llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyCFGSort.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

429 lines
16 KiB
C++
Raw Normal View History

//===-- WebAssemblyCFGSort.cpp - CFG Sorting ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a CFG sorting pass.
///
/// This pass reorders the blocks in a function to put them into topological
/// order, ignoring loop backedges, and without any loop or exception being
/// interrupted by a block not dominated by the its header, with special care
/// to keep the order as similar as possible to the original order.
///
////===----------------------------------------------------------------------===//
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssembly.h"
#include "WebAssemblyExceptionInfo.h"
#include "WebAssemblySubtarget.h"
#include "WebAssemblyUtilities.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-cfg-sort"
[WebAssembly] Don't analyze branches after CFGStackify Summary: `WebAssembly::analyzeBranch` now does not analyze anything if the function is CFG stackified. We were previously doing similar things by checking if a branch's operand is whether an integer or an MBB, but this failed to bail out when a BB did not have any terminators. Consider this case: ``` bb0: try $label0 call @foo // unwinds to %ehpad bb1: ... br $label0 // jumps to %cont. can be deleted ehpad: catch ... cont: end_try ``` Here `br $label0` will be deleted in CFGStackify's `removeUnnecessaryInstrs` function, because we jump to the %cont block even without the branch. But in this case, MachineVerifier fails to verify this, because `ehpad` is not a successor of `bb1` even if `bb1` does not have any terminators. MachineVerifier incorrectly thinks `bb1` falls through to the next block. This pass now consistently rejects all analysis after CFGStackify whether a BB has terminators or not, also making the MachineVerifier work. (MachineVerifier does not try to verify relationships between BBs if `analyzeBranch` fails, the behavior we want after CFGStackify.) This also adds a new option `-wasm-disable-ehpad-sort` for testing. This option helps create the sorted order we want to test, and without the fix in this patch, the tests in cfg-stackify-eh.ll fail at MachineVerifier with `-wasm-disable-ehpad-sort`. Reviewers: dschuff Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D59740 llvm-svn: 357015
2019-03-27 02:21:20 +08:00
// Option to disable EH pad first sorting. Only for testing unwind destination
// mismatches in CFGStackify.
static cl::opt<bool> WasmDisableEHPadSort(
"wasm-disable-ehpad-sort", cl::ReallyHidden,
cl::desc(
"WebAssembly: Disable EH pad-first sort order. Testing purpose only."),
cl::init(false));
namespace {
// Wrapper for loops and exceptions
class Region {
public:
virtual ~Region() = default;
virtual MachineBasicBlock *getHeader() const = 0;
virtual bool contains(const MachineBasicBlock *MBB) const = 0;
virtual unsigned getNumBlocks() const = 0;
using block_iterator = typename ArrayRef<MachineBasicBlock *>::const_iterator;
virtual iterator_range<block_iterator> blocks() const = 0;
virtual bool isLoop() const = 0;
};
template <typename T> class ConcreteRegion : public Region {
const T *Region;
public:
ConcreteRegion(const T *Region) : Region(Region) {}
MachineBasicBlock *getHeader() const override { return Region->getHeader(); }
bool contains(const MachineBasicBlock *MBB) const override {
return Region->contains(MBB);
}
unsigned getNumBlocks() const override { return Region->getNumBlocks(); }
iterator_range<block_iterator> blocks() const override {
return Region->blocks();
}
bool isLoop() const override { return false; }
};
template <> bool ConcreteRegion<MachineLoop>::isLoop() const { return true; }
// This class has information of nested Regions; this is analogous to what
// LoopInfo is for loops.
class RegionInfo {
const MachineLoopInfo &MLI;
const WebAssemblyExceptionInfo &WEI;
DenseMap<const MachineLoop *, std::unique_ptr<Region>> LoopMap;
DenseMap<const WebAssemblyException *, std::unique_ptr<Region>> ExceptionMap;
public:
RegionInfo(const MachineLoopInfo &MLI, const WebAssemblyExceptionInfo &WEI)
: MLI(MLI), WEI(WEI) {}
// Returns a smallest loop or exception that contains MBB
const Region *getRegionFor(const MachineBasicBlock *MBB) {
const auto *ML = MLI.getLoopFor(MBB);
const auto *WE = WEI.getExceptionFor(MBB);
if (!ML && !WE)
return nullptr;
// We determine subregion relationship by domination of their headers, i.e.,
// if region A's header dominates region B's header, B is a subregion of A.
// WebAssemblyException contains BBs in all its subregions (loops or
// exceptions), but MachineLoop may not, because MachineLoop does not contain
// BBs that don't have a path to its header even if they are dominated by
// its header. So here we should use WE->contains(ML->getHeader()), but not
// ML->contains(WE->getHeader()).
if ((ML && !WE) || (ML && WE && WE->contains(ML->getHeader()))) {
// If the smallest region containing MBB is a loop
if (LoopMap.count(ML))
return LoopMap[ML].get();
LoopMap[ML] = std::make_unique<ConcreteRegion<MachineLoop>>(ML);
return LoopMap[ML].get();
} else {
// If the smallest region containing MBB is an exception
if (ExceptionMap.count(WE))
return ExceptionMap[WE].get();
ExceptionMap[WE] =
std::make_unique<ConcreteRegion<WebAssemblyException>>(WE);
return ExceptionMap[WE].get();
}
}
};
class WebAssemblyCFGSort final : public MachineFunctionPass {
StringRef getPassName() const override { return "WebAssembly CFG Sort"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<WebAssemblyExceptionInfo>();
AU.addPreserved<WebAssemblyExceptionInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
public:
static char ID; // Pass identification, replacement for typeid
WebAssemblyCFGSort() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace
char WebAssemblyCFGSort::ID = 0;
INITIALIZE_PASS(WebAssemblyCFGSort, DEBUG_TYPE,
"Reorders blocks in topological order", false, false)
FunctionPass *llvm::createWebAssemblyCFGSort() {
return new WebAssemblyCFGSort();
}
static void maybeUpdateTerminator(MachineBasicBlock *MBB) {
#ifndef NDEBUG
bool AnyBarrier = false;
#endif
bool AllAnalyzable = true;
for (const MachineInstr &Term : MBB->terminators()) {
#ifndef NDEBUG
AnyBarrier |= Term.isBarrier();
#endif
AllAnalyzable &= Term.isBranch() && !Term.isIndirectBranch();
}
assert((AnyBarrier || AllAnalyzable) &&
"analyzeBranch needs to analyze any block with a fallthrough");
if (AllAnalyzable)
MBB->updateTerminator();
}
namespace {
// EH pads are selected first regardless of the block comparison order.
// When only one of the BBs is an EH pad, we give a higher priority to it, to
// prevent common mismatches between possibly throwing calls and ehpads they
// unwind to, as in the example below:
//
// bb0:
// call @foo // If this throws, unwind to bb2
// bb1:
// call @bar // If this throws, unwind to bb3
// bb2 (ehpad):
// handler_bb2
// bb3 (ehpad):
// handler_bb3
// continuing code
//
// Because this pass tries to preserve the original BB order, this order will
// not change. But this will result in this try-catch structure in CFGStackify,
// resulting in a mismatch:
// try
// try
// call @foo
// call @bar // This should unwind to bb3, not bb2!
// catch
// handler_bb2
// end
// catch
// handler_bb3
// end
// continuing code
//
// If we give a higher priority to an EH pad whenever it is ready in this
// example, when both bb1 and bb2 are ready, we would pick up bb2 first.
/// Sort blocks by their number.
struct CompareBlockNumbers {
bool operator()(const MachineBasicBlock *A,
const MachineBasicBlock *B) const {
[WebAssembly] Don't analyze branches after CFGStackify Summary: `WebAssembly::analyzeBranch` now does not analyze anything if the function is CFG stackified. We were previously doing similar things by checking if a branch's operand is whether an integer or an MBB, but this failed to bail out when a BB did not have any terminators. Consider this case: ``` bb0: try $label0 call @foo // unwinds to %ehpad bb1: ... br $label0 // jumps to %cont. can be deleted ehpad: catch ... cont: end_try ``` Here `br $label0` will be deleted in CFGStackify's `removeUnnecessaryInstrs` function, because we jump to the %cont block even without the branch. But in this case, MachineVerifier fails to verify this, because `ehpad` is not a successor of `bb1` even if `bb1` does not have any terminators. MachineVerifier incorrectly thinks `bb1` falls through to the next block. This pass now consistently rejects all analysis after CFGStackify whether a BB has terminators or not, also making the MachineVerifier work. (MachineVerifier does not try to verify relationships between BBs if `analyzeBranch` fails, the behavior we want after CFGStackify.) This also adds a new option `-wasm-disable-ehpad-sort` for testing. This option helps create the sorted order we want to test, and without the fix in this patch, the tests in cfg-stackify-eh.ll fail at MachineVerifier with `-wasm-disable-ehpad-sort`. Reviewers: dschuff Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D59740 llvm-svn: 357015
2019-03-27 02:21:20 +08:00
if (!WasmDisableEHPadSort) {
if (A->isEHPad() && !B->isEHPad())
return false;
if (!A->isEHPad() && B->isEHPad())
return true;
}
return A->getNumber() > B->getNumber();
}
};
/// Sort blocks by their number in the opposite order..
struct CompareBlockNumbersBackwards {
bool operator()(const MachineBasicBlock *A,
const MachineBasicBlock *B) const {
[WebAssembly] Don't analyze branches after CFGStackify Summary: `WebAssembly::analyzeBranch` now does not analyze anything if the function is CFG stackified. We were previously doing similar things by checking if a branch's operand is whether an integer or an MBB, but this failed to bail out when a BB did not have any terminators. Consider this case: ``` bb0: try $label0 call @foo // unwinds to %ehpad bb1: ... br $label0 // jumps to %cont. can be deleted ehpad: catch ... cont: end_try ``` Here `br $label0` will be deleted in CFGStackify's `removeUnnecessaryInstrs` function, because we jump to the %cont block even without the branch. But in this case, MachineVerifier fails to verify this, because `ehpad` is not a successor of `bb1` even if `bb1` does not have any terminators. MachineVerifier incorrectly thinks `bb1` falls through to the next block. This pass now consistently rejects all analysis after CFGStackify whether a BB has terminators or not, also making the MachineVerifier work. (MachineVerifier does not try to verify relationships between BBs if `analyzeBranch` fails, the behavior we want after CFGStackify.) This also adds a new option `-wasm-disable-ehpad-sort` for testing. This option helps create the sorted order we want to test, and without the fix in this patch, the tests in cfg-stackify-eh.ll fail at MachineVerifier with `-wasm-disable-ehpad-sort`. Reviewers: dschuff Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D59740 llvm-svn: 357015
2019-03-27 02:21:20 +08:00
if (!WasmDisableEHPadSort) {
if (A->isEHPad() && !B->isEHPad())
return false;
if (!A->isEHPad() && B->isEHPad())
return true;
}
return A->getNumber() < B->getNumber();
}
};
/// Bookkeeping for a region to help ensure that we don't mix blocks not
/// dominated by the its header among its blocks.
struct Entry {
const Region *TheRegion;
unsigned NumBlocksLeft;
/// List of blocks not dominated by Loop's header that are deferred until
/// after all of Loop's blocks have been seen.
std::vector<MachineBasicBlock *> Deferred;
explicit Entry(const class Region *R)
: TheRegion(R), NumBlocksLeft(R->getNumBlocks()) {}
};
} // end anonymous namespace
/// Sort the blocks, taking special care to make sure that regions are not
/// interrupted by blocks not dominated by their header.
/// TODO: There are many opportunities for improving the heuristics here.
/// Explore them.
static void sortBlocks(MachineFunction &MF, const MachineLoopInfo &MLI,
const WebAssemblyExceptionInfo &WEI,
const MachineDominatorTree &MDT) {
// Prepare for a topological sort: Record the number of predecessors each
// block has, ignoring loop backedges.
MF.RenumberBlocks();
SmallVector<unsigned, 16> NumPredsLeft(MF.getNumBlockIDs(), 0);
for (MachineBasicBlock &MBB : MF) {
unsigned N = MBB.pred_size();
if (MachineLoop *L = MLI.getLoopFor(&MBB))
if (L->getHeader() == &MBB)
for (const MachineBasicBlock *Pred : MBB.predecessors())
if (L->contains(Pred))
--N;
NumPredsLeft[MBB.getNumber()] = N;
}
// Topological sort the CFG, with additional constraints:
// - Between a region header and the last block in the region, there can be
// no blocks not dominated by its header.
// - It's desirable to preserve the original block order when possible.
// We use two ready lists; Preferred and Ready. Preferred has recently
// processed successors, to help preserve block sequences from the original
// order. Ready has the remaining ready blocks. EH blocks are picked first
// from both queues.
PriorityQueue<MachineBasicBlock *, std::vector<MachineBasicBlock *>,
CompareBlockNumbers>
Preferred;
PriorityQueue<MachineBasicBlock *, std::vector<MachineBasicBlock *>,
CompareBlockNumbersBackwards>
Ready;
RegionInfo RI(MLI, WEI);
SmallVector<Entry, 4> Entries;
for (MachineBasicBlock *MBB = &MF.front();;) {
const Region *R = RI.getRegionFor(MBB);
if (R) {
// If MBB is a region header, add it to the active region list. We can't
// put any blocks that it doesn't dominate until we see the end of the
// region.
if (R->getHeader() == MBB)
Entries.push_back(Entry(R));
// For each active region the block is in, decrement the count. If MBB is
// the last block in an active region, take it off the list and pick up
// any blocks deferred because the header didn't dominate them.
for (Entry &E : Entries)
if (E.TheRegion->contains(MBB) && --E.NumBlocksLeft == 0)
for (auto DeferredBlock : E.Deferred)
Ready.push(DeferredBlock);
while (!Entries.empty() && Entries.back().NumBlocksLeft == 0)
Entries.pop_back();
}
// The main topological sort logic.
for (MachineBasicBlock *Succ : MBB->successors()) {
// Ignore backedges.
if (MachineLoop *SuccL = MLI.getLoopFor(Succ))
if (SuccL->getHeader() == Succ && SuccL->contains(MBB))
continue;
// Decrement the predecessor count. If it's now zero, it's ready.
if (--NumPredsLeft[Succ->getNumber()] == 0)
Preferred.push(Succ);
}
// Determine the block to follow MBB. First try to find a preferred block,
// to preserve the original block order when possible.
MachineBasicBlock *Next = nullptr;
while (!Preferred.empty()) {
Next = Preferred.top();
Preferred.pop();
// If X isn't dominated by the top active region header, defer it until
// that region is done.
if (!Entries.empty() &&
!MDT.dominates(Entries.back().TheRegion->getHeader(), Next)) {
Entries.back().Deferred.push_back(Next);
Next = nullptr;
continue;
}
// If Next was originally ordered before MBB, and it isn't because it was
// loop-rotated above the header, it's not preferred.
if (Next->getNumber() < MBB->getNumber() &&
(WasmDisableEHPadSort || !Next->isEHPad()) &&
(!R || !R->contains(Next) ||
R->getHeader()->getNumber() < Next->getNumber())) {
Ready.push(Next);
Next = nullptr;
continue;
}
break;
}
// If we didn't find a suitable block in the Preferred list, check the
// general Ready list.
if (!Next) {
// If there are no more blocks to process, we're done.
if (Ready.empty()) {
maybeUpdateTerminator(MBB);
break;
}
for (;;) {
Next = Ready.top();
Ready.pop();
// If Next isn't dominated by the top active region header, defer it
// until that region is done.
if (!Entries.empty() &&
!MDT.dominates(Entries.back().TheRegion->getHeader(), Next)) {
Entries.back().Deferred.push_back(Next);
continue;
}
break;
}
}
// Move the next block into place and iterate.
Next->moveAfter(MBB);
maybeUpdateTerminator(MBB);
MBB = Next;
}
assert(Entries.empty() && "Active sort region list not finished");
MF.RenumberBlocks();
#ifndef NDEBUG
SmallSetVector<const Region *, 8> OnStack;
// Insert a sentinel representing the degenerate loop that starts at the
// function entry block and includes the entire function as a "loop" that
// executes once.
OnStack.insert(nullptr);
for (auto &MBB : MF) {
assert(MBB.getNumber() >= 0 && "Renumbered blocks should be non-negative.");
const Region *Region = RI.getRegionFor(&MBB);
if (Region && &MBB == Region->getHeader()) {
// Region header.
if (Region->isLoop()) {
// Loop header. The loop predecessor should be sorted above, and the
// other predecessors should be backedges below.
for (auto Pred : MBB.predecessors())
assert(
(Pred->getNumber() < MBB.getNumber() || Region->contains(Pred)) &&
"Loop header predecessors must be loop predecessors or "
"backedges");
} else {
// Exception header. All predecessors should be sorted above.
for (auto Pred : MBB.predecessors())
assert(Pred->getNumber() < MBB.getNumber() &&
"Non-loop-header predecessors should be topologically sorted");
}
assert(OnStack.insert(Region) &&
"Regions should be declared at most once.");
} else {
// Not a region header. All predecessors should be sorted above.
for (auto Pred : MBB.predecessors())
assert(Pred->getNumber() < MBB.getNumber() &&
"Non-loop-header predecessors should be topologically sorted");
assert(OnStack.count(RI.getRegionFor(&MBB)) &&
"Blocks must be nested in their regions");
}
while (OnStack.size() > 1 && &MBB == WebAssembly::getBottom(OnStack.back()))
OnStack.pop_back();
}
assert(OnStack.pop_back_val() == nullptr &&
"The function entry block shouldn't actually be a region header");
assert(OnStack.empty() &&
"Control flow stack pushes and pops should be balanced.");
#endif
}
bool WebAssemblyCFGSort::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** CFG Sorting **********\n"
"********** Function: "
<< MF.getName() << '\n');
const auto &MLI = getAnalysis<MachineLoopInfo>();
const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
auto &MDT = getAnalysis<MachineDominatorTree>();
// Liveness is not tracked for VALUE_STACK physreg.
MF.getRegInfo().invalidateLiveness();
// Sort the blocks, with contiguous sort regions.
sortBlocks(MF, MLI, WEI, MDT);
return true;
}