
BasicBlock *Next = getNextFlow(Prev);
if (!isPredictableTrue(Prev, Entry)) {
// Let Prev point to entry and next block
Prev->getTerminator()->eraseFromParent();
BranchInst::Create(Entry, Next, BoolUndef, Prev);
} else {
DT->changeImmediateDominator(Next, Entry);
}
// Let node exit(s) point to next block
if (Node->isSubRegion()) {
Region *SubRegion = Node->getNodeAs<Region>();
BasicBlock *Exit = SubRegion->getExit();
// Find all the edges from the sub region to the exit
BBVector ToDo;
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
if (SubRegion->contains(*I))
ToDo.push_back(*I);
}
// Modify the edges to point to the new flow block
for (BBVector::iterator I = ToDo.begin(), E = ToDo.end(); I != E; ++I) {
delPhiValues(*I, Exit);
TerminatorInst *Term = (*I)->getTerminator();
Term->replaceUsesOfWith(Exit, Next);
}
// Update the region info
SubRegion->replaceExit(Next);
} else {
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
killTerminator(BB);
BranchInst::Create(Next, BB);
if (BB == LoopEnd)
LoopEnd = 0;
}
return Next;
}
/// Destroy node order and visited map, build up flow order instead.
/// After this function control flow looks like it should be, but
/// branches only have undefined conditions.
void AMDGPUStructurizeCFG::createFlow() {
DeletedPhis.clear();
BasicBlock *Prev = Order.pop_back_val()->getEntry();
assert(Prev == ParentRegion->getEntry() && "Incorrect node order!");
Visited.erase(Prev);
if (LoopStart == Prev) {
// Loop starts at entry, split entry so that we can predicate it
BasicBlock::iterator Insert = Prev->getFirstInsertionPt();
BasicBlock *Split = Prev->splitBasicBlock(Insert, FlowBlockName);
DT->addNewBlock(Split, Prev);
ParentRegion->getRegionInfo()->setRegionFor(Split, ParentRegion);
Predicates[Split] = Predicates[Prev];
Order.push_back(ParentRegion->getBBNode(Split));
LoopPred[Prev] = BoolTrue;
} else if (LoopStart == Order.back()->getEntry()) {
// Loop starts behind entry, split entry so that we can jump to it
Instruction *Term = Prev->getTerminator();
BasicBlock *Split = Prev->splitBasicBlock(Term, FlowBlockName);
DT->addNewBlock(Split, Prev);
ParentRegion->getRegionInfo()->setRegionFor(Split, ParentRegion);
Prev = Split;
}
killTerminator(Prev);
FlowsInserted.clear();
FlowsInserted.push_back(Prev);
while (!Order.empty()) {
RegionNode *Node = Order.pop_back_val();
Visited.erase(Node->getEntry());
Prev = wireFlowBlock(Prev, Node);
if (LoopStart && !LoopEnd) {
// Create an extra loop end node
LoopEnd = Prev;
Prev = getNextFlow(LoopEnd);
BranchInst::Create(Prev, LoopStart, BoolUndef, LoopEnd);
addPhiValues(LoopEnd, LoopStart);
}
}
BasicBlock *Exit = ParentRegion->getExit();
BranchInst::Create(Exit, Prev);
addPhiValues(Prev, Exit);
if (DT->dominates(ParentRegion->getEntry(), Exit))
DT->changeImmediateDominator(Exit, Prev);
if (LoopStart && LoopEnd) {
BBVector::iterator FI = std::find(FlowsInserted.begin(),
FlowsInserted.end(),
LoopStart);
for (; *FI != LoopEnd; ++FI) {
addPhiValues(*FI, (*FI)->getTerminator()->getSuccessor(0));
}
}
assert(Order.empty());
assert(Visited.empty());
assert(DeletedPhis.empty());
}
/// \brief Insert the missing branch conditions
void AMDGPUStructurizeCFG::insertConditions() {
SSAUpdater PhiInserter;
for (BBVector::iterator FI = FlowsInserted.begin(), FE = FlowsInserted.end();
FI != FE; ++FI) {
BranchInst *Term = cast<BranchInst>((*FI)->getTerminator());
if (Term->isUnconditional())
continue;
PhiInserter.Initialize(Boolean, "");
PhiInserter.AddAvailableValue(&Func->getEntryBlock(), BoolFalse);
BasicBlock *Succ = Term->getSuccessor(0);
BBPredicates &Preds = (*FI == LoopEnd) ? LoopPred : Predicates[Succ];
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
PhiInserter.AddAvailableValue(PI->first, PI->second);
}
Term->setCondition(PhiInserter.GetValueAtEndOfBlock(*FI));
}
}
/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really nessasary
void AMDGPUStructurizeCFG::rebuildSSA() {
SSAUpdater Updater;
for (Region::block_iterator I = ParentRegion->block_begin(),
E = ParentRegion->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
bool Initialized = false;
for (Use *I = &II->use_begin().getUse(), *Next; I; I = Next) {
Next = I->getNext();
Instruction *User = cast<Instruction>(I->getUser());
if (User->getParent() == BB) {
continue;
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(*I) == BB)
continue;
}
if (DT->dominates(II, User))
continue;
if (!Initialized) {
Value *Undef = UndefValue::get(II->getType());
Updater.Initialize(II->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(BB, II);
Initialized = true;
}
Updater.RewriteUseAfterInsertions(*I);
}
}
}
}
/// \brief Run the transformation for each region found
bool AMDGPUStructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
if (R->isTopLevelRegion())
return false;
Func = R->getEntry()->getParent();
ParentRegion = R;
DT = &getAnalysis<DominatorTree>();
orderNodes();
collectInfos();
createFlow();
insertConditions();
rebuildSSA();
Order.clear();
Visited.clear();
Predicates.clear();
DeletedPhis.clear();
FlowsInserted.clear();
return true;
}
/// \brief Create the pass
Pass *llvm::createAMDGPUStructurizeCFGPass() {
return new AMDGPUStructurizeCFG();
}