llvm-project/llvm/tools/yaml2obj/yaml2coff.cpp

556 lines
20 KiB
C++
Raw Normal View History

//===- yaml2coff - Convert YAML to a COFF object file ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief The COFF component of yaml2obj.
///
//===----------------------------------------------------------------------===//
#include "yaml2obj.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Object/COFF.h"
#include "llvm/ObjectYAML/ObjectYAML.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
/// This parses a yaml stream that represents a COFF object file.
/// See docs/yaml2obj for the yaml scheema.
struct COFFParser {
COFFParser(COFFYAML::Object &Obj)
: Obj(Obj), SectionTableStart(0), SectionTableSize(0) {
// A COFF string table always starts with a 4 byte size field. Offsets into
// it include this size, so allocate it now.
StringTable.append(4, char(0));
}
bool useBigObj() const {
return static_cast<int32_t>(Obj.Sections.size()) >
COFF::MaxNumberOfSections16;
}
bool isPE() const { return Obj.OptionalHeader.hasValue(); }
bool is64Bit() const {
return Obj.Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64;
}
uint32_t getFileAlignment() const {
return Obj.OptionalHeader->Header.FileAlignment;
}
unsigned getHeaderSize() const {
return useBigObj() ? COFF::Header32Size : COFF::Header16Size;
}
unsigned getSymbolSize() const {
return useBigObj() ? COFF::Symbol32Size : COFF::Symbol16Size;
}
bool parseSections() {
for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
e = Obj.Sections.end(); i != e; ++i) {
COFFYAML::Section &Sec = *i;
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = Sec.Name;
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sec.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
std::string str = utostr(Index);
if (str.size() > 7) {
errs() << "String table got too large\n";
return false;
}
Sec.Header.Name[0] = '/';
std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
}
if (Sec.Alignment) {
if (Sec.Alignment > 8192) {
errs() << "Section alignment is too large\n";
return false;
}
if (!isPowerOf2_32(Sec.Alignment)) {
errs() << "Section alignment is not a power of 2\n";
return false;
}
Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20;
}
}
return true;
}
bool parseSymbols() {
for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
e = Obj.Symbols.end(); i != e; ++i) {
COFFYAML::Symbol &Sym = *i;
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = Sym.Name;
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sym.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
*reinterpret_cast<support::aligned_ulittle32_t*>(
Sym.Header.Name + 4) = Index;
}
Sym.Header.Type = Sym.SimpleType;
Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
}
return true;
}
bool parse() {
if (!parseSections())
return false;
if (!parseSymbols())
return false;
return true;
}
unsigned getStringIndex(StringRef Str) {
StringMap<unsigned>::iterator i = StringTableMap.find(Str);
if (i == StringTableMap.end()) {
unsigned Index = StringTable.size();
StringTable.append(Str.begin(), Str.end());
StringTable.push_back(0);
StringTableMap[Str] = Index;
return Index;
}
return i->second;
}
COFFYAML::Object &Obj;
StringMap<unsigned> StringTableMap;
std::string StringTable;
uint32_t SectionTableStart;
uint32_t SectionTableSize;
};
// Take a CP and assign addresses and sizes to everything. Returns false if the
// layout is not valid to do.
static bool layoutOptionalHeader(COFFParser &CP) {
if (!CP.isPE())
return true;
unsigned PEHeaderSize = CP.is64Bit() ? sizeof(object::pe32plus_header)
: sizeof(object::pe32_header);
CP.Obj.Header.SizeOfOptionalHeader =
PEHeaderSize +
sizeof(object::data_directory) * (COFF::NUM_DATA_DIRECTORIES + 1);
return true;
}
namespace {
enum { DOSStubSize = 128 };
}
// Take a CP and assign addresses and sizes to everything. Returns false if the
// layout is not valid to do.
static bool layoutCOFF(COFFParser &CP) {
// The section table starts immediately after the header, including the
// optional header.
CP.SectionTableStart =
CP.getHeaderSize() + CP.Obj.Header.SizeOfOptionalHeader;
if (CP.isPE())
CP.SectionTableStart += DOSStubSize + sizeof(COFF::PEMagic);
CP.SectionTableSize = COFF::SectionSize * CP.Obj.Sections.size();
uint32_t CurrentSectionDataOffset =
CP.SectionTableStart + CP.SectionTableSize;
// Assign each section data address consecutively.
for (COFFYAML::Section &S : CP.Obj.Sections) {
if (S.SectionData.binary_size() > 0) {
CurrentSectionDataOffset = alignTo(CurrentSectionDataOffset,
CP.isPE() ? CP.getFileAlignment() : 4);
S.Header.SizeOfRawData = S.SectionData.binary_size();
if (CP.isPE())
S.Header.SizeOfRawData =
alignTo(S.Header.SizeOfRawData, CP.getFileAlignment());
S.Header.PointerToRawData = CurrentSectionDataOffset;
CurrentSectionDataOffset += S.Header.SizeOfRawData;
if (!S.Relocations.empty()) {
S.Header.PointerToRelocations = CurrentSectionDataOffset;
S.Header.NumberOfRelocations = S.Relocations.size();
CurrentSectionDataOffset +=
S.Header.NumberOfRelocations * COFF::RelocationSize;
}
} else {
S.Header.SizeOfRawData = 0;
S.Header.PointerToRawData = 0;
}
}
uint32_t SymbolTableStart = CurrentSectionDataOffset;
// Calculate number of symbols.
uint32_t NumberOfSymbols = 0;
for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
e = CP.Obj.Symbols.end();
i != e; ++i) {
uint32_t NumberOfAuxSymbols = 0;
if (i->FunctionDefinition)
NumberOfAuxSymbols += 1;
if (i->bfAndefSymbol)
NumberOfAuxSymbols += 1;
if (i->WeakExternal)
NumberOfAuxSymbols += 1;
if (!i->File.empty())
NumberOfAuxSymbols +=
(i->File.size() + CP.getSymbolSize() - 1) / CP.getSymbolSize();
if (i->SectionDefinition)
NumberOfAuxSymbols += 1;
if (i->CLRToken)
NumberOfAuxSymbols += 1;
i->Header.NumberOfAuxSymbols = NumberOfAuxSymbols;
NumberOfSymbols += 1 + NumberOfAuxSymbols;
}
// Store all the allocated start addresses in the header.
CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
if (NumberOfSymbols > 0 || CP.StringTable.size() > 4)
CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
else
CP.Obj.Header.PointerToSymbolTable = 0;
*reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
= CP.StringTable.size();
return true;
}
template <typename value_type>
struct binary_le_impl {
value_type Value;
binary_le_impl(value_type V) : Value(V) {}
};
template <typename value_type>
raw_ostream &operator <<( raw_ostream &OS
, const binary_le_impl<value_type> &BLE) {
char Buffer[sizeof(BLE.Value)];
support::endian::write<value_type, support::little, support::unaligned>(
Buffer, BLE.Value);
OS.write(Buffer, sizeof(BLE.Value));
return OS;
}
template <typename value_type>
binary_le_impl<value_type> binary_le(value_type V) {
return binary_le_impl<value_type>(V);
}
template <size_t NumBytes> struct zeros_impl {};
template <size_t NumBytes>
raw_ostream &operator<<(raw_ostream &OS, const zeros_impl<NumBytes> &) {
char Buffer[NumBytes];
memset(Buffer, 0, sizeof(Buffer));
OS.write(Buffer, sizeof(Buffer));
return OS;
}
template <typename T>
zeros_impl<sizeof(T)> zeros(const T &) {
return zeros_impl<sizeof(T)>();
}
struct num_zeros_impl {
size_t N;
num_zeros_impl(size_t N) : N(N) {}
};
raw_ostream &operator<<(raw_ostream &OS, const num_zeros_impl &NZI) {
for (size_t I = 0; I != NZI.N; ++I)
OS.write(0);
return OS;
}
static num_zeros_impl num_zeros(size_t N) {
num_zeros_impl NZI(N);
return NZI;
}
template <typename T>
static uint32_t initializeOptionalHeader(COFFParser &CP, uint16_t Magic, T Header) {
memset(Header, 0, sizeof(*Header));
Header->Magic = Magic;
Header->SectionAlignment = CP.Obj.OptionalHeader->Header.SectionAlignment;
Header->FileAlignment = CP.Obj.OptionalHeader->Header.FileAlignment;
uint32_t SizeOfCode = 0, SizeOfInitializedData = 0,
SizeOfUninitializedData = 0;
uint32_t SizeOfHeaders = alignTo(CP.SectionTableStart + CP.SectionTableSize,
Header->FileAlignment);
uint32_t SizeOfImage = alignTo(SizeOfHeaders, Header->SectionAlignment);
uint32_t BaseOfData = 0;
for (const COFFYAML::Section &S : CP.Obj.Sections) {
if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_CODE)
SizeOfCode += S.Header.SizeOfRawData;
if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
SizeOfInitializedData += S.Header.SizeOfRawData;
if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
SizeOfUninitializedData += S.Header.SizeOfRawData;
if (S.Name.equals(".text"))
Header->BaseOfCode = S.Header.VirtualAddress; // RVA
else if (S.Name.equals(".data"))
BaseOfData = S.Header.VirtualAddress; // RVA
if (S.Header.VirtualAddress)
SizeOfImage += alignTo(S.Header.VirtualSize, Header->SectionAlignment);
}
Header->SizeOfCode = SizeOfCode;
Header->SizeOfInitializedData = SizeOfInitializedData;
Header->SizeOfUninitializedData = SizeOfUninitializedData;
Header->AddressOfEntryPoint =
CP.Obj.OptionalHeader->Header.AddressOfEntryPoint; // RVA
Header->ImageBase = CP.Obj.OptionalHeader->Header.ImageBase;
Header->MajorOperatingSystemVersion =
CP.Obj.OptionalHeader->Header.MajorOperatingSystemVersion;
Header->MinorOperatingSystemVersion =
CP.Obj.OptionalHeader->Header.MinorOperatingSystemVersion;
Header->MajorImageVersion =
CP.Obj.OptionalHeader->Header.MajorImageVersion;
Header->MinorImageVersion =
CP.Obj.OptionalHeader->Header.MinorImageVersion;
Header->MajorSubsystemVersion =
CP.Obj.OptionalHeader->Header.MajorSubsystemVersion;
Header->MinorSubsystemVersion =
CP.Obj.OptionalHeader->Header.MinorSubsystemVersion;
Header->SizeOfImage = SizeOfImage;
Header->SizeOfHeaders = SizeOfHeaders;
Header->Subsystem = CP.Obj.OptionalHeader->Header.Subsystem;
Header->DLLCharacteristics = CP.Obj.OptionalHeader->Header.DLLCharacteristics;
Header->SizeOfStackReserve = CP.Obj.OptionalHeader->Header.SizeOfStackReserve;
Header->SizeOfStackCommit = CP.Obj.OptionalHeader->Header.SizeOfStackCommit;
Header->SizeOfHeapReserve = CP.Obj.OptionalHeader->Header.SizeOfHeapReserve;
Header->SizeOfHeapCommit = CP.Obj.OptionalHeader->Header.SizeOfHeapCommit;
Header->NumberOfRvaAndSize = COFF::NUM_DATA_DIRECTORIES + 1;
return BaseOfData;
}
static bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
if (CP.isPE()) {
// PE files start with a DOS stub.
object::dos_header DH;
memset(&DH, 0, sizeof(DH));
// DOS EXEs start with "MZ" magic.
DH.Magic[0] = 'M';
DH.Magic[1] = 'Z';
// Initializing the AddressOfRelocationTable is strictly optional but
// mollifies certain tools which expect it to have a value greater than
// 0x40.
DH.AddressOfRelocationTable = sizeof(DH);
// This is the address of the PE signature.
DH.AddressOfNewExeHeader = DOSStubSize;
// Write out our DOS stub.
OS.write(reinterpret_cast<char *>(&DH), sizeof(DH));
// Write padding until we reach the position of where our PE signature
// should live.
OS << num_zeros(DOSStubSize - sizeof(DH));
// Write out the PE signature.
OS.write(COFF::PEMagic, sizeof(COFF::PEMagic));
}
if (CP.useBigObj()) {
OS << binary_le(static_cast<uint16_t>(COFF::IMAGE_FILE_MACHINE_UNKNOWN))
<< binary_le(static_cast<uint16_t>(0xffff))
<< binary_le(static_cast<uint16_t>(COFF::BigObjHeader::MinBigObjectVersion))
<< binary_le(CP.Obj.Header.Machine)
<< binary_le(CP.Obj.Header.TimeDateStamp);
OS.write(COFF::BigObjMagic, sizeof(COFF::BigObjMagic));
OS << zeros(uint32_t(0))
<< zeros(uint32_t(0))
<< zeros(uint32_t(0))
<< zeros(uint32_t(0))
<< binary_le(CP.Obj.Header.NumberOfSections)
<< binary_le(CP.Obj.Header.PointerToSymbolTable)
<< binary_le(CP.Obj.Header.NumberOfSymbols);
} else {
OS << binary_le(CP.Obj.Header.Machine)
<< binary_le(static_cast<int16_t>(CP.Obj.Header.NumberOfSections))
<< binary_le(CP.Obj.Header.TimeDateStamp)
<< binary_le(CP.Obj.Header.PointerToSymbolTable)
<< binary_le(CP.Obj.Header.NumberOfSymbols)
<< binary_le(CP.Obj.Header.SizeOfOptionalHeader)
<< binary_le(CP.Obj.Header.Characteristics);
}
if (CP.isPE()) {
if (CP.is64Bit()) {
object::pe32plus_header PEH;
initializeOptionalHeader(CP, COFF::PE32Header::PE32_PLUS, &PEH);
OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH));
} else {
object::pe32_header PEH;
uint32_t BaseOfData = initializeOptionalHeader(CP, COFF::PE32Header::PE32, &PEH);
PEH.BaseOfData = BaseOfData;
OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH));
}
for (const Optional<COFF::DataDirectory> &DD :
CP.Obj.OptionalHeader->DataDirectories) {
if (!DD.hasValue()) {
OS << zeros(uint32_t(0));
OS << zeros(uint32_t(0));
} else {
OS << binary_le(DD->RelativeVirtualAddress);
OS << binary_le(DD->Size);
}
}
OS << zeros(uint32_t(0));
OS << zeros(uint32_t(0));
}
assert(OS.tell() == CP.SectionTableStart);
// Output section table.
for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
e = CP.Obj.Sections.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.VirtualSize)
<< binary_le(i->Header.VirtualAddress)
<< binary_le(i->Header.SizeOfRawData)
<< binary_le(i->Header.PointerToRawData)
<< binary_le(i->Header.PointerToRelocations)
<< binary_le(i->Header.PointerToLineNumbers)
<< binary_le(i->Header.NumberOfRelocations)
<< binary_le(i->Header.NumberOfLineNumbers)
<< binary_le(i->Header.Characteristics);
}
assert(OS.tell() == CP.SectionTableStart + CP.SectionTableSize);
unsigned CurSymbol = 0;
StringMap<unsigned> SymbolTableIndexMap;
for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(),
E = CP.Obj.Symbols.end();
I != E; ++I) {
SymbolTableIndexMap[I->Name] = CurSymbol;
CurSymbol += 1 + I->Header.NumberOfAuxSymbols;
}
// Output section data.
for (const COFFYAML::Section &S : CP.Obj.Sections) {
if (!S.Header.SizeOfRawData)
continue;
assert(S.Header.PointerToRawData >= OS.tell());
OS << num_zeros(S.Header.PointerToRawData - OS.tell());
S.SectionData.writeAsBinary(OS);
assert(S.Header.SizeOfRawData >= S.SectionData.binary_size());
OS << num_zeros(S.Header.SizeOfRawData - S.SectionData.binary_size());
for (const COFFYAML::Relocation &R : S.Relocations) {
uint32_t SymbolTableIndex = SymbolTableIndexMap[R.SymbolName];
OS << binary_le(R.VirtualAddress)
<< binary_le(SymbolTableIndex)
<< binary_le(R.Type);
}
}
// Output symbol table.
for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
e = CP.Obj.Symbols.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.Value);
if (CP.useBigObj())
OS << binary_le(i->Header.SectionNumber);
else
OS << binary_le(static_cast<int16_t>(i->Header.SectionNumber));
OS << binary_le(i->Header.Type)
<< binary_le(i->Header.StorageClass)
<< binary_le(i->Header.NumberOfAuxSymbols);
if (i->FunctionDefinition)
OS << binary_le(i->FunctionDefinition->TagIndex)
<< binary_le(i->FunctionDefinition->TotalSize)
<< binary_le(i->FunctionDefinition->PointerToLinenumber)
<< binary_le(i->FunctionDefinition->PointerToNextFunction)
<< zeros(i->FunctionDefinition->unused)
<< num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
if (i->bfAndefSymbol)
OS << zeros(i->bfAndefSymbol->unused1)
<< binary_le(i->bfAndefSymbol->Linenumber)
<< zeros(i->bfAndefSymbol->unused2)
<< binary_le(i->bfAndefSymbol->PointerToNextFunction)
<< zeros(i->bfAndefSymbol->unused3)
<< num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
if (i->WeakExternal)
OS << binary_le(i->WeakExternal->TagIndex)
<< binary_le(i->WeakExternal->Characteristics)
<< zeros(i->WeakExternal->unused)
<< num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
if (!i->File.empty()) {
unsigned SymbolSize = CP.getSymbolSize();
uint32_t NumberOfAuxRecords =
(i->File.size() + SymbolSize - 1) / SymbolSize;
uint32_t NumberOfAuxBytes = NumberOfAuxRecords * SymbolSize;
uint32_t NumZeros = NumberOfAuxBytes - i->File.size();
OS.write(i->File.data(), i->File.size());
OS << num_zeros(NumZeros);
}
if (i->SectionDefinition)
OS << binary_le(i->SectionDefinition->Length)
<< binary_le(i->SectionDefinition->NumberOfRelocations)
<< binary_le(i->SectionDefinition->NumberOfLinenumbers)
<< binary_le(i->SectionDefinition->CheckSum)
<< binary_le(static_cast<int16_t>(i->SectionDefinition->Number))
<< binary_le(i->SectionDefinition->Selection)
<< zeros(i->SectionDefinition->unused)
<< binary_le(static_cast<int16_t>(i->SectionDefinition->Number >> 16))
<< num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
if (i->CLRToken)
OS << binary_le(i->CLRToken->AuxType)
<< zeros(i->CLRToken->unused1)
<< binary_le(i->CLRToken->SymbolTableIndex)
<< zeros(i->CLRToken->unused2)
<< num_zeros(CP.getSymbolSize() - COFF::Symbol16Size);
}
// Output string table.
if (CP.Obj.Header.PointerToSymbolTable)
OS.write(&CP.StringTable[0], CP.StringTable.size());
return true;
}
int yaml2coff(llvm::COFFYAML::Object &Doc, raw_ostream &Out) {
COFFParser CP(Doc);
if (!CP.parse()) {
errs() << "yaml2obj: Failed to parse YAML file!\n";
return 1;
}
if (!layoutOptionalHeader(CP)) {
errs() << "yaml2obj: Failed to layout optional header for COFF file!\n";
return 1;
}
if (!layoutCOFF(CP)) {
errs() << "yaml2obj: Failed to layout COFF file!\n";
return 1;
}
if (!writeCOFF(CP, Out)) {
errs() << "yaml2obj: Failed to write COFF file!\n";
return 1;
}
return 0;
}