llvm-project/llvm/test/Transforms/InstSimplify/shift.ll

240 lines
6.1 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instsimplify -S | FileCheck %s
define i47 @shl_by_0(i47 %A) {
; CHECK-LABEL: @shl_by_0(
; CHECK-NEXT: ret i47 [[A:%.*]]
;
%B = shl i47 %A, 0
ret i47 %B
}
define i41 @shl_0(i41 %X) {
; CHECK-LABEL: @shl_0(
; CHECK-NEXT: ret i41 0
;
%B = shl i41 0, %X
ret i41 %B
}
define <2 x i41> @shl_0_vec_undef_elt(<2 x i41> %X) {
; CHECK-LABEL: @shl_0_vec_undef_elt(
; CHECK-NEXT: ret <2 x i41> zeroinitializer
;
%B = shl <2 x i41> <i41 0, i41 undef>, %X
ret <2 x i41> %B
}
define i41 @ashr_by_0(i41 %A) {
; CHECK-LABEL: @ashr_by_0(
; CHECK-NEXT: ret i41 [[A:%.*]]
;
%B = ashr i41 %A, 0
ret i41 %B
}
define i39 @ashr_0(i39 %X) {
; CHECK-LABEL: @ashr_0(
; CHECK-NEXT: ret i39 0
;
%B = ashr i39 0, %X
ret i39 %B
}
define <2 x i141> @ashr_0_vec_undef_elt(<2 x i141> %X) {
; CHECK-LABEL: @ashr_0_vec_undef_elt(
; CHECK-NEXT: ret <2 x i141> zeroinitializer
;
%B = shl <2 x i141> <i141 undef, i141 0>, %X
ret <2 x i141> %B
}
define i55 @lshr_by_bitwidth(i55 %A) {
; CHECK-LABEL: @lshr_by_bitwidth(
; CHECK-NEXT: ret i55 undef
;
%B = lshr i55 %A, 55
ret i55 %B
}
define i32 @shl_by_bitwidth(i32 %A) {
; CHECK-LABEL: @shl_by_bitwidth(
; CHECK-NEXT: ret i32 undef
;
%B = shl i32 %A, 32
ret i32 %B
}
define <4 x i32> @lshr_by_bitwidth_splat(<4 x i32> %A) {
; CHECK-LABEL: @lshr_by_bitwidth_splat(
; CHECK-NEXT: ret <4 x i32> undef
;
%B = lshr <4 x i32> %A, <i32 32, i32 32, i32 32, i32 32> ;; shift all bits out
ret <4 x i32> %B
}
define <4 x i32> @lshr_by_0_splat(<4 x i32> %A) {
; CHECK-LABEL: @lshr_by_0_splat(
; CHECK-NEXT: ret <4 x i32> [[A:%.*]]
;
%B = lshr <4 x i32> %A, zeroinitializer
ret <4 x i32> %B
}
define <4 x i32> @shl_by_bitwidth_splat(<4 x i32> %A) {
; CHECK-LABEL: @shl_by_bitwidth_splat(
; CHECK-NEXT: ret <4 x i32> undef
;
%B = shl <4 x i32> %A, <i32 32, i32 32, i32 32, i32 32> ;; shift all bits out
ret <4 x i32> %B
}
define i32 @ashr_undef() {
; CHECK-LABEL: @ashr_undef(
; CHECK-NEXT: ret i32 0
;
%B = ashr i32 undef, 2 ;; top two bits must be equal, so not undef
ret i32 %B
}
define i32 @ashr_undef_variable_shift_amount(i32 %A) {
; CHECK-LABEL: @ashr_undef_variable_shift_amount(
; CHECK-NEXT: ret i32 0
;
%B = ashr i32 undef, %A ;; top %A bits must be equal, so not undef
ret i32 %B
}
define i32 @ashr_all_ones(i32 %A) {
; CHECK-LABEL: @ashr_all_ones(
; CHECK-NEXT: ret i32 -1
;
%B = ashr i32 -1, %A
ret i32 %B
}
define <3 x i8> @ashr_all_ones_vec_with_undef_elts(<3 x i8> %x, <3 x i8> %y) {
; CHECK-LABEL: @ashr_all_ones_vec_with_undef_elts(
; CHECK-NEXT: ret <3 x i8> <i8 -1, i8 -1, i8 -1>
;
%sh = ashr <3 x i8> <i8 undef, i8 -1, i8 undef>, %y
ret <3 x i8> %sh
}
define i8 @lshr_by_sext_bool(i1 %x, i8 %y) {
; CHECK-LABEL: @lshr_by_sext_bool(
; CHECK-NEXT: ret i8 [[Y:%.*]]
;
%s = sext i1 %x to i8
%r = lshr i8 %y, %s
ret i8 %r
}
define <2 x i8> @lshr_by_sext_bool_vec(<2 x i1> %x, <2 x i8> %y) {
; CHECK-LABEL: @lshr_by_sext_bool_vec(
; CHECK-NEXT: ret <2 x i8> [[Y:%.*]]
;
%s = sext <2 x i1> %x to <2 x i8>
%r = lshr <2 x i8> %y, %s
ret <2 x i8> %r
}
define i8 @ashr_by_sext_bool(i1 %x, i8 %y) {
; CHECK-LABEL: @ashr_by_sext_bool(
; CHECK-NEXT: ret i8 [[Y:%.*]]
;
%s = sext i1 %x to i8
%r = ashr i8 %y, %s
ret i8 %r
}
define <2 x i8> @ashr_by_sext_bool_vec(<2 x i1> %x, <2 x i8> %y) {
; CHECK-LABEL: @ashr_by_sext_bool_vec(
; CHECK-NEXT: ret <2 x i8> [[Y:%.*]]
;
%s = sext <2 x i1> %x to <2 x i8>
%r = ashr <2 x i8> %y, %s
ret <2 x i8> %r
}
define i8 @shl_by_sext_bool(i1 %x, i8 %y) {
; CHECK-LABEL: @shl_by_sext_bool(
; CHECK-NEXT: ret i8 [[Y:%.*]]
;
%s = sext i1 %x to i8
%r = shl i8 %y, %s
ret i8 %r
}
define <2 x i8> @shl_by_sext_bool_vec(<2 x i1> %x, <2 x i8> %y) {
; CHECK-LABEL: @shl_by_sext_bool_vec(
; CHECK-NEXT: ret <2 x i8> [[Y:%.*]]
;
%s = sext <2 x i1> %x to <2 x i8>
%r = shl <2 x i8> %y, %s
ret <2 x i8> %r
}
define i64 @shl_or_shr(i32 %a, i32 %b) {
; CHECK-LABEL: @shl_or_shr(
; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[A:%.*]] to i64
[InstSimplify] fold extracting from std::pair (1/2) This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined. For example, jump threading does not happen for the if statement in func. std::pair<int, bool> callee(int v) { int a = dummy(v); if (a) return std::make_pair(dummy(v), true); else return std::make_pair(v, v < 0); } int func(int v) { std::pair<int, bool> rc = callee(v); if (rc.second) { // do something } SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA. After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc). This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs. These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading. SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify. This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr. Differential Revision: https://reviews.llvm.org/D48828 llvm-svn: 338485
2018-08-01 12:40:32 +08:00
; CHECK-NEXT: ret i64 [[TMP1]]
;
%tmp1 = zext i32 %a to i64
%tmp2 = zext i32 %b to i64
%tmp3 = shl nuw i64 %tmp1, 32
%tmp4 = or i64 %tmp2, %tmp3
%tmp5 = lshr i64 %tmp4, 32
ret i64 %tmp5
}
; Since shift count of shl is smaller than the size of %b, OR cannot be eliminated.
define i64 @shl_or_shr2(i32 %a, i32 %b) {
; CHECK-LABEL: @shl_or_shr2(
; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[A:%.*]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = zext i32 [[B:%.*]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = shl nuw i64 [[TMP1]], 31
; CHECK-NEXT: [[TMP4:%.*]] = or i64 [[TMP2]], [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = lshr i64 [[TMP4]], 31
; CHECK-NEXT: ret i64 [[TMP5]]
;
%tmp1 = zext i32 %a to i64
%tmp2 = zext i32 %b to i64
%tmp3 = shl nuw i64 %tmp1, 31
%tmp4 = or i64 %tmp2, %tmp3
%tmp5 = lshr i64 %tmp4, 31
ret i64 %tmp5
}
; Unit test for vector integer
define <2 x i64> @shl_or_shr1v(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @shl_or_shr1v(
; CHECK-NEXT: [[TMP1:%.*]] = zext <2 x i32> [[A:%.*]] to <2 x i64>
[InstSimplify] fold extracting from std::pair (1/2) This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined. For example, jump threading does not happen for the if statement in func. std::pair<int, bool> callee(int v) { int a = dummy(v); if (a) return std::make_pair(dummy(v), true); else return std::make_pair(v, v < 0); } int func(int v) { std::pair<int, bool> rc = callee(v); if (rc.second) { // do something } SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA. After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc). This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs. These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading. SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify. This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr. Differential Revision: https://reviews.llvm.org/D48828 llvm-svn: 338485
2018-08-01 12:40:32 +08:00
; CHECK-NEXT: ret <2 x i64> [[TMP1]]
;
%tmp1 = zext <2 x i32> %a to <2 x i64>
%tmp2 = zext <2 x i32> %b to <2 x i64>
%tmp3 = shl nuw <2 x i64> %tmp1, <i64 32, i64 32>
%tmp4 = or <2 x i64> %tmp3, %tmp2
%tmp5 = lshr <2 x i64> %tmp4, <i64 32, i64 32>
ret <2 x i64> %tmp5
}
; Negative unit test for vector integer
define <2 x i64> @shl_or_shr2v(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @shl_or_shr2v(
; CHECK-NEXT: [[TMP1:%.*]] = zext <2 x i32> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP2:%.*]] = zext <2 x i32> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP3:%.*]] = shl nuw <2 x i64> [[TMP1]], <i64 31, i64 31>
; CHECK-NEXT: [[TMP4:%.*]] = or <2 x i64> [[TMP2]], [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = lshr <2 x i64> [[TMP4]], <i64 31, i64 31>
; CHECK-NEXT: ret <2 x i64> [[TMP5]]
;
%tmp1 = zext <2 x i32> %a to <2 x i64>
%tmp2 = zext <2 x i32> %b to <2 x i64>
%tmp3 = shl nuw <2 x i64> %tmp1, <i64 31, i64 31>
%tmp4 = or <2 x i64> %tmp2, %tmp3
%tmp5 = lshr <2 x i64> %tmp4, <i64 31, i64 31>
ret <2 x i64> %tmp5
}