2010-05-26 13:41:04 +08:00
|
|
|
//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
|
2009-07-19 04:20:21 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2012-12-04 17:13:33 +08:00
|
|
|
#include "clang/AST/RecordLayout.h"
|
2012-07-05 02:45:14 +08:00
|
|
|
#include "clang/AST/ASTContext.h"
|
2009-07-19 04:20:21 +08:00
|
|
|
#include "clang/AST/Attr.h"
|
2010-11-25 06:55:48 +08:00
|
|
|
#include "clang/AST/CXXInheritance.h"
|
2009-07-19 04:20:21 +08:00
|
|
|
#include "clang/AST/Decl.h"
|
2009-07-19 08:18:47 +08:00
|
|
|
#include "clang/AST/DeclCXX.h"
|
2009-07-19 04:50:59 +08:00
|
|
|
#include "clang/AST/DeclObjC.h"
|
2009-07-19 04:20:21 +08:00
|
|
|
#include "clang/AST/Expr.h"
|
|
|
|
#include "clang/Basic/TargetInfo.h"
|
2010-09-22 22:32:24 +08:00
|
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
2010-04-08 10:59:49 +08:00
|
|
|
#include "llvm/ADT/SmallSet.h"
|
2011-03-19 09:00:36 +08:00
|
|
|
#include "llvm/Support/CrashRecoveryContext.h"
|
2012-12-04 17:13:33 +08:00
|
|
|
#include "llvm/Support/Format.h"
|
|
|
|
#include "llvm/Support/MathExtras.h"
|
2009-07-19 04:20:21 +08:00
|
|
|
|
|
|
|
using namespace clang;
|
|
|
|
|
2010-05-26 17:58:31 +08:00
|
|
|
namespace {
|
2010-05-26 23:32:58 +08:00
|
|
|
|
2010-05-29 05:24:37 +08:00
|
|
|
/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
|
|
|
|
/// For a class hierarchy like
|
|
|
|
///
|
|
|
|
/// class A { };
|
|
|
|
/// class B : A { };
|
|
|
|
/// class C : A, B { };
|
|
|
|
///
|
|
|
|
/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
|
|
|
|
/// instances, one for B and two for A.
|
|
|
|
///
|
|
|
|
/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
|
|
|
|
struct BaseSubobjectInfo {
|
|
|
|
/// Class - The class for this base info.
|
2010-05-29 05:13:31 +08:00
|
|
|
const CXXRecordDecl *Class;
|
2010-05-29 05:24:37 +08:00
|
|
|
|
|
|
|
/// IsVirtual - Whether the BaseInfo represents a virtual base or not.
|
2010-05-29 05:13:31 +08:00
|
|
|
bool IsVirtual;
|
|
|
|
|
2010-05-29 05:24:37 +08:00
|
|
|
/// Bases - Information about the base subobjects.
|
2011-07-23 18:55:15 +08:00
|
|
|
SmallVector<BaseSubobjectInfo*, 4> Bases;
|
2010-05-29 05:24:37 +08:00
|
|
|
|
2010-05-30 01:35:14 +08:00
|
|
|
/// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
|
|
|
|
/// of this base info (if one exists).
|
|
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo;
|
2010-05-29 05:24:37 +08:00
|
|
|
|
|
|
|
// FIXME: Document.
|
|
|
|
const BaseSubobjectInfo *Derived;
|
2010-05-29 05:13:31 +08:00
|
|
|
};
|
|
|
|
|
2010-05-26 23:32:58 +08:00
|
|
|
/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
|
|
|
|
/// offsets while laying out a C++ class.
|
|
|
|
class EmptySubobjectMap {
|
2011-01-12 17:06:06 +08:00
|
|
|
const ASTContext &Context;
|
2010-11-01 05:54:55 +08:00
|
|
|
uint64_t CharWidth;
|
|
|
|
|
2010-05-26 23:32:58 +08:00
|
|
|
/// Class - The class whose empty entries we're keeping track of.
|
|
|
|
const CXXRecordDecl *Class;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-27 13:41:06 +08:00
|
|
|
/// EmptyClassOffsets - A map from offsets to empty record decls.
|
2011-07-23 18:55:15 +08:00
|
|
|
typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
|
2010-11-01 05:22:43 +08:00
|
|
|
typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
|
2010-05-27 13:41:06 +08:00
|
|
|
EmptyClassOffsetsMapTy EmptyClassOffsets;
|
|
|
|
|
2010-06-08 23:56:03 +08:00
|
|
|
/// MaxEmptyClassOffset - The highest offset known to contain an empty
|
|
|
|
/// base subobject.
|
2010-11-01 05:39:24 +08:00
|
|
|
CharUnits MaxEmptyClassOffset;
|
2010-06-08 23:56:03 +08:00
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
/// ComputeEmptySubobjectSizes - Compute the size of the largest base or
|
2010-05-26 23:54:25 +08:00
|
|
|
/// member subobject that is empty.
|
|
|
|
void ComputeEmptySubobjectSizes();
|
2010-05-27 13:41:06 +08:00
|
|
|
|
2010-11-01 05:39:24 +08:00
|
|
|
void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
|
2010-05-28 02:20:57 +08:00
|
|
|
|
2010-05-29 05:24:37 +08:00
|
|
|
void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset, bool PlacingEmptyBase);
|
2010-05-27 13:41:06 +08:00
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
|
|
|
|
const CXXRecordDecl *Class,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset);
|
|
|
|
void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
|
2010-05-28 02:20:57 +08:00
|
|
|
|
2010-06-08 23:56:03 +08:00
|
|
|
/// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
|
|
|
|
/// subobjects beyond the given offset.
|
2010-11-01 05:39:24 +08:00
|
|
|
bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
|
2010-06-08 23:56:03 +08:00
|
|
|
return Offset <= MaxEmptyClassOffset;
|
|
|
|
}
|
|
|
|
|
2010-11-01 05:54:55 +08:00
|
|
|
CharUnits
|
|
|
|
getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
|
|
|
|
uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
|
|
|
|
assert(FieldOffset % CharWidth == 0 &&
|
|
|
|
"Field offset not at char boundary!");
|
|
|
|
|
2011-01-24 09:28:50 +08:00
|
|
|
return Context.toCharUnitsFromBits(FieldOffset);
|
2010-11-01 05:22:43 +08:00
|
|
|
}
|
|
|
|
|
2010-08-19 08:55:19 +08:00
|
|
|
protected:
|
2010-11-01 05:39:24 +08:00
|
|
|
bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
|
|
CharUnits Offset) const;
|
2010-08-19 08:55:19 +08:00
|
|
|
|
|
|
|
bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset);
|
2010-08-19 08:55:19 +08:00
|
|
|
|
|
|
|
bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
|
|
const CXXRecordDecl *Class,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset) const;
|
2010-08-19 08:55:19 +08:00
|
|
|
bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
|
2010-11-01 05:54:55 +08:00
|
|
|
CharUnits Offset) const;
|
2010-08-19 08:55:19 +08:00
|
|
|
|
2010-05-26 23:32:58 +08:00
|
|
|
public:
|
2010-05-26 23:54:25 +08:00
|
|
|
/// This holds the size of the largest empty subobject (either a base
|
2010-05-27 10:25:46 +08:00
|
|
|
/// or a member). Will be zero if the record being built doesn't contain
|
2010-05-26 23:54:25 +08:00
|
|
|
/// any empty classes.
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits SizeOfLargestEmptySubobject;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-01-12 17:06:06 +08:00
|
|
|
EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
|
2010-11-01 06:13:23 +08:00
|
|
|
: Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
|
2010-05-27 08:07:01 +08:00
|
|
|
ComputeEmptySubobjectSizes();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CanPlaceBaseAtOffset - Return whether the given base class can be placed
|
|
|
|
/// at the given offset.
|
2010-05-27 10:25:46 +08:00
|
|
|
/// Returns false if placing the record will result in two components
|
2010-05-27 08:07:01 +08:00
|
|
|
/// (direct or indirect) of the same type having the same offset.
|
2010-06-08 23:56:03 +08:00
|
|
|
bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset);
|
2010-05-28 02:20:57 +08:00
|
|
|
|
|
|
|
/// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
|
|
|
|
/// offset.
|
2010-11-01 06:13:23 +08:00
|
|
|
bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
|
2010-05-26 23:32:58 +08:00
|
|
|
};
|
2010-05-26 23:54:25 +08:00
|
|
|
|
|
|
|
void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
|
|
|
|
// Check the bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
|
|
|
|
E = Class->bases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits EmptySize;
|
2010-05-26 23:54:25 +08:00
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
|
|
|
|
if (BaseDecl->isEmpty()) {
|
|
|
|
// If the class decl is empty, get its size.
|
2011-02-09 09:59:34 +08:00
|
|
|
EmptySize = Layout.getSize();
|
2010-05-26 23:54:25 +08:00
|
|
|
} else {
|
|
|
|
// Otherwise, we get the largest empty subobject for the decl.
|
|
|
|
EmptySize = Layout.getSizeOfLargestEmptySubobject();
|
|
|
|
}
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
if (EmptySize > SizeOfLargestEmptySubobject)
|
|
|
|
SizeOfLargestEmptySubobject = EmptySize;
|
2010-05-26 23:54:25 +08:00
|
|
|
}
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 23:54:25 +08:00
|
|
|
// Check the fields.
|
|
|
|
for (CXXRecordDecl::field_iterator I = Class->field_begin(),
|
|
|
|
E = Class->field_end(); I != E; ++I) {
|
2010-05-27 10:25:46 +08:00
|
|
|
|
|
|
|
const RecordType *RT =
|
2012-06-07 04:45:41 +08:00
|
|
|
Context.getBaseElementType(I->getType())->getAs<RecordType>();
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 23:54:25 +08:00
|
|
|
// We only care about record types.
|
|
|
|
if (!RT)
|
|
|
|
continue;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits EmptySize;
|
2010-05-26 23:54:25 +08:00
|
|
|
const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
|
|
|
|
if (MemberDecl->isEmpty()) {
|
|
|
|
// If the class decl is empty, get its size.
|
2011-02-09 09:59:34 +08:00
|
|
|
EmptySize = Layout.getSize();
|
2010-05-26 23:54:25 +08:00
|
|
|
} else {
|
|
|
|
// Otherwise, we get the largest empty subobject for the decl.
|
|
|
|
EmptySize = Layout.getSizeOfLargestEmptySubobject();
|
|
|
|
}
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
if (EmptySize > SizeOfLargestEmptySubobject)
|
|
|
|
SizeOfLargestEmptySubobject = EmptySize;
|
2010-05-26 23:54:25 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
bool
|
|
|
|
EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
|
2010-11-01 05:39:24 +08:00
|
|
|
CharUnits Offset) const {
|
2010-05-28 02:20:57 +08:00
|
|
|
// We only need to check empty bases.
|
|
|
|
if (!RD->isEmpty())
|
|
|
|
return true;
|
|
|
|
|
2010-11-01 05:39:24 +08:00
|
|
|
EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
|
2010-05-28 02:20:57 +08:00
|
|
|
if (I == EmptyClassOffsets.end())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
const ClassVectorTy& Classes = I->second;
|
|
|
|
if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// There is already an empty class of the same type at this offset.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
|
2010-11-01 05:39:24 +08:00
|
|
|
CharUnits Offset) {
|
2010-05-28 02:20:57 +08:00
|
|
|
// We only care about empty bases.
|
|
|
|
if (!RD->isEmpty())
|
|
|
|
return;
|
|
|
|
|
2013-05-15 04:30:42 +08:00
|
|
|
// If we have empty structures inside a union, we can assign both
|
2010-12-30 07:02:58 +08:00
|
|
|
// the same offset. Just avoid pushing them twice in the list.
|
2010-11-01 05:39:24 +08:00
|
|
|
ClassVectorTy& Classes = EmptyClassOffsets[Offset];
|
2010-12-30 07:02:58 +08:00
|
|
|
if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
|
|
|
|
return;
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
Classes.push_back(RD);
|
2010-06-08 23:56:03 +08:00
|
|
|
|
|
|
|
// Update the empty class offset.
|
2010-11-01 05:39:24 +08:00
|
|
|
if (Offset > MaxEmptyClassOffset)
|
|
|
|
MaxEmptyClassOffset = Offset;
|
2010-05-28 02:20:57 +08:00
|
|
|
}
|
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
bool
|
2010-11-01 06:13:23 +08:00
|
|
|
EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
|
|
|
|
CharUnits Offset) {
|
2010-06-09 00:20:35 +08:00
|
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
|
|
// contain an empty class.
|
2010-11-01 06:13:23 +08:00
|
|
|
if (!AnyEmptySubobjectsBeyondOffset(Offset))
|
2010-06-09 00:20:35 +08:00
|
|
|
return true;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
|
2010-05-28 02:20:57 +08:00
|
|
|
return false;
|
|
|
|
|
2010-05-27 13:41:06 +08:00
|
|
|
// Traverse all non-virtual bases.
|
2010-05-30 05:10:24 +08:00
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
|
2010-05-27 13:41:06 +08:00
|
|
|
for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
|
2010-05-29 05:24:37 +08:00
|
|
|
BaseSubobjectInfo* Base = Info->Bases[I];
|
2010-05-27 13:41:06 +08:00
|
|
|
if (Base->IsVirtual)
|
|
|
|
continue;
|
|
|
|
|
2010-11-01 08:21:58 +08:00
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
|
2010-05-27 13:41:06 +08:00
|
|
|
|
|
|
|
if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-05-30 01:35:14 +08:00
|
|
|
if (Info->PrimaryVirtualBaseInfo) {
|
|
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
|
2010-05-27 13:41:06 +08:00
|
|
|
|
|
|
|
if (Info == PrimaryVirtualBaseInfo->Derived) {
|
|
|
|
if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
// Traverse all member variables.
|
|
|
|
unsigned FieldNo = 0;
|
|
|
|
for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
|
|
|
|
E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
|
2012-06-07 04:45:41 +08:00
|
|
|
if (I->isBitField())
|
2010-11-01 05:54:55 +08:00
|
|
|
continue;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
2012-06-07 04:45:41 +08:00
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
|
2010-05-28 02:20:57 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-05-27 13:41:06 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-05-29 05:24:37 +08:00
|
|
|
void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset,
|
2010-06-14 02:00:18 +08:00
|
|
|
bool PlacingEmptyBase) {
|
|
|
|
if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
|
|
|
|
// We know that the only empty subobjects that can conflict with empty
|
|
|
|
// subobject of non-empty bases, are empty bases that can be placed at
|
|
|
|
// offset zero. Because of this, we only need to keep track of empty base
|
|
|
|
// subobjects with offsets less than the size of the largest empty
|
|
|
|
// subobject for our class.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
AddSubobjectAtOffset(Info->Class, Offset);
|
2010-05-30 05:10:24 +08:00
|
|
|
|
2010-05-27 13:41:06 +08:00
|
|
|
// Traverse all non-virtual bases.
|
2010-05-30 05:10:24 +08:00
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
|
2010-05-27 13:41:06 +08:00
|
|
|
for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
|
2010-05-29 05:24:37 +08:00
|
|
|
BaseSubobjectInfo* Base = Info->Bases[I];
|
2010-05-27 13:41:06 +08:00
|
|
|
if (Base->IsVirtual)
|
|
|
|
continue;
|
2010-05-30 05:10:24 +08:00
|
|
|
|
2010-11-01 08:21:58 +08:00
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
|
2010-06-14 02:00:18 +08:00
|
|
|
UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
|
2010-05-27 13:41:06 +08:00
|
|
|
}
|
|
|
|
|
2010-05-30 01:35:14 +08:00
|
|
|
if (Info->PrimaryVirtualBaseInfo) {
|
|
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
|
2010-05-27 13:41:06 +08:00
|
|
|
|
|
|
|
if (Info == PrimaryVirtualBaseInfo->Derived)
|
2010-06-14 02:00:18 +08:00
|
|
|
UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
|
|
|
|
PlacingEmptyBase);
|
2010-05-27 13:41:06 +08:00
|
|
|
}
|
2010-05-28 02:20:57 +08:00
|
|
|
|
|
|
|
// Traverse all member variables.
|
|
|
|
unsigned FieldNo = 0;
|
|
|
|
for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
|
|
|
|
E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
|
2012-06-07 04:45:41 +08:00
|
|
|
if (I->isBitField())
|
2010-11-01 05:54:55 +08:00
|
|
|
continue;
|
2010-05-30 05:10:24 +08:00
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
2012-06-07 04:45:41 +08:00
|
|
|
UpdateEmptyFieldSubobjects(*I, FieldOffset);
|
2010-05-28 02:20:57 +08:00
|
|
|
}
|
2010-05-27 13:41:06 +08:00
|
|
|
}
|
|
|
|
|
2010-05-30 04:49:49 +08:00
|
|
|
bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset) {
|
2010-05-27 08:07:01 +08:00
|
|
|
// If we know this class doesn't have any empty subobjects we don't need to
|
|
|
|
// bother checking.
|
2010-11-01 06:13:23 +08:00
|
|
|
if (SizeOfLargestEmptySubobject.isZero())
|
2010-05-27 08:07:01 +08:00
|
|
|
return true;
|
|
|
|
|
2010-05-27 13:41:06 +08:00
|
|
|
if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
|
|
|
|
return false;
|
2010-05-28 02:20:57 +08:00
|
|
|
|
|
|
|
// We are able to place the base at this offset. Make sure to update the
|
|
|
|
// empty base subobject map.
|
2010-06-14 02:00:18 +08:00
|
|
|
UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
|
2010-05-27 08:07:01 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
bool
|
|
|
|
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
|
|
const CXXRecordDecl *Class,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset) const {
|
2010-06-09 00:20:35 +08:00
|
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
|
|
// contain an empty class.
|
2010-11-01 06:13:23 +08:00
|
|
|
if (!AnyEmptySubobjectsBeyondOffset(Offset))
|
2010-06-09 00:20:35 +08:00
|
|
|
return true;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
if (!CanPlaceSubobjectAtOffset(RD, Offset))
|
2010-05-28 02:20:57 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
|
|
|
|
// Traverse all non-virtual bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
if (I->isVirtual())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 08:21:58 +08:00
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
|
2010-05-28 02:20:57 +08:00
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-06-09 03:09:24 +08:00
|
|
|
if (RD == Class) {
|
|
|
|
// This is the most derived class, traverse virtual bases as well.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
|
|
E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *VBaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
|
2010-06-09 03:09:24 +08:00
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
// Traverse all member variables.
|
|
|
|
unsigned FieldNo = 0;
|
|
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
|
|
I != E; ++I, ++FieldNo) {
|
2012-06-07 04:45:41 +08:00
|
|
|
if (I->isBitField())
|
2010-11-01 05:54:55 +08:00
|
|
|
continue;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
2010-05-28 02:20:57 +08:00
|
|
|
|
2012-06-07 04:45:41 +08:00
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
|
2010-05-28 02:20:57 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-11-01 05:54:55 +08:00
|
|
|
bool
|
|
|
|
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
|
|
|
|
CharUnits Offset) const {
|
2010-06-09 00:20:35 +08:00
|
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
|
|
// contain an empty class.
|
2010-11-01 05:54:55 +08:00
|
|
|
if (!AnyEmptySubobjectsBeyondOffset(Offset))
|
2010-06-09 00:20:35 +08:00
|
|
|
return true;
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
QualType T = FD->getType();
|
|
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
2010-11-01 06:13:23 +08:00
|
|
|
return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
|
2010-05-28 02:20:57 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If we have an array type we need to look at every element.
|
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
|
|
|
|
QualType ElemTy = Context.getBaseElementType(AT);
|
|
|
|
const RecordType *RT = ElemTy->getAs<RecordType>();
|
|
|
|
if (!RT)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
|
|
|
|
uint64_t NumElements = Context.getConstantArrayElementCount(AT);
|
2010-11-01 05:54:55 +08:00
|
|
|
CharUnits ElementOffset = Offset;
|
2010-05-28 02:20:57 +08:00
|
|
|
for (uint64_t I = 0; I != NumElements; ++I) {
|
2010-06-09 00:20:35 +08:00
|
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
|
|
// contain an empty class.
|
2010-11-01 05:54:55 +08:00
|
|
|
if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
|
2010-06-09 00:20:35 +08:00
|
|
|
return true;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
|
2010-05-28 02:20:57 +08:00
|
|
|
return false;
|
|
|
|
|
2011-02-09 09:59:34 +08:00
|
|
|
ElementOffset += Layout.getSize();
|
2010-05-28 02:20:57 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
2010-11-01 06:13:23 +08:00
|
|
|
EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
|
|
|
|
CharUnits Offset) {
|
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
|
2010-05-28 02:20:57 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
// We are able to place the member variable at this offset.
|
|
|
|
// Make sure to update the empty base subobject map.
|
|
|
|
UpdateEmptyFieldSubobjects(FD, Offset);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
|
|
|
|
const CXXRecordDecl *Class,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset) {
|
2010-06-14 01:49:16 +08:00
|
|
|
// We know that the only empty subobjects that can conflict with empty
|
2010-06-14 02:00:18 +08:00
|
|
|
// field subobjects are subobjects of empty bases that can be placed at offset
|
2010-06-14 01:49:16 +08:00
|
|
|
// zero. Because of this, we only need to keep track of empty field
|
|
|
|
// subobjects with offsets less than the size of the largest empty
|
|
|
|
// subobject for our class.
|
|
|
|
if (Offset >= SizeOfLargestEmptySubobject)
|
|
|
|
return;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
AddSubobjectAtOffset(RD, Offset);
|
2010-05-28 02:20:57 +08:00
|
|
|
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
|
|
|
|
// Traverse all non-virtual bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
if (I->isVirtual())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 08:21:58 +08:00
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
|
2010-05-28 02:20:57 +08:00
|
|
|
UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
|
|
|
|
}
|
|
|
|
|
2010-06-09 03:09:24 +08:00
|
|
|
if (RD == Class) {
|
|
|
|
// This is the most derived class, traverse virtual bases as well.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
|
|
E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *VBaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
|
2010-06-09 03:09:24 +08:00
|
|
|
UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
// Traverse all member variables.
|
|
|
|
unsigned FieldNo = 0;
|
|
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
|
|
I != E; ++I, ++FieldNo) {
|
2012-06-07 04:45:41 +08:00
|
|
|
if (I->isBitField())
|
2010-11-01 23:14:51 +08:00
|
|
|
continue;
|
|
|
|
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
2010-05-28 02:20:57 +08:00
|
|
|
|
2012-06-07 04:45:41 +08:00
|
|
|
UpdateEmptyFieldSubobjects(*I, FieldOffset);
|
2010-05-28 02:20:57 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits Offset) {
|
2010-05-28 02:20:57 +08:00
|
|
|
QualType T = FD->getType();
|
|
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
UpdateEmptyFieldSubobjects(RD, RD, Offset);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we have an array type we need to update every element.
|
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
|
|
|
|
QualType ElemTy = Context.getBaseElementType(AT);
|
|
|
|
const RecordType *RT = ElemTy->getAs<RecordType>();
|
|
|
|
if (!RT)
|
|
|
|
return;
|
|
|
|
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
|
|
|
|
uint64_t NumElements = Context.getConstantArrayElementCount(AT);
|
2010-11-01 06:13:23 +08:00
|
|
|
CharUnits ElementOffset = Offset;
|
2010-05-28 02:20:57 +08:00
|
|
|
|
|
|
|
for (uint64_t I = 0; I != NumElements; ++I) {
|
2010-06-14 01:49:16 +08:00
|
|
|
// We know that the only empty subobjects that can conflict with empty
|
2010-06-14 02:00:18 +08:00
|
|
|
// field subobjects are subobjects of empty bases that can be placed at
|
2010-06-14 01:49:16 +08:00
|
|
|
// offset zero. Because of this, we only need to keep track of empty field
|
|
|
|
// subobjects with offsets less than the size of the largest empty
|
|
|
|
// subobject for our class.
|
|
|
|
if (ElementOffset >= SizeOfLargestEmptySubobject)
|
|
|
|
return;
|
|
|
|
|
2010-05-28 02:20:57 +08:00
|
|
|
UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
|
2011-02-09 09:59:34 +08:00
|
|
|
ElementOffset += Layout.getSize();
|
2010-05-28 02:20:57 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
|
|
|
|
|
2010-05-26 13:58:59 +08:00
|
|
|
class RecordLayoutBuilder {
|
2010-08-19 08:55:19 +08:00
|
|
|
protected:
|
2010-05-26 13:41:04 +08:00
|
|
|
// FIXME: Remove this and make the appropriate fields public.
|
|
|
|
friend class clang::ASTContext;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-01-12 17:06:06 +08:00
|
|
|
const ASTContext &Context;
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2010-05-26 23:32:58 +08:00
|
|
|
EmptySubobjectMap *EmptySubobjects;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// Size - The current size of the record layout.
|
|
|
|
uint64_t Size;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// Alignment - The current alignment of the record layout.
|
2011-02-16 10:05:21 +08:00
|
|
|
CharUnits Alignment;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
/// \brief The alignment if attribute packed is not used.
|
2011-02-16 10:11:31 +08:00
|
|
|
CharUnits UnpackedAlignment;
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
SmallVector<uint64_t, 16> FieldOffsets;
|
2010-05-26 13:41:04 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
/// \brief Whether the external AST source has provided a layout for this
|
|
|
|
/// record.
|
|
|
|
unsigned ExternalLayout : 1;
|
2012-01-28 08:53:29 +08:00
|
|
|
|
|
|
|
/// \brief Whether we need to infer alignment, even when we have an
|
|
|
|
/// externally-provided layout.
|
|
|
|
unsigned InferAlignment : 1;
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// Packed - Whether the record is packed or not.
|
2010-05-27 13:45:51 +08:00
|
|
|
unsigned Packed : 1;
|
|
|
|
|
|
|
|
unsigned IsUnion : 1;
|
|
|
|
|
|
|
|
unsigned IsMac68kAlign : 1;
|
2011-04-27 07:52:16 +08:00
|
|
|
|
|
|
|
unsigned IsMsStruct : 1;
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2013-06-27 04:50:34 +08:00
|
|
|
/// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
|
|
|
|
/// this contains the number of bits in the last unit that can be used for
|
|
|
|
/// an adjacent bitfield if necessary. The unit in question is usually
|
|
|
|
/// a byte, but larger units are used if IsMsStruct.
|
|
|
|
unsigned char UnfilledBitsInLastUnit;
|
|
|
|
/// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
|
|
|
|
/// of the previous field if it was a bitfield.
|
|
|
|
unsigned char LastBitfieldTypeSize;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// MaxFieldAlignment - The maximum allowed field alignment. This is set by
|
2010-05-27 10:25:46 +08:00
|
|
|
/// #pragma pack.
|
2011-02-17 09:49:42 +08:00
|
|
|
CharUnits MaxFieldAlignment;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// DataSize - The data size of the record being laid out.
|
|
|
|
uint64_t DataSize;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-02-16 09:52:01 +08:00
|
|
|
CharUnits NonVirtualSize;
|
2011-02-16 09:43:15 +08:00
|
|
|
CharUnits NonVirtualAlignment;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-05-04 04:21:04 +08:00
|
|
|
FieldDecl *ZeroLengthBitfield;
|
2011-05-03 01:20:56 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// PrimaryBase - the primary base class (if one exists) of the class
|
|
|
|
/// we're laying out.
|
|
|
|
const CXXRecordDecl *PrimaryBase;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
|
|
|
|
/// out is virtual.
|
|
|
|
bool PrimaryBaseIsVirtual;
|
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
/// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
|
|
|
|
/// pointer, as opposed to inheriting one from a primary base class.
|
|
|
|
bool HasOwnVFPtr;
|
2011-10-22 06:49:56 +08:00
|
|
|
|
2011-09-28 03:12:27 +08:00
|
|
|
/// VBPtrOffset - Virtual base table offset. Only for MS layout.
|
|
|
|
CharUnits VBPtrOffset;
|
|
|
|
|
2010-11-01 05:01:46 +08:00
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// Bases - base classes and their offsets in the record.
|
|
|
|
BaseOffsetsMapTy Bases;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
// VBases - virtual base classes and their offsets in the record.
|
2012-05-01 16:55:32 +08:00
|
|
|
ASTRecordLayout::VBaseOffsetsMapTy VBases;
|
2010-05-26 13:41:04 +08:00
|
|
|
|
|
|
|
/// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
|
|
|
|
/// primary base classes for some other direct or indirect base class.
|
2010-11-25 06:55:48 +08:00
|
|
|
CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
|
|
|
|
/// inheritance graph order. Used for determining the primary base class.
|
|
|
|
const CXXRecordDecl *FirstNearlyEmptyVBase;
|
|
|
|
|
|
|
|
/// VisitedVirtualBases - A set of all the visited virtual bases, used to
|
|
|
|
/// avoid visiting virtual bases more than once.
|
|
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
/// \brief Externally-provided size.
|
|
|
|
uint64_t ExternalSize;
|
|
|
|
|
|
|
|
/// \brief Externally-provided alignment.
|
|
|
|
uint64_t ExternalAlign;
|
|
|
|
|
|
|
|
/// \brief Externally-provided field offsets.
|
|
|
|
llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
|
|
|
|
|
|
|
|
/// \brief Externally-provided direct, non-virtual base offsets.
|
|
|
|
llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
|
|
|
|
|
|
|
|
/// \brief Externally-provided virtual base offsets.
|
|
|
|
llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
RecordLayoutBuilder(const ASTContext &Context,
|
|
|
|
EmptySubobjectMap *EmptySubobjects)
|
2011-02-16 10:05:21 +08:00
|
|
|
: Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
|
2011-11-08 12:01:03 +08:00
|
|
|
Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
|
2012-01-28 08:53:29 +08:00
|
|
|
ExternalLayout(false), InferAlignment(false),
|
|
|
|
Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
|
2013-06-27 04:50:34 +08:00
|
|
|
UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
|
|
|
|
MaxFieldAlignment(CharUnits::Zero()),
|
2011-02-17 09:49:42 +08:00
|
|
|
DataSize(0), NonVirtualSize(CharUnits::Zero()),
|
2011-05-03 01:20:56 +08:00
|
|
|
NonVirtualAlignment(CharUnits::One()),
|
2011-05-04 04:21:04 +08:00
|
|
|
ZeroLengthBitfield(0), PrimaryBase(0),
|
2011-10-22 06:49:56 +08:00
|
|
|
PrimaryBaseIsVirtual(false),
|
2012-05-01 16:55:32 +08:00
|
|
|
HasOwnVFPtr(false),
|
2011-10-22 06:49:56 +08:00
|
|
|
VBPtrOffset(CharUnits::fromQuantity(-1)),
|
2011-09-28 03:12:27 +08:00
|
|
|
FirstNearlyEmptyVBase(0) { }
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
/// Reset this RecordLayoutBuilder to a fresh state, using the given
|
|
|
|
/// alignment as the initial alignment. This is used for the
|
|
|
|
/// correct layout of vb-table pointers in MSVC.
|
|
|
|
void resetWithTargetAlignment(CharUnits TargetAlignment) {
|
|
|
|
const ASTContext &Context = this->Context;
|
|
|
|
EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
|
|
|
|
this->~RecordLayoutBuilder();
|
|
|
|
new (this) RecordLayoutBuilder(Context, EmptySubobjects);
|
|
|
|
Alignment = UnpackedAlignment = TargetAlignment;
|
|
|
|
}
|
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
void Layout(const RecordDecl *D);
|
2010-05-26 23:10:00 +08:00
|
|
|
void Layout(const CXXRecordDecl *D);
|
2010-05-26 13:41:04 +08:00
|
|
|
void Layout(const ObjCInterfaceDecl *D);
|
|
|
|
|
|
|
|
void LayoutFields(const RecordDecl *D);
|
|
|
|
void LayoutField(const FieldDecl *D);
|
2010-09-22 22:32:24 +08:00
|
|
|
void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
|
|
|
|
bool FieldPacked, const FieldDecl *D);
|
2010-05-26 13:41:04 +08:00
|
|
|
void LayoutBitField(const FieldDecl *D);
|
2011-11-08 12:01:03 +08:00
|
|
|
|
2013-01-26 06:30:49 +08:00
|
|
|
TargetCXXABI getCXXABI() const {
|
|
|
|
return Context.getTargetInfo().getCXXABI();
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
bool isMicrosoftCXXABI() const {
|
2013-01-26 06:30:49 +08:00
|
|
|
return getCXXABI().isMicrosoft();
|
2011-11-08 12:01:03 +08:00
|
|
|
}
|
|
|
|
|
2011-09-28 03:12:27 +08:00
|
|
|
void MSLayoutVirtualBases(const CXXRecordDecl *RD);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2010-05-30 01:35:14 +08:00
|
|
|
/// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
|
|
|
|
llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
|
|
|
|
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
|
|
|
|
BaseSubobjectInfoMapTy;
|
|
|
|
|
|
|
|
/// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
|
|
|
|
/// of the class we're laying out to their base subobject info.
|
|
|
|
BaseSubobjectInfoMapTy VirtualBaseInfo;
|
|
|
|
|
|
|
|
/// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
|
|
|
|
/// class we're laying out to their base subobject info.
|
|
|
|
BaseSubobjectInfoMapTy NonVirtualBaseInfo;
|
|
|
|
|
|
|
|
/// ComputeBaseSubobjectInfo - Compute the base subobject information for the
|
|
|
|
/// bases of the given class.
|
|
|
|
void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
|
|
|
|
|
|
|
|
/// ComputeBaseSubobjectInfo - Compute the base subobject information for a
|
|
|
|
/// single class and all of its base classes.
|
|
|
|
BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
|
|
|
|
bool IsVirtual,
|
|
|
|
BaseSubobjectInfo *Derived);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
|
|
|
/// DeterminePrimaryBase - Determine the primary base of the given class.
|
|
|
|
void DeterminePrimaryBase(const CXXRecordDecl *RD);
|
|
|
|
|
|
|
|
void SelectPrimaryVBase(const CXXRecordDecl *RD);
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-10-22 06:49:56 +08:00
|
|
|
void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
|
2010-08-19 08:55:19 +08:00
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
/// LayoutNonVirtualBases - Determines the primary base class (if any) and
|
2010-05-26 13:41:04 +08:00
|
|
|
/// lays it out. Will then proceed to lay out all non-virtual base clasess.
|
|
|
|
void LayoutNonVirtualBases(const CXXRecordDecl *RD);
|
|
|
|
|
|
|
|
/// LayoutNonVirtualBase - Lays out a single non-virtual base.
|
2010-05-30 01:42:25 +08:00
|
|
|
void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2010-11-01 06:20:42 +08:00
|
|
|
void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
|
|
|
|
CharUnits Offset);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
bool needsVFTable(const CXXRecordDecl *RD) const;
|
2012-05-01 16:55:32 +08:00
|
|
|
bool hasNewVirtualFunction(const CXXRecordDecl *RD,
|
|
|
|
bool IgnoreDestructor = false) const;
|
2011-11-08 12:01:03 +08:00
|
|
|
bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
|
2011-10-18 08:55:28 +08:00
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
void computeVtordisps(const CXXRecordDecl *RD,
|
|
|
|
ClassSetTy &VtordispVBases);
|
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// LayoutVirtualBases - Lays out all the virtual bases.
|
|
|
|
void LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
|
|
const CXXRecordDecl *MostDerivedClass);
|
|
|
|
|
|
|
|
/// LayoutVirtualBase - Lays out a single virtual base.
|
2012-05-01 16:55:32 +08:00
|
|
|
void LayoutVirtualBase(const BaseSubobjectInfo *Base,
|
|
|
|
bool IsVtordispNeed = false);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
/// LayoutBase - Will lay out a base and return the offset where it was
|
2010-11-01 06:20:42 +08:00
|
|
|
/// placed, in chars.
|
|
|
|
CharUnits LayoutBase(const BaseSubobjectInfo *Base);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2010-05-26 23:10:00 +08:00
|
|
|
/// InitializeLayout - Initialize record layout for the given record decl.
|
2010-05-27 13:45:51 +08:00
|
|
|
void InitializeLayout(const Decl *D);
|
2010-05-26 23:10:00 +08:00
|
|
|
|
2010-05-26 13:41:04 +08:00
|
|
|
/// FinishLayout - Finalize record layout. Adjust record size based on the
|
|
|
|
/// alignment.
|
2010-09-22 22:32:24 +08:00
|
|
|
void FinishLayout(const NamedDecl *D);
|
|
|
|
|
2011-02-20 02:58:07 +08:00
|
|
|
void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
|
|
|
|
void UpdateAlignment(CharUnits NewAlignment) {
|
2010-09-22 22:32:24 +08:00
|
|
|
UpdateAlignment(NewAlignment, NewAlignment);
|
|
|
|
}
|
|
|
|
|
2012-01-28 08:53:29 +08:00
|
|
|
/// \brief Retrieve the externally-supplied field offset for the given
|
|
|
|
/// field.
|
|
|
|
///
|
|
|
|
/// \param Field The field whose offset is being queried.
|
|
|
|
/// \param ComputedOffset The offset that we've computed for this field.
|
|
|
|
uint64_t updateExternalFieldOffset(const FieldDecl *Field,
|
|
|
|
uint64_t ComputedOffset);
|
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
|
|
|
|
uint64_t UnpackedOffset, unsigned UnpackedAlign,
|
|
|
|
bool isPacked, const FieldDecl *D);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2011-02-24 09:13:28 +08:00
|
|
|
CharUnits getSize() const {
|
2011-02-24 09:33:05 +08:00
|
|
|
assert(Size % Context.getCharWidth() == 0);
|
2011-02-24 09:13:28 +08:00
|
|
|
return Context.toCharUnitsFromBits(Size);
|
|
|
|
}
|
|
|
|
uint64_t getSizeInBits() const { return Size; }
|
|
|
|
|
|
|
|
void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
|
|
|
|
void setSize(uint64_t NewSize) { Size = NewSize; }
|
|
|
|
|
2011-09-28 03:12:27 +08:00
|
|
|
CharUnits getAligment() const { return Alignment; }
|
|
|
|
|
2011-02-24 09:13:28 +08:00
|
|
|
CharUnits getDataSize() const {
|
2011-02-24 09:33:05 +08:00
|
|
|
assert(DataSize % Context.getCharWidth() == 0);
|
2011-02-24 09:13:28 +08:00
|
|
|
return Context.toCharUnitsFromBits(DataSize);
|
|
|
|
}
|
|
|
|
uint64_t getDataSizeInBits() const { return DataSize; }
|
|
|
|
|
|
|
|
void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
|
|
|
|
void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
|
|
|
|
|
2012-09-16 04:20:27 +08:00
|
|
|
RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
|
|
|
|
void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
|
2010-05-26 13:41:04 +08:00
|
|
|
};
|
2010-05-26 17:58:31 +08:00
|
|
|
} // end anonymous namespace
|
2010-05-26 13:41:04 +08:00
|
|
|
|
2009-09-22 11:02:06 +08:00
|
|
|
void
|
2010-05-26 13:58:59 +08:00
|
|
|
RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
|
2010-03-11 11:39:12 +08:00
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
2010-04-08 10:59:49 +08:00
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
2010-03-11 11:39:12 +08:00
|
|
|
assert(!I->getType()->isDependentType() &&
|
2009-10-26 01:03:50 +08:00
|
|
|
"Cannot layout class with dependent bases.");
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-09-09 23:08:12 +08:00
|
|
|
const CXXRecordDecl *Base =
|
2010-03-11 11:39:12 +08:00
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
2010-03-11 08:15:35 +08:00
|
|
|
|
2010-03-11 11:39:12 +08:00
|
|
|
// Check if this is a nearly empty virtual base.
|
2010-11-25 09:51:53 +08:00
|
|
|
if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
|
2010-03-11 11:39:12 +08:00
|
|
|
// If it's not an indirect primary base, then we've found our primary
|
|
|
|
// base.
|
2009-09-22 11:02:06 +08:00
|
|
|
if (!IndirectPrimaryBases.count(Base)) {
|
2010-05-26 13:20:58 +08:00
|
|
|
PrimaryBase = Base;
|
|
|
|
PrimaryBaseIsVirtual = true;
|
2009-08-13 05:50:08 +08:00
|
|
|
return;
|
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-03-11 11:39:12 +08:00
|
|
|
// Is this the first nearly empty virtual base?
|
|
|
|
if (!FirstNearlyEmptyVBase)
|
|
|
|
FirstNearlyEmptyVBase = Base;
|
2009-08-13 05:50:08 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-03-11 08:15:35 +08:00
|
|
|
SelectPrimaryVBase(Base);
|
2010-05-26 13:20:58 +08:00
|
|
|
if (PrimaryBase)
|
2010-02-15 12:28:35 +08:00
|
|
|
return;
|
2009-08-13 05:50:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-03-11 08:15:35 +08:00
|
|
|
/// DeterminePrimaryBase - Determine the primary base of the given class.
|
2010-05-26 13:58:59 +08:00
|
|
|
void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
|
2010-03-11 08:15:35 +08:00
|
|
|
// If the class isn't dynamic, it won't have a primary base.
|
|
|
|
if (!RD->isDynamicClass())
|
|
|
|
return;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-09-22 11:02:06 +08:00
|
|
|
// Compute all the primary virtual bases for all of our direct and
|
2009-08-14 07:26:06 +08:00
|
|
|
// indirect bases, and record all their primary virtual base classes.
|
2010-11-25 06:55:48 +08:00
|
|
|
RD->getIndirectPrimaryBases(IndirectPrimaryBases);
|
2009-08-14 07:26:06 +08:00
|
|
|
|
2010-04-08 10:59:49 +08:00
|
|
|
// If the record has a dynamic base class, attempt to choose a primary base
|
|
|
|
// class. It is the first (in direct base class order) non-virtual dynamic
|
2009-09-22 11:02:06 +08:00
|
|
|
// base class, if one exists.
|
2009-08-06 06:37:18 +08:00
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
|
2010-04-08 10:59:49 +08:00
|
|
|
e = RD->bases_end(); i != e; ++i) {
|
2009-11-28 06:05:05 +08:00
|
|
|
// Ignore virtual bases.
|
|
|
|
if (i->isVirtual())
|
|
|
|
continue;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-11-28 06:05:05 +08:00
|
|
|
const CXXRecordDecl *Base =
|
|
|
|
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
if (isPossiblePrimaryBase(Base)) {
|
2009-11-28 06:05:05 +08:00
|
|
|
// We found it.
|
2010-05-26 13:20:58 +08:00
|
|
|
PrimaryBase = Base;
|
|
|
|
PrimaryBaseIsVirtual = false;
|
2009-11-28 06:05:05 +08:00
|
|
|
return;
|
2009-08-06 06:37:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-10-18 08:55:28 +08:00
|
|
|
// The Microsoft ABI doesn't have primary virtual bases.
|
2011-11-08 12:01:03 +08:00
|
|
|
if (isMicrosoftCXXABI()) {
|
2011-10-18 08:55:28 +08:00
|
|
|
assert(!PrimaryBase && "Should not get here with a primary base!");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Under the Itanium ABI, if there is no non-virtual primary base class,
|
|
|
|
// try to compute the primary virtual base. The primary virtual base is
|
|
|
|
// the first nearly empty virtual base that is not an indirect primary
|
|
|
|
// virtual base class, if one exists.
|
2010-03-11 08:15:35 +08:00
|
|
|
if (RD->getNumVBases() != 0) {
|
|
|
|
SelectPrimaryVBase(RD);
|
2010-05-26 13:20:58 +08:00
|
|
|
if (PrimaryBase)
|
2010-03-11 08:15:35 +08:00
|
|
|
return;
|
|
|
|
}
|
2009-08-06 06:37:18 +08:00
|
|
|
|
2011-10-18 08:55:28 +08:00
|
|
|
// Otherwise, it is the first indirect primary base class, if one exists.
|
2010-03-11 08:15:35 +08:00
|
|
|
if (FirstNearlyEmptyVBase) {
|
2010-05-26 13:20:58 +08:00
|
|
|
PrimaryBase = FirstNearlyEmptyVBase;
|
|
|
|
PrimaryBaseIsVirtual = true;
|
2009-08-06 06:37:18 +08:00
|
|
|
return;
|
2010-03-11 08:15:35 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-05-26 13:20:58 +08:00
|
|
|
assert(!PrimaryBase && "Should not get here with a primary base!");
|
2009-08-06 06:37:18 +08:00
|
|
|
}
|
|
|
|
|
2010-05-30 01:35:14 +08:00
|
|
|
BaseSubobjectInfo *
|
|
|
|
RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
|
|
|
|
bool IsVirtual,
|
|
|
|
BaseSubobjectInfo *Derived) {
|
|
|
|
BaseSubobjectInfo *Info;
|
|
|
|
|
|
|
|
if (IsVirtual) {
|
|
|
|
// Check if we already have info about this virtual base.
|
|
|
|
BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
|
|
|
|
if (InfoSlot) {
|
|
|
|
assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
|
|
|
|
return InfoSlot;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We don't, create it.
|
|
|
|
InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
|
|
|
|
Info = InfoSlot;
|
|
|
|
} else {
|
|
|
|
Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
|
|
|
|
}
|
|
|
|
|
|
|
|
Info->Class = RD;
|
|
|
|
Info->IsVirtual = IsVirtual;
|
|
|
|
Info->Derived = 0;
|
|
|
|
Info->PrimaryVirtualBaseInfo = 0;
|
|
|
|
|
|
|
|
const CXXRecordDecl *PrimaryVirtualBase = 0;
|
|
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
|
|
|
|
|
|
|
|
// Check if this base has a primary virtual base.
|
|
|
|
if (RD->getNumVBases()) {
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
2010-11-25 07:12:57 +08:00
|
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
2010-05-30 01:35:14 +08:00
|
|
|
// This base does have a primary virtual base.
|
|
|
|
PrimaryVirtualBase = Layout.getPrimaryBase();
|
|
|
|
assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
|
|
|
|
|
|
|
|
// Now check if we have base subobject info about this primary base.
|
|
|
|
PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
|
|
|
|
|
|
|
|
if (PrimaryVirtualBaseInfo) {
|
|
|
|
if (PrimaryVirtualBaseInfo->Derived) {
|
|
|
|
// We did have info about this primary base, and it turns out that it
|
|
|
|
// has already been claimed as a primary virtual base for another
|
|
|
|
// base.
|
|
|
|
PrimaryVirtualBase = 0;
|
|
|
|
} else {
|
|
|
|
// We can claim this base as our primary base.
|
|
|
|
Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
|
|
|
|
PrimaryVirtualBaseInfo->Derived = Info;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now go through all direct bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
bool IsVirtual = I->isVirtual();
|
|
|
|
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
|
|
|
Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
|
|
|
|
// Traversing the bases must have created the base info for our primary
|
|
|
|
// virtual base.
|
|
|
|
PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
|
|
|
|
assert(PrimaryVirtualBaseInfo &&
|
|
|
|
"Did not create a primary virtual base!");
|
|
|
|
|
|
|
|
// Claim the primary virtual base as our primary virtual base.
|
|
|
|
Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
|
|
|
|
PrimaryVirtualBaseInfo->Derived = Info;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Info;
|
|
|
|
}
|
|
|
|
|
|
|
|
void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
bool IsVirtual = I->isVirtual();
|
|
|
|
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
|
|
|
// Compute the base subobject info for this base.
|
|
|
|
BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
|
|
|
|
|
|
|
|
if (IsVirtual) {
|
|
|
|
// ComputeBaseInfo has already added this base for us.
|
|
|
|
assert(VirtualBaseInfo.count(BaseDecl) &&
|
|
|
|
"Did not add virtual base!");
|
|
|
|
} else {
|
|
|
|
// Add the base info to the map of non-virtual bases.
|
|
|
|
assert(!NonVirtualBaseInfo.count(BaseDecl) &&
|
|
|
|
"Non-virtual base already exists!");
|
|
|
|
NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-10-18 08:55:28 +08:00
|
|
|
void
|
2011-10-22 06:49:56 +08:00
|
|
|
RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
|
2011-10-18 08:55:28 +08:00
|
|
|
CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
|
|
|
|
|
|
|
|
// The maximum field alignment overrides base align.
|
|
|
|
if (!MaxFieldAlignment.isZero()) {
|
|
|
|
BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
|
|
|
|
UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Round up the current record size to pointer alignment.
|
2011-10-22 06:49:56 +08:00
|
|
|
setSize(getSize().RoundUpToAlignment(BaseAlign));
|
|
|
|
setDataSize(getSize());
|
2011-10-18 08:55:28 +08:00
|
|
|
|
|
|
|
// Update the alignment.
|
|
|
|
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
|
|
|
|
}
|
|
|
|
|
2010-03-11 06:21:28 +08:00
|
|
|
void
|
2010-05-26 13:58:59 +08:00
|
|
|
RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
|
2010-05-30 01:35:14 +08:00
|
|
|
// Then, determine the primary base class.
|
2010-03-11 08:15:35 +08:00
|
|
|
DeterminePrimaryBase(RD);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-05-30 01:35:14 +08:00
|
|
|
// Compute base subobject info.
|
|
|
|
ComputeBaseSubobjectInfo(RD);
|
|
|
|
|
2010-03-11 08:15:35 +08:00
|
|
|
// If we have a primary base class, lay it out.
|
2010-05-26 13:20:58 +08:00
|
|
|
if (PrimaryBase) {
|
|
|
|
if (PrimaryBaseIsVirtual) {
|
2010-05-30 01:35:14 +08:00
|
|
|
// If the primary virtual base was a primary virtual base of some other
|
|
|
|
// base class we'll have to steal it.
|
|
|
|
BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
|
|
|
|
PrimaryBaseInfo->Derived = 0;
|
|
|
|
|
2010-03-11 08:15:35 +08:00
|
|
|
// We have a virtual primary base, insert it as an indirect primary base.
|
2010-05-26 13:20:58 +08:00
|
|
|
IndirectPrimaryBases.insert(PrimaryBase);
|
2010-03-11 13:42:17 +08:00
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
assert(!VisitedVirtualBases.count(PrimaryBase) &&
|
2010-05-26 13:20:58 +08:00
|
|
|
"vbase already visited!");
|
|
|
|
VisitedVirtualBases.insert(PrimaryBase);
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-30 01:48:36 +08:00
|
|
|
LayoutVirtualBase(PrimaryBaseInfo);
|
2010-05-30 01:42:25 +08:00
|
|
|
} else {
|
|
|
|
BaseSubobjectInfo *PrimaryBaseInfo =
|
|
|
|
NonVirtualBaseInfo.lookup(PrimaryBase);
|
|
|
|
assert(PrimaryBaseInfo &&
|
|
|
|
"Did not find base info for non-virtual primary base!");
|
|
|
|
|
|
|
|
LayoutNonVirtualBase(PrimaryBaseInfo);
|
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
// If this class needs a vtable/vf-table and didn't get one from a
|
|
|
|
// primary base, add it in now.
|
|
|
|
} else if (needsVFTable(RD)) {
|
2011-10-18 08:55:28 +08:00
|
|
|
assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
|
|
|
|
CharUnits PtrWidth =
|
|
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
2011-10-22 06:49:56 +08:00
|
|
|
CharUnits PtrAlign =
|
|
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
|
|
|
|
EnsureVTablePointerAlignment(PtrAlign);
|
2012-05-01 16:55:32 +08:00
|
|
|
HasOwnVFPtr = true;
|
2011-10-18 08:55:28 +08:00
|
|
|
setSize(getSize() + PtrWidth);
|
|
|
|
setDataSize(getSize());
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
bool HasDirectVirtualBases = false;
|
|
|
|
bool HasNonVirtualBaseWithVBTable = false;
|
|
|
|
|
2010-03-11 08:15:35 +08:00
|
|
|
// Now lay out the non-virtual bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
2010-04-08 10:59:49 +08:00
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
2010-03-11 08:15:35 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
// Ignore virtual bases, but remember that we saw one.
|
|
|
|
if (I->isVirtual()) {
|
|
|
|
HasDirectVirtualBases = true;
|
2010-03-11 08:15:35 +08:00
|
|
|
continue;
|
2011-11-08 12:01:03 +08:00
|
|
|
}
|
2010-03-11 08:15:35 +08:00
|
|
|
|
2010-05-30 01:42:25 +08:00
|
|
|
const CXXRecordDecl *BaseDecl =
|
2011-11-08 12:01:03 +08:00
|
|
|
cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
|
|
|
|
|
|
|
|
// Remember if this base has virtual bases itself.
|
|
|
|
if (BaseDecl->getNumVBases())
|
|
|
|
HasNonVirtualBaseWithVBTable = true;
|
2010-03-11 08:15:35 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
// Skip the primary base, because we've already laid it out. The
|
|
|
|
// !PrimaryBaseIsVirtual check is required because we might have a
|
|
|
|
// non-virtual base of the same type as a primary virtual base.
|
2010-05-30 01:42:25 +08:00
|
|
|
if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
|
2010-03-11 08:15:35 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// Lay out the base.
|
2010-05-30 01:42:25 +08:00
|
|
|
BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
|
|
|
|
assert(BaseInfo && "Did not find base info for non-virtual base!");
|
|
|
|
|
|
|
|
LayoutNonVirtualBase(BaseInfo);
|
2010-03-11 06:21:28 +08:00
|
|
|
}
|
2011-10-18 08:55:28 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
// In the MS ABI, add the vb-table pointer if we need one, which is
|
|
|
|
// whenever we have a virtual base and we can't re-use a vb-table
|
|
|
|
// pointer from a non-virtual base.
|
|
|
|
if (isMicrosoftCXXABI() &&
|
|
|
|
HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
|
2011-10-18 08:55:28 +08:00
|
|
|
CharUnits PtrWidth =
|
|
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
2011-10-22 06:49:56 +08:00
|
|
|
CharUnits PtrAlign =
|
|
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
|
2011-11-08 12:01:03 +08:00
|
|
|
|
|
|
|
// MSVC potentially over-aligns the vb-table pointer by giving it
|
|
|
|
// the max alignment of all the non-virtual objects in the class.
|
|
|
|
// This is completely unnecessary, but we're not here to pass
|
|
|
|
// judgment.
|
|
|
|
//
|
|
|
|
// Note that we've only laid out the non-virtual bases, so on the
|
|
|
|
// first pass Alignment won't be set correctly here, but if the
|
|
|
|
// vb-table doesn't end up aligned correctly we'll come through
|
|
|
|
// and redo the layout from scratch with the right alignment.
|
|
|
|
//
|
|
|
|
// TODO: Instead of doing this, just lay out the fields as if the
|
|
|
|
// vb-table were at offset zero, then retroactively bump the field
|
|
|
|
// offsets up.
|
2011-10-22 06:49:56 +08:00
|
|
|
PtrAlign = std::max(PtrAlign, Alignment);
|
2011-11-08 12:01:03 +08:00
|
|
|
|
|
|
|
EnsureVTablePointerAlignment(PtrAlign);
|
|
|
|
VBPtrOffset = getSize();
|
|
|
|
setSize(getSize() + PtrWidth);
|
|
|
|
setDataSize(getSize());
|
2011-10-18 08:55:28 +08:00
|
|
|
}
|
2010-03-11 06:21:28 +08:00
|
|
|
}
|
|
|
|
|
2010-05-30 01:42:25 +08:00
|
|
|
void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
|
2010-03-11 06:26:24 +08:00
|
|
|
// Layout the base.
|
2010-11-01 06:20:42 +08:00
|
|
|
CharUnits Offset = LayoutBase(Base);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-03-11 06:26:24 +08:00
|
|
|
// Add its base class offset.
|
2010-05-30 01:42:25 +08:00
|
|
|
assert(!Bases.count(Base->Class) && "base offset already exists!");
|
2010-11-01 06:20:42 +08:00
|
|
|
Bases.insert(std::make_pair(Base->Class, Offset));
|
2010-05-30 03:44:50 +08:00
|
|
|
|
|
|
|
AddPrimaryVirtualBaseOffsets(Base, Offset);
|
2010-03-11 06:21:28 +08:00
|
|
|
}
|
2009-11-05 12:02:15 +08:00
|
|
|
|
2010-04-16 00:12:58 +08:00
|
|
|
void
|
2010-05-30 03:44:50 +08:00
|
|
|
RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
|
2010-11-01 06:20:42 +08:00
|
|
|
CharUnits Offset) {
|
2010-05-30 03:44:50 +08:00
|
|
|
// This base isn't interesting, it has no virtual bases.
|
|
|
|
if (!Info->Class->getNumVBases())
|
|
|
|
return;
|
|
|
|
|
|
|
|
// First, check if we have a virtual primary base to add offsets for.
|
|
|
|
if (Info->PrimaryVirtualBaseInfo) {
|
|
|
|
assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
|
|
|
|
"Primary virtual base is not virtual!");
|
|
|
|
if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
|
|
|
|
// Add the offset.
|
|
|
|
assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
|
|
|
|
"primary vbase offset already exists!");
|
|
|
|
VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
|
2012-05-01 16:55:32 +08:00
|
|
|
ASTRecordLayout::VBaseInfo(Offset, false)));
|
2010-05-30 03:44:50 +08:00
|
|
|
|
|
|
|
// Traverse the primary virtual base.
|
|
|
|
AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
|
|
|
|
}
|
2010-04-16 00:12:58 +08:00
|
|
|
}
|
|
|
|
|
2010-05-30 03:44:50 +08:00
|
|
|
// Now go through all direct non-virtual bases.
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
|
|
|
|
for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
|
|
|
|
const BaseSubobjectInfo *Base = Info->Bases[I];
|
|
|
|
if (Base->IsVirtual)
|
2010-04-16 00:12:58 +08:00
|
|
|
continue;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-11-01 08:21:58 +08:00
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
|
2010-05-30 03:44:50 +08:00
|
|
|
AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
|
2010-04-16 00:12:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
/// needsVFTable - Return true if this class needs a vtable or vf-table
|
|
|
|
/// when laid out as a base class. These are treated the same because
|
|
|
|
/// they're both always laid out at offset zero.
|
|
|
|
///
|
|
|
|
/// This function assumes that the class has no primary base.
|
|
|
|
bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
|
|
|
|
assert(!PrimaryBase);
|
|
|
|
|
|
|
|
// In the Itanium ABI, every dynamic class needs a vtable: even if
|
|
|
|
// this class has no virtual functions as a base class (i.e. it's
|
|
|
|
// non-polymorphic or only has virtual functions from virtual
|
|
|
|
// bases),x it still needs a vtable to locate its virtual bases.
|
|
|
|
if (!isMicrosoftCXXABI())
|
|
|
|
return RD->isDynamicClass();
|
|
|
|
|
|
|
|
// In the MS ABI, we need a vfptr if the class has virtual functions
|
|
|
|
// other than those declared by its virtual bases. The AST doesn't
|
|
|
|
// tell us that directly, and checking manually for virtual
|
|
|
|
// functions that aren't overrides is expensive, but there are
|
|
|
|
// some important shortcuts:
|
|
|
|
|
|
|
|
// - Non-polymorphic classes have no virtual functions at all.
|
|
|
|
if (!RD->isPolymorphic()) return false;
|
|
|
|
|
|
|
|
// - Polymorphic classes with no virtual bases must either declare
|
|
|
|
// virtual functions directly or inherit them, but in the latter
|
|
|
|
// case we would have a primary base.
|
|
|
|
if (RD->getNumVBases() == 0) return true;
|
|
|
|
|
|
|
|
return hasNewVirtualFunction(RD);
|
|
|
|
}
|
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
/// Does the given class inherit non-virtually from any of the classes
|
|
|
|
/// in the given set?
|
|
|
|
static bool hasNonVirtualBaseInSet(const CXXRecordDecl *RD,
|
|
|
|
const ClassSetTy &set) {
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator
|
|
|
|
I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
|
|
|
|
// Ignore virtual links.
|
|
|
|
if (I->isVirtual()) continue;
|
|
|
|
|
|
|
|
// Check whether the set contains the base.
|
|
|
|
const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
|
|
|
|
if (set.count(base))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Otherwise, recurse and propagate.
|
|
|
|
if (hasNonVirtualBaseInSet(base, set))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Does the given method (B::foo()) already override a method (A::foo())
|
|
|
|
/// such that A requires a vtordisp in B? If so, we don't need to add a
|
|
|
|
/// new vtordisp for B in a yet-more-derived class C providing C::foo().
|
|
|
|
static bool overridesMethodRequiringVtorDisp(const ASTContext &Context,
|
|
|
|
const CXXMethodDecl *M) {
|
|
|
|
CXXMethodDecl::method_iterator
|
|
|
|
I = M->begin_overridden_methods(), E = M->end_overridden_methods();
|
|
|
|
if (I == E) return false;
|
|
|
|
|
|
|
|
const ASTRecordLayout::VBaseOffsetsMapTy &offsets =
|
|
|
|
Context.getASTRecordLayout(M->getParent()).getVBaseOffsetsMap();
|
|
|
|
do {
|
|
|
|
const CXXMethodDecl *overridden = *I;
|
|
|
|
|
|
|
|
// If the overridden method's class isn't recognized as a virtual
|
|
|
|
// base in the derived class, ignore it.
|
|
|
|
ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
|
|
|
|
it = offsets.find(overridden->getParent());
|
|
|
|
if (it == offsets.end()) continue;
|
|
|
|
|
|
|
|
// Otherwise, check if the overridden method's class needs a vtordisp.
|
|
|
|
if (it->second.hasVtorDisp()) return true;
|
|
|
|
|
|
|
|
} while (++I != E);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// In the Microsoft ABI, decide which of the virtual bases require a
|
|
|
|
/// vtordisp field.
|
|
|
|
void RecordLayoutBuilder::computeVtordisps(const CXXRecordDecl *RD,
|
|
|
|
ClassSetTy &vtordispVBases) {
|
|
|
|
// Bail out if we have no virtual bases.
|
|
|
|
assert(RD->getNumVBases());
|
|
|
|
|
|
|
|
// Build up the set of virtual bases that we haven't decided yet.
|
|
|
|
ClassSetTy undecidedVBases;
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator
|
|
|
|
I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *vbase = I->getType()->getAsCXXRecordDecl();
|
|
|
|
undecidedVBases.insert(vbase);
|
|
|
|
}
|
|
|
|
assert(!undecidedVBases.empty());
|
|
|
|
|
|
|
|
// A virtual base requires a vtordisp field in a derived class if it
|
|
|
|
// requires a vtordisp field in a base class. Walk all the direct
|
|
|
|
// bases and collect this information.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
|
|
|
|
const ASTRecordLayout &baseLayout = Context.getASTRecordLayout(base);
|
|
|
|
|
|
|
|
// Iterate over the set of virtual bases provided by this class.
|
|
|
|
for (ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
|
|
|
|
VI = baseLayout.getVBaseOffsetsMap().begin(),
|
|
|
|
VE = baseLayout.getVBaseOffsetsMap().end(); VI != VE; ++VI) {
|
|
|
|
// If it doesn't need a vtordisp in this base, ignore it.
|
|
|
|
if (!VI->second.hasVtorDisp()) continue;
|
|
|
|
|
|
|
|
// If we've already seen it and decided it needs a vtordisp, ignore it.
|
|
|
|
if (!undecidedVBases.erase(VI->first))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Add it.
|
|
|
|
vtordispVBases.insert(VI->first);
|
|
|
|
|
|
|
|
// Quit as soon as we've decided everything.
|
|
|
|
if (undecidedVBases.empty())
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, we have virtual bases that we haven't yet decided about. A
|
|
|
|
// virtual base requires a vtordisp if any the non-destructor
|
|
|
|
// virtual methods declared in this class directly override a method
|
|
|
|
// provided by that virtual base. (If so, we need to emit a thunk
|
|
|
|
// for that method, to be used in the construction vftable, which
|
|
|
|
// applies an additional 'vtordisp' this-adjustment.)
|
|
|
|
|
|
|
|
// Collect the set of bases directly overridden by any method in this class.
|
|
|
|
// It's possible that some of these classes won't be virtual bases, or won't be
|
|
|
|
// provided by virtual bases, or won't be virtual bases in the overridden
|
|
|
|
// instance but are virtual bases elsewhere. Only the last matters for what
|
|
|
|
// we're doing, and we can ignore those: if we don't directly override
|
|
|
|
// a method provided by a virtual copy of a base class, but we do directly
|
|
|
|
// override a method provided by a non-virtual copy of that base class,
|
|
|
|
// then we must indirectly override the method provided by the virtual base,
|
|
|
|
// and so we should already have collected it in the loop above.
|
|
|
|
ClassSetTy overriddenBases;
|
|
|
|
for (CXXRecordDecl::method_iterator
|
|
|
|
M = RD->method_begin(), E = RD->method_end(); M != E; ++M) {
|
|
|
|
// Ignore non-virtual methods and destructors.
|
|
|
|
if (isa<CXXDestructorDecl>(*M) || !M->isVirtual())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (CXXMethodDecl::method_iterator I = M->begin_overridden_methods(),
|
|
|
|
E = M->end_overridden_methods(); I != E; ++I) {
|
|
|
|
const CXXMethodDecl *overriddenMethod = (*I);
|
|
|
|
|
|
|
|
// Ignore methods that override methods from vbases that require
|
|
|
|
// require vtordisps.
|
|
|
|
if (overridesMethodRequiringVtorDisp(Context, overriddenMethod))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// As an optimization, check immediately whether we're overriding
|
|
|
|
// something from the undecided set.
|
|
|
|
const CXXRecordDecl *overriddenBase = overriddenMethod->getParent();
|
|
|
|
if (undecidedVBases.erase(overriddenBase)) {
|
|
|
|
vtordispVBases.insert(overriddenBase);
|
|
|
|
if (undecidedVBases.empty()) return;
|
|
|
|
|
|
|
|
// We can't 'continue;' here because one of our undecided
|
|
|
|
// vbases might non-virtually inherit from this base.
|
|
|
|
// Consider:
|
|
|
|
// struct A { virtual void foo(); };
|
|
|
|
// struct B : A {};
|
|
|
|
// struct C : virtual A, virtual B { virtual void foo(); };
|
|
|
|
// We need a vtordisp for B here.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, just collect it.
|
|
|
|
overriddenBases.insert(overriddenBase);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Walk the undecided v-bases and check whether they (non-virtually)
|
|
|
|
// provide any of the overridden bases. We don't need to consider
|
|
|
|
// virtual links because the vtordisp inheres to the layout
|
|
|
|
// subobject containing the base.
|
|
|
|
for (ClassSetTy::const_iterator
|
|
|
|
I = undecidedVBases.begin(), E = undecidedVBases.end(); I != E; ++I) {
|
|
|
|
if (hasNonVirtualBaseInSet(*I, overriddenBases))
|
|
|
|
vtordispVBases.insert(*I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
/// hasNewVirtualFunction - Does the given polymorphic class declare a
|
|
|
|
/// virtual function that does not override a method from any of its
|
|
|
|
/// base classes?
|
2011-09-28 03:12:27 +08:00
|
|
|
bool
|
2012-05-01 16:55:32 +08:00
|
|
|
RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD,
|
|
|
|
bool IgnoreDestructor) const {
|
2011-11-08 12:01:03 +08:00
|
|
|
if (!RD->getNumBases())
|
|
|
|
return true;
|
|
|
|
|
2011-09-28 03:12:27 +08:00
|
|
|
for (CXXRecordDecl::method_iterator method = RD->method_begin();
|
|
|
|
method != RD->method_end();
|
|
|
|
++method) {
|
2012-05-01 16:55:32 +08:00
|
|
|
if (method->isVirtual() && !method->size_overridden_methods() &&
|
|
|
|
!(IgnoreDestructor && method->getKind() == Decl::CXXDestructor)) {
|
2011-09-28 03:12:27 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
/// isPossiblePrimaryBase - Is the given base class an acceptable
|
|
|
|
/// primary base class?
|
2011-10-18 08:55:28 +08:00
|
|
|
bool
|
2012-05-01 16:55:32 +08:00
|
|
|
RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *base) const {
|
2011-11-08 12:01:03 +08:00
|
|
|
// In the Itanium ABI, a class can be a primary base class if it has
|
|
|
|
// a vtable for any reason.
|
|
|
|
if (!isMicrosoftCXXABI())
|
2012-05-01 16:55:32 +08:00
|
|
|
return base->isDynamicClass();
|
2011-11-08 12:01:03 +08:00
|
|
|
|
|
|
|
// In the MS ABI, a class can only be a primary base class if it
|
|
|
|
// provides a vf-table at a static offset. That means it has to be
|
|
|
|
// non-virtual base. The existence of a separate vb-table means
|
|
|
|
// that it's possible to get virtual functions only from a virtual
|
|
|
|
// base, which we have to guard against.
|
|
|
|
|
|
|
|
// First off, it has to have virtual functions.
|
2012-05-01 16:55:32 +08:00
|
|
|
if (!base->isPolymorphic()) return false;
|
|
|
|
|
|
|
|
// If it has no virtual bases, then the vfptr must be at a static offset.
|
|
|
|
if (!base->getNumVBases()) return true;
|
|
|
|
|
|
|
|
// Otherwise, the necessary information is cached in the layout.
|
|
|
|
const ASTRecordLayout &layout = Context.getASTRecordLayout(base);
|
2011-11-08 12:01:03 +08:00
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
// If the base has its own vfptr, it can be a primary base.
|
|
|
|
if (layout.hasOwnVFPtr()) return true;
|
2011-11-08 12:01:03 +08:00
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
// If the base has a primary base class, then it can be a primary base.
|
|
|
|
if (layout.getPrimaryBase()) return true;
|
|
|
|
|
|
|
|
// Otherwise it can't.
|
|
|
|
return false;
|
2011-09-28 03:12:27 +08:00
|
|
|
}
|
|
|
|
|
2010-04-08 10:59:49 +08:00
|
|
|
void
|
2010-05-26 13:58:59 +08:00
|
|
|
RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
|
2010-04-16 00:12:58 +08:00
|
|
|
const CXXRecordDecl *MostDerivedClass) {
|
2010-03-11 12:33:54 +08:00
|
|
|
const CXXRecordDecl *PrimaryBase;
|
2010-04-11 02:42:27 +08:00
|
|
|
bool PrimaryBaseIsVirtual;
|
2010-03-11 13:42:17 +08:00
|
|
|
|
2010-04-11 02:42:27 +08:00
|
|
|
if (MostDerivedClass == RD) {
|
2010-05-26 13:20:58 +08:00
|
|
|
PrimaryBase = this->PrimaryBase;
|
|
|
|
PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
|
2010-04-11 02:42:27 +08:00
|
|
|
} else {
|
2010-04-16 23:07:51 +08:00
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
2010-03-11 12:33:54 +08:00
|
|
|
PrimaryBase = Layout.getPrimaryBase();
|
2010-11-25 07:12:57 +08:00
|
|
|
PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
|
2010-04-11 02:42:27 +08:00
|
|
|
}
|
|
|
|
|
2010-03-11 12:24:02 +08:00
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
assert(!I->getType()->isDependentType() &&
|
2009-10-26 01:03:50 +08:00
|
|
|
"Cannot layout class with dependent bases.");
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-05-30 01:48:36 +08:00
|
|
|
const CXXRecordDecl *BaseDecl =
|
2011-11-08 12:01:03 +08:00
|
|
|
cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
|
2010-03-11 12:24:02 +08:00
|
|
|
|
|
|
|
if (I->isVirtual()) {
|
2010-05-30 01:48:36 +08:00
|
|
|
if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
|
|
|
|
bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
|
2010-04-11 02:42:27 +08:00
|
|
|
|
|
|
|
// Only lay out the virtual base if it's not an indirect primary base.
|
|
|
|
if (!IndirectPrimaryBase) {
|
|
|
|
// Only visit virtual bases once.
|
2010-05-30 01:48:36 +08:00
|
|
|
if (!VisitedVirtualBases.insert(BaseDecl))
|
2010-04-11 02:42:27 +08:00
|
|
|
continue;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-30 01:48:36 +08:00
|
|
|
const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
|
|
|
|
assert(BaseInfo && "Did not find virtual base info!");
|
|
|
|
LayoutVirtualBase(BaseInfo);
|
2010-03-11 12:10:39 +08:00
|
|
|
}
|
2009-11-05 12:02:15 +08:00
|
|
|
}
|
2009-08-17 03:04:13 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-05-30 01:48:36 +08:00
|
|
|
if (!BaseDecl->getNumVBases()) {
|
2010-03-11 12:24:02 +08:00
|
|
|
// This base isn't interesting since it doesn't have any virtual bases.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2010-05-30 01:48:36 +08:00
|
|
|
LayoutVirtualBases(BaseDecl, MostDerivedClass);
|
2009-08-06 21:41:24 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
|
|
|
|
if (!RD->getNumVBases())
|
|
|
|
return;
|
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
ClassSetTy VtordispVBases;
|
|
|
|
computeVtordisps(RD, VtordispVBases);
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
// This is substantially simplified because there are no virtual
|
|
|
|
// primary bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
|
|
E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
|
|
|
|
assert(BaseInfo && "Did not find virtual base info!");
|
2012-05-01 16:55:32 +08:00
|
|
|
|
|
|
|
// If this base requires a vtordisp, add enough space for an int field.
|
|
|
|
// This is apparently always 32-bits, even on x64.
|
|
|
|
bool vtordispNeeded = false;
|
|
|
|
if (VtordispVBases.count(BaseDecl)) {
|
|
|
|
CharUnits IntSize =
|
|
|
|
CharUnits::fromQuantity(Context.getTargetInfo().getIntWidth() / 8);
|
|
|
|
|
|
|
|
setSize(getSize() + IntSize);
|
|
|
|
setDataSize(getSize());
|
|
|
|
vtordispNeeded = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
LayoutVirtualBase(BaseInfo, vtordispNeeded);
|
2011-11-08 12:01:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base,
|
|
|
|
bool IsVtordispNeed) {
|
2010-05-30 03:44:50 +08:00
|
|
|
assert(!Base->Derived && "Trying to lay out a primary virtual base!");
|
|
|
|
|
2010-03-11 06:26:24 +08:00
|
|
|
// Layout the base.
|
2010-11-01 06:20:42 +08:00
|
|
|
CharUnits Offset = LayoutBase(Base);
|
2010-03-11 06:26:24 +08:00
|
|
|
|
|
|
|
// Add its base class offset.
|
2010-05-30 01:48:36 +08:00
|
|
|
assert(!VBases.count(Base->Class) && "vbase offset already exists!");
|
2012-05-01 16:55:32 +08:00
|
|
|
VBases.insert(std::make_pair(Base->Class,
|
|
|
|
ASTRecordLayout::VBaseInfo(Offset, IsVtordispNeed)));
|
|
|
|
|
|
|
|
if (!isMicrosoftCXXABI())
|
|
|
|
AddPrimaryVirtualBaseOffsets(Base, Offset);
|
2010-03-11 06:21:28 +08:00
|
|
|
}
|
|
|
|
|
2010-11-01 06:20:42 +08:00
|
|
|
CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
|
2010-05-30 04:47:33 +08:00
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
|
2010-03-11 06:21:28 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
|
|
|
|
CharUnits Offset;
|
|
|
|
|
|
|
|
// Query the external layout to see if it provides an offset.
|
|
|
|
bool HasExternalLayout = false;
|
|
|
|
if (ExternalLayout) {
|
|
|
|
llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
|
|
|
|
if (Base->IsVirtual) {
|
|
|
|
Known = ExternalVirtualBaseOffsets.find(Base->Class);
|
|
|
|
if (Known != ExternalVirtualBaseOffsets.end()) {
|
|
|
|
Offset = Known->second;
|
|
|
|
HasExternalLayout = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Known = ExternalBaseOffsets.find(Base->Class);
|
|
|
|
if (Known != ExternalBaseOffsets.end()) {
|
|
|
|
Offset = Known->second;
|
|
|
|
HasExternalLayout = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-03-11 06:21:28 +08:00
|
|
|
// If we have an empty base class, try to place it at offset 0.
|
2010-05-30 04:47:33 +08:00
|
|
|
if (Base->Class->isEmpty() &&
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
(!HasExternalLayout || Offset == CharUnits::Zero()) &&
|
2010-11-01 06:13:23 +08:00
|
|
|
EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
|
2011-02-28 10:01:38 +08:00
|
|
|
setSize(std::max(getSize(), Layout.getSize()));
|
2010-03-11 06:21:28 +08:00
|
|
|
|
2010-11-01 06:20:42 +08:00
|
|
|
return CharUnits::Zero();
|
2010-03-11 06:21:28 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2011-02-20 02:58:07 +08:00
|
|
|
CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
|
|
|
|
CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
|
2010-12-09 08:35:20 +08:00
|
|
|
|
|
|
|
// The maximum field alignment overrides base align.
|
2011-02-17 09:49:42 +08:00
|
|
|
if (!MaxFieldAlignment.isZero()) {
|
2011-02-20 02:58:07 +08:00
|
|
|
BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
|
|
|
|
UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
|
2010-12-09 08:35:20 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
if (!HasExternalLayout) {
|
|
|
|
// Round up the current record size to the base's alignment boundary.
|
|
|
|
Offset = getDataSize().RoundUpToAlignment(BaseAlign);
|
2010-03-11 06:21:28 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
// Try to place the base.
|
|
|
|
while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
|
|
|
|
Offset += BaseAlign;
|
|
|
|
} else {
|
|
|
|
bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
|
|
|
|
(void)Allowed;
|
|
|
|
assert(Allowed && "Base subobject externally placed at overlapping offset");
|
2012-10-27 06:31:14 +08:00
|
|
|
|
|
|
|
if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
|
|
|
|
// The externally-supplied base offset is before the base offset we
|
|
|
|
// computed. Assume that the structure is packed.
|
|
|
|
Alignment = CharUnits::One();
|
|
|
|
InferAlignment = false;
|
|
|
|
}
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
}
|
|
|
|
|
2010-05-30 04:47:33 +08:00
|
|
|
if (!Base->Class->isEmpty()) {
|
2010-03-11 06:21:28 +08:00
|
|
|
// Update the data size.
|
2011-02-28 10:01:38 +08:00
|
|
|
setDataSize(Offset + Layout.getNonVirtualSize());
|
2010-03-11 06:21:28 +08:00
|
|
|
|
2011-02-28 10:01:38 +08:00
|
|
|
setSize(std::max(getSize(), getDataSize()));
|
2010-03-11 06:21:28 +08:00
|
|
|
} else
|
2011-02-28 10:01:38 +08:00
|
|
|
setSize(std::max(getSize(), Offset + Layout.getSize()));
|
2010-03-11 06:21:28 +08:00
|
|
|
|
|
|
|
// Remember max struct/class alignment.
|
2010-12-09 08:35:20 +08:00
|
|
|
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
|
2010-03-11 06:21:28 +08:00
|
|
|
|
2011-02-28 10:01:38 +08:00
|
|
|
return Offset;
|
2010-03-11 06:21:28 +08:00
|
|
|
}
|
|
|
|
|
2010-05-27 13:45:51 +08:00
|
|
|
void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
|
2012-10-13 07:29:20 +08:00
|
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
|
2010-05-27 13:45:51 +08:00
|
|
|
IsUnion = RD->isUnion();
|
2012-10-13 07:29:20 +08:00
|
|
|
IsMsStruct = RD->isMsStruct(Context);
|
|
|
|
}
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2012-10-13 07:29:20 +08:00
|
|
|
Packed = D->hasAttr<PackedAttr>();
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-10-06 05:04:55 +08:00
|
|
|
// Honor the default struct packing maximum alignment flag.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
|
2011-10-06 05:04:55 +08:00
|
|
|
MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
|
|
|
|
}
|
|
|
|
|
2010-05-27 13:45:51 +08:00
|
|
|
// mac68k alignment supersedes maximum field alignment and attribute aligned,
|
|
|
|
// and forces all structures to have 2-byte alignment. The IBM docs on it
|
|
|
|
// allude to additional (more complicated) semantics, especially with regard
|
|
|
|
// to bit-fields, but gcc appears not to follow that.
|
|
|
|
if (D->hasAttr<AlignMac68kAttr>()) {
|
|
|
|
IsMac68kAlign = true;
|
2011-02-17 09:49:42 +08:00
|
|
|
MaxFieldAlignment = CharUnits::fromQuantity(2);
|
2011-02-16 10:05:21 +08:00
|
|
|
Alignment = CharUnits::fromQuantity(2);
|
2010-05-27 13:45:51 +08:00
|
|
|
} else {
|
|
|
|
if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
|
2011-02-17 09:49:42 +08:00
|
|
|
MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-08-19 07:23:40 +08:00
|
|
|
if (unsigned MaxAlign = D->getMaxAlignment())
|
2011-02-20 02:58:07 +08:00
|
|
|
UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
|
2010-05-27 13:45:51 +08:00
|
|
|
}
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
|
|
|
|
// If there is an external AST source, ask it for the various offsets.
|
|
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
|
|
|
|
if (ExternalASTSource *External = Context.getExternalSource()) {
|
|
|
|
ExternalLayout = External->layoutRecordType(RD,
|
|
|
|
ExternalSize,
|
|
|
|
ExternalAlign,
|
|
|
|
ExternalFieldOffsets,
|
|
|
|
ExternalBaseOffsets,
|
|
|
|
ExternalVirtualBaseOffsets);
|
|
|
|
|
|
|
|
// Update based on external alignment.
|
|
|
|
if (ExternalLayout) {
|
2012-01-28 08:53:29 +08:00
|
|
|
if (ExternalAlign > 0) {
|
|
|
|
Alignment = Context.toCharUnitsFromBits(ExternalAlign);
|
|
|
|
} else {
|
|
|
|
// The external source didn't have alignment information; infer it.
|
|
|
|
InferAlignment = true;
|
|
|
|
}
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
}
|
|
|
|
}
|
2010-05-26 23:10:00 +08:00
|
|
|
}
|
2009-07-19 08:18:47 +08:00
|
|
|
|
2010-05-26 23:10:00 +08:00
|
|
|
void RecordLayoutBuilder::Layout(const RecordDecl *D) {
|
|
|
|
InitializeLayout(D);
|
2009-07-19 05:48:39 +08:00
|
|
|
LayoutFields(D);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2010-05-26 23:10:00 +08:00
|
|
|
// Finally, round the size of the total struct up to the alignment of the
|
|
|
|
// struct itself.
|
2010-09-22 22:32:24 +08:00
|
|
|
FinishLayout(D);
|
2010-05-26 23:10:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
|
|
|
|
InitializeLayout(RD);
|
|
|
|
|
|
|
|
// Lay out the vtable and the non-virtual bases.
|
|
|
|
LayoutNonVirtualBases(RD);
|
|
|
|
|
|
|
|
LayoutFields(RD);
|
|
|
|
|
2011-03-10 09:53:59 +08:00
|
|
|
NonVirtualSize = Context.toCharUnitsFromBits(
|
|
|
|
llvm::RoundUpToAlignment(getSizeInBits(),
|
2011-09-02 08:18:52 +08:00
|
|
|
Context.getTargetInfo().getCharAlign()));
|
2011-02-16 10:05:21 +08:00
|
|
|
NonVirtualAlignment = Alignment;
|
2009-07-30 08:22:38 +08:00
|
|
|
|
2012-05-01 16:55:32 +08:00
|
|
|
if (isMicrosoftCXXABI()) {
|
|
|
|
if (NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
|
2011-11-08 12:01:03 +08:00
|
|
|
CharUnits AlignMember =
|
|
|
|
NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
|
2010-04-16 00:12:58 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
setSize(getSize() + AlignMember);
|
|
|
|
setDataSize(getSize());
|
2009-08-06 21:41:24 +08:00
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
NonVirtualSize = Context.toCharUnitsFromBits(
|
|
|
|
llvm::RoundUpToAlignment(getSizeInBits(),
|
|
|
|
Context.getTargetInfo().getCharAlign()));
|
2012-05-01 16:55:32 +08:00
|
|
|
}
|
2011-11-08 12:01:03 +08:00
|
|
|
|
|
|
|
MSLayoutVirtualBases(RD);
|
|
|
|
} else {
|
|
|
|
// Lay out the virtual bases and add the primary virtual base offsets.
|
|
|
|
LayoutVirtualBases(RD, RD);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finally, round the size of the total struct up to the alignment
|
2011-12-01 08:37:01 +08:00
|
|
|
// of the struct itself.
|
|
|
|
FinishLayout(RD);
|
2010-05-26 23:10:00 +08:00
|
|
|
|
2010-04-11 05:24:48 +08:00
|
|
|
#ifndef NDEBUG
|
2010-05-26 23:10:00 +08:00
|
|
|
// Check that we have base offsets for all bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
if (I->isVirtual())
|
|
|
|
continue;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 23:10:00 +08:00
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
|
|
|
assert(Bases.count(BaseDecl) && "Did not find base offset!");
|
|
|
|
}
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 23:10:00 +08:00
|
|
|
// And all virtual bases.
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
|
|
E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 23:10:00 +08:00
|
|
|
assert(VBases.count(BaseDecl) && "Did not find base offset!");
|
2010-04-11 05:24:48 +08:00
|
|
|
}
|
|
|
|
#endif
|
2009-07-19 04:20:21 +08:00
|
|
|
}
|
|
|
|
|
2010-05-26 13:58:59 +08:00
|
|
|
void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
|
2009-07-19 04:50:59 +08:00
|
|
|
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
|
2010-04-16 23:07:51 +08:00
|
|
|
const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
|
2009-07-19 04:50:59 +08:00
|
|
|
|
2011-02-20 02:58:07 +08:00
|
|
|
UpdateAlignment(SL.getAlignment());
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-07-19 04:50:59 +08:00
|
|
|
// We start laying out ivars not at the end of the superclass
|
|
|
|
// structure, but at the next byte following the last field.
|
2011-02-24 09:13:28 +08:00
|
|
|
setSize(SL.getDataSize());
|
2011-02-28 10:01:38 +08:00
|
|
|
setDataSize(getSize());
|
2009-07-19 04:50:59 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2010-05-27 13:45:51 +08:00
|
|
|
InitializeLayout(D);
|
2009-07-19 04:50:59 +08:00
|
|
|
// Layout each ivar sequentially.
|
2011-07-22 10:08:32 +08:00
|
|
|
for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
|
|
|
|
IVD = IVD->getNextIvar())
|
2011-06-29 02:05:25 +08:00
|
|
|
LayoutField(IVD);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-07-19 04:50:59 +08:00
|
|
|
// Finally, round the size of the total struct up to the alignment of the
|
|
|
|
// struct itself.
|
2010-09-22 22:32:24 +08:00
|
|
|
FinishLayout(D);
|
2009-07-19 04:50:59 +08:00
|
|
|
}
|
|
|
|
|
2010-05-26 13:58:59 +08:00
|
|
|
void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
|
2009-07-19 05:48:39 +08:00
|
|
|
// Layout each field, for now, just sequentially, respecting alignment. In
|
|
|
|
// the future, this will need to be tweakable by targets.
|
2011-05-04 04:21:04 +08:00
|
|
|
ZeroLengthBitfield = 0;
|
2009-09-09 23:08:12 +08:00
|
|
|
for (RecordDecl::field_iterator Field = D->field_begin(),
|
2011-04-27 07:52:16 +08:00
|
|
|
FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
|
2013-06-27 04:50:34 +08:00
|
|
|
if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
|
|
|
|
Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
|
2012-06-07 04:45:41 +08:00
|
|
|
if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
|
|
|
|
ZeroLengthBitfield = *Field;
|
2011-08-04 09:21:14 +08:00
|
|
|
}
|
2012-06-07 04:45:41 +08:00
|
|
|
LayoutField(*Field);
|
2011-04-27 07:52:16 +08:00
|
|
|
}
|
2009-07-19 05:48:39 +08:00
|
|
|
}
|
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
|
2010-09-22 22:32:24 +08:00
|
|
|
uint64_t TypeSize,
|
|
|
|
bool FieldPacked,
|
|
|
|
const FieldDecl *D) {
|
2012-03-11 15:00:24 +08:00
|
|
|
assert(Context.getLangOpts().CPlusPlus &&
|
2010-04-16 23:57:11 +08:00
|
|
|
"Can only have wide bit-fields in C++!");
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
// Itanium C++ ABI 2.4:
|
2010-05-27 10:25:46 +08:00
|
|
|
// If sizeof(T)*8 < n, let T' be the largest integral POD type with
|
2010-04-16 23:57:11 +08:00
|
|
|
// sizeof(T')*8 <= n.
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
QualType IntegralPODTypes[] = {
|
2010-05-27 10:25:46 +08:00
|
|
|
Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
|
2010-04-16 23:57:11 +08:00
|
|
|
Context.UnsignedLongTy, Context.UnsignedLongLongTy
|
|
|
|
};
|
|
|
|
|
|
|
|
QualType Type;
|
|
|
|
for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
|
|
|
|
I != E; ++I) {
|
|
|
|
uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
|
|
|
|
|
|
|
|
if (Size > FieldSize)
|
|
|
|
break;
|
|
|
|
|
|
|
|
Type = IntegralPODTypes[I];
|
|
|
|
}
|
|
|
|
assert(!Type.isNull() && "Did not find a type!");
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-03-01 09:36:00 +08:00
|
|
|
CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
|
2010-04-16 23:57:11 +08:00
|
|
|
|
|
|
|
// We're not going to use any of the unfilled bits in the last byte.
|
2013-06-27 04:50:34 +08:00
|
|
|
UnfilledBitsInLastUnit = 0;
|
|
|
|
LastBitfieldTypeSize = 0;
|
2010-04-16 23:57:11 +08:00
|
|
|
|
2010-04-18 04:21:41 +08:00
|
|
|
uint64_t FieldOffset;
|
2013-06-27 04:50:34 +08:00
|
|
|
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
if (IsUnion) {
|
2011-02-24 09:13:28 +08:00
|
|
|
setDataSize(std::max(getDataSizeInBits(), FieldSize));
|
2010-04-18 04:21:41 +08:00
|
|
|
FieldOffset = 0;
|
2010-04-16 23:57:11 +08:00
|
|
|
} else {
|
2011-08-06 06:38:04 +08:00
|
|
|
// The bitfield is allocated starting at the next offset aligned
|
|
|
|
// appropriately for T', with length n bits.
|
2011-03-01 09:36:00 +08:00
|
|
|
FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
|
|
|
|
Context.toBits(TypeAlign));
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
uint64_t NewSizeInBits = FieldOffset + FieldSize;
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2011-03-10 10:00:35 +08:00
|
|
|
setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
|
2011-09-02 08:18:52 +08:00
|
|
|
Context.getTargetInfo().getCharAlign()));
|
2013-06-27 04:50:34 +08:00
|
|
|
UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
|
2010-04-16 23:57:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Place this field at the current location.
|
|
|
|
FieldOffsets.push_back(FieldOffset);
|
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
|
2011-03-01 09:36:00 +08:00
|
|
|
Context.toBits(TypeAlign), FieldPacked, D);
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
// Update the size.
|
2011-02-24 09:13:28 +08:00
|
|
|
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
// Remember max struct/class alignment.
|
2011-03-01 09:36:00 +08:00
|
|
|
UpdateAlignment(TypeAlign);
|
2010-04-16 23:57:11 +08:00
|
|
|
}
|
|
|
|
|
2010-05-26 13:58:59 +08:00
|
|
|
void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
|
2009-11-23 01:37:31 +08:00
|
|
|
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
|
2011-10-11 02:28:20 +08:00
|
|
|
uint64_t FieldSize = D->getBitWidthValue(Context);
|
2010-04-16 23:07:51 +08:00
|
|
|
std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
|
2009-11-23 01:37:31 +08:00
|
|
|
uint64_t TypeSize = FieldInfo.first;
|
|
|
|
unsigned FieldAlign = FieldInfo.second;
|
2013-06-27 04:50:34 +08:00
|
|
|
|
|
|
|
if (IsMsStruct) {
|
|
|
|
// The field alignment for integer types in ms_struct structs is
|
|
|
|
// always the size.
|
2011-05-10 06:03:17 +08:00
|
|
|
FieldAlign = TypeSize;
|
2013-06-27 04:50:34 +08:00
|
|
|
// Ignore zero-length bitfields after non-bitfields in ms_struct structs.
|
|
|
|
if (!FieldSize && !LastBitfieldTypeSize)
|
|
|
|
FieldAlign = 1;
|
|
|
|
// If a bitfield is followed by a bitfield of a different size, don't
|
|
|
|
// pack the bits together in ms_struct structs.
|
|
|
|
if (LastBitfieldTypeSize != TypeSize) {
|
|
|
|
UnfilledBitsInLastUnit = 0;
|
|
|
|
LastBitfieldTypeSize = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
|
|
|
|
uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
|
2011-08-04 09:21:14 +08:00
|
|
|
|
2011-05-04 04:21:04 +08:00
|
|
|
if (ZeroLengthBitfield) {
|
2013-06-27 04:50:34 +08:00
|
|
|
// The alignment of a zero-length bitfield affects the alignment
|
|
|
|
// of the next member. The alignment is the max of the zero
|
|
|
|
// length bitfield's alignment and a target specific fixed value.
|
|
|
|
unsigned ZeroLengthBitfieldBoundary =
|
|
|
|
Context.getTargetInfo().getZeroLengthBitfieldBoundary();
|
|
|
|
if (ZeroLengthBitfieldBoundary > FieldAlign)
|
|
|
|
FieldAlign = ZeroLengthBitfieldBoundary;
|
2011-05-04 04:21:04 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-04-16 23:57:11 +08:00
|
|
|
if (FieldSize > TypeSize) {
|
2010-09-22 22:32:24 +08:00
|
|
|
LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
|
2010-04-16 23:57:11 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
// The align if the field is not packed. This is to check if the attribute
|
|
|
|
// was unnecessary (-Wpacked).
|
|
|
|
unsigned UnpackedFieldAlign = FieldAlign;
|
|
|
|
uint64_t UnpackedFieldOffset = FieldOffset;
|
2011-09-02 08:18:52 +08:00
|
|
|
if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
|
2010-09-22 22:32:24 +08:00
|
|
|
UnpackedFieldAlign = 1;
|
|
|
|
|
2011-08-06 06:38:04 +08:00
|
|
|
if (FieldPacked ||
|
2011-09-02 08:18:52 +08:00
|
|
|
(!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
|
2009-11-23 01:37:31 +08:00
|
|
|
FieldAlign = 1;
|
2010-08-19 07:23:40 +08:00
|
|
|
FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
|
2010-09-22 22:32:24 +08:00
|
|
|
UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
// The maximum field alignment overrides the aligned attribute.
|
2011-12-02 10:38:48 +08:00
|
|
|
if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
|
2011-02-17 09:49:42 +08:00
|
|
|
unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
|
|
|
|
FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
|
|
|
|
UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
|
2010-09-22 22:32:24 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2013-06-27 04:50:34 +08:00
|
|
|
// ms_struct bitfields always have to start at a round alignment.
|
|
|
|
if (IsMsStruct && !LastBitfieldTypeSize) {
|
|
|
|
FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
|
|
|
|
UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
|
|
|
|
UnpackedFieldAlign);
|
|
|
|
}
|
|
|
|
|
2012-01-28 08:53:29 +08:00
|
|
|
// Check if we need to add padding to give the field the correct alignment.
|
|
|
|
if (FieldSize == 0 ||
|
|
|
|
(MaxFieldAlignment.isZero() &&
|
|
|
|
(FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
|
|
|
|
FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2012-01-28 08:53:29 +08:00
|
|
|
if (FieldSize == 0 ||
|
|
|
|
(MaxFieldAlignment.isZero() &&
|
|
|
|
(UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
|
|
|
|
UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
|
|
|
|
UnpackedFieldAlign);
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2011-08-06 06:38:04 +08:00
|
|
|
// Padding members don't affect overall alignment, unless zero length bitfield
|
|
|
|
// alignment is enabled.
|
2013-06-27 04:50:34 +08:00
|
|
|
if (!D->getIdentifier() &&
|
|
|
|
!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
|
|
|
|
!IsMsStruct)
|
2010-09-22 22:32:24 +08:00
|
|
|
FieldAlign = UnpackedFieldAlign = 1;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2013-06-27 04:50:34 +08:00
|
|
|
ZeroLengthBitfield = 0;
|
2011-08-06 06:38:04 +08:00
|
|
|
|
2012-01-28 08:53:29 +08:00
|
|
|
if (ExternalLayout)
|
|
|
|
FieldOffset = updateExternalFieldOffset(D, FieldOffset);
|
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
// Place this field at the current location.
|
|
|
|
FieldOffsets.push_back(FieldOffset);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
if (!ExternalLayout)
|
|
|
|
CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
|
|
|
|
UnpackedFieldAlign, FieldPacked, D);
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2009-11-23 03:13:51 +08:00
|
|
|
// Update DataSize to include the last byte containing (part of) the bitfield.
|
|
|
|
if (IsUnion) {
|
|
|
|
// FIXME: I think FieldSize should be TypeSize here.
|
2011-02-24 09:13:28 +08:00
|
|
|
setDataSize(std::max(getDataSizeInBits(), FieldSize));
|
2009-11-23 03:13:51 +08:00
|
|
|
} else {
|
2013-06-27 04:50:34 +08:00
|
|
|
if (IsMsStruct && FieldSize) {
|
|
|
|
// Under ms_struct, a bitfield always takes up space equal to the size
|
|
|
|
// of the type. We can't just change the alignment computation on the
|
|
|
|
// other codepath because of the way this interacts with #pragma pack:
|
|
|
|
// in a packed struct, we need to allocate misaligned space in the
|
|
|
|
// struct to hold the bitfield.
|
|
|
|
if (!UnfilledBitsInLastUnit) {
|
|
|
|
setDataSize(FieldOffset + TypeSize);
|
|
|
|
UnfilledBitsInLastUnit = TypeSize - FieldSize;
|
|
|
|
} else if (UnfilledBitsInLastUnit < FieldSize) {
|
|
|
|
setDataSize(getDataSizeInBits() + TypeSize);
|
|
|
|
UnfilledBitsInLastUnit = TypeSize - FieldSize;
|
|
|
|
} else {
|
|
|
|
UnfilledBitsInLastUnit -= FieldSize;
|
|
|
|
}
|
|
|
|
LastBitfieldTypeSize = TypeSize;
|
|
|
|
} else {
|
|
|
|
uint64_t NewSizeInBits = FieldOffset + FieldSize;
|
|
|
|
uint64_t BitfieldAlignment = Context.getTargetInfo().getCharAlign();
|
|
|
|
setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, BitfieldAlignment));
|
|
|
|
UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
|
|
|
|
LastBitfieldTypeSize = 0;
|
|
|
|
}
|
2009-11-23 03:13:51 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-11-23 03:13:51 +08:00
|
|
|
// Update the size.
|
2011-02-24 09:13:28 +08:00
|
|
|
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
// Remember max struct/class alignment.
|
2011-02-20 02:58:07 +08:00
|
|
|
UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
|
|
|
|
Context.toCharUnitsFromBits(UnpackedFieldAlign));
|
2009-11-23 01:37:31 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
|
2009-11-23 01:37:31 +08:00
|
|
|
if (D->isBitField()) {
|
|
|
|
LayoutBitField(D);
|
|
|
|
return;
|
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2013-06-27 04:50:34 +08:00
|
|
|
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2009-11-23 03:13:51 +08:00
|
|
|
// Reset the unfilled bits.
|
2013-06-27 04:50:34 +08:00
|
|
|
UnfilledBitsInLastUnit = 0;
|
|
|
|
LastBitfieldTypeSize = 0;
|
2009-11-23 03:13:51 +08:00
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
|
2011-02-20 10:06:09 +08:00
|
|
|
CharUnits FieldOffset =
|
2011-02-24 09:13:28 +08:00
|
|
|
IsUnion ? CharUnits::Zero() : getDataSize();
|
2011-02-20 10:06:09 +08:00
|
|
|
CharUnits FieldSize;
|
|
|
|
CharUnits FieldAlign;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
if (D->getType()->isIncompleteArrayType()) {
|
|
|
|
// This is a flexible array member; we can't directly
|
|
|
|
// query getTypeInfo about these, so we figure it out here.
|
|
|
|
// Flexible array members don't have any size, but they
|
|
|
|
// have to be aligned appropriately for their element type.
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldSize = CharUnits::Zero();
|
2010-04-16 23:07:51 +08:00
|
|
|
const ArrayType* ATy = Context.getAsArrayType(D->getType());
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
|
2009-11-23 01:37:31 +08:00
|
|
|
} else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
|
|
|
|
unsigned AS = RT->getPointeeType().getAddressSpace();
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldSize =
|
2011-09-02 08:18:52 +08:00
|
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldAlign =
|
2011-09-02 08:18:52 +08:00
|
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
|
2009-11-23 01:37:31 +08:00
|
|
|
} else {
|
2011-02-20 10:06:09 +08:00
|
|
|
std::pair<CharUnits, CharUnits> FieldInfo =
|
|
|
|
Context.getTypeInfoInChars(D->getType());
|
2009-11-23 01:37:31 +08:00
|
|
|
FieldSize = FieldInfo.first;
|
2009-07-19 04:20:21 +08:00
|
|
|
FieldAlign = FieldInfo.second;
|
2011-08-04 09:21:14 +08:00
|
|
|
|
2011-05-04 04:21:04 +08:00
|
|
|
if (ZeroLengthBitfield) {
|
2011-08-04 09:21:14 +08:00
|
|
|
CharUnits ZeroLengthBitfieldBoundary =
|
|
|
|
Context.toCharUnitsFromBits(
|
2011-09-02 08:18:52 +08:00
|
|
|
Context.getTargetInfo().getZeroLengthBitfieldBoundary());
|
2011-08-04 09:21:14 +08:00
|
|
|
if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) {
|
|
|
|
// If a zero-length bitfield is inserted after a bitfield,
|
|
|
|
// and the alignment of the zero-length bitfield is
|
|
|
|
// greater than the member that follows it, `bar', `bar'
|
|
|
|
// will be aligned as the type of the zero-length bitfield.
|
|
|
|
std::pair<CharUnits, CharUnits> FieldInfo =
|
|
|
|
Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
|
|
|
|
CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
|
|
|
|
if (ZeroLengthBitfieldAlignment > FieldAlign)
|
|
|
|
FieldAlign = ZeroLengthBitfieldAlignment;
|
2011-08-05 03:25:14 +08:00
|
|
|
} else if (ZeroLengthBitfieldBoundary > FieldAlign) {
|
2011-08-04 09:21:14 +08:00
|
|
|
// Align 'bar' based on a fixed alignment specified by the target.
|
2011-09-02 08:18:52 +08:00
|
|
|
assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
|
2011-08-05 01:52:43 +08:00
|
|
|
"ZeroLengthBitfieldBoundary should only be used in conjunction"
|
|
|
|
" with useZeroLengthBitfieldAlignment.");
|
2011-08-04 09:21:14 +08:00
|
|
|
FieldAlign = ZeroLengthBitfieldBoundary;
|
|
|
|
}
|
2011-05-04 04:21:04 +08:00
|
|
|
ZeroLengthBitfield = 0;
|
|
|
|
}
|
2011-02-01 23:15:22 +08:00
|
|
|
|
2012-10-13 07:29:20 +08:00
|
|
|
if (IsMsStruct) {
|
2011-02-01 23:15:22 +08:00
|
|
|
// If MS bitfield layout is required, figure out what type is being
|
|
|
|
// laid out and align the field to the width of that type.
|
|
|
|
|
|
|
|
// Resolve all typedefs down to their base type and round up the field
|
|
|
|
// alignment if necessary.
|
|
|
|
QualType T = Context.getBaseElementType(D->getType());
|
|
|
|
if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
|
2011-02-20 10:06:09 +08:00
|
|
|
CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
|
2011-02-01 23:15:22 +08:00
|
|
|
if (TypeSize > FieldAlign)
|
|
|
|
FieldAlign = TypeSize;
|
|
|
|
}
|
|
|
|
}
|
2009-11-23 01:37:31 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
// The align if the field is not packed. This is to check if the attribute
|
|
|
|
// was unnecessary (-Wpacked).
|
2011-02-20 10:06:09 +08:00
|
|
|
CharUnits UnpackedFieldAlign = FieldAlign;
|
|
|
|
CharUnits UnpackedFieldOffset = FieldOffset;
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
if (FieldPacked)
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldAlign = CharUnits::One();
|
|
|
|
CharUnits MaxAlignmentInChars =
|
|
|
|
Context.toCharUnitsFromBits(D->getMaxAlignment());
|
|
|
|
FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
|
|
|
|
UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-11-23 01:37:31 +08:00
|
|
|
// The maximum field alignment overrides the aligned attribute.
|
2011-02-17 09:49:42 +08:00
|
|
|
if (!MaxFieldAlignment.isZero()) {
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
|
|
|
|
UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
|
2010-09-22 22:32:24 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-01-28 08:53:29 +08:00
|
|
|
// Round up the current record size to the field's alignment boundary.
|
|
|
|
FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
|
|
|
|
UnpackedFieldOffset =
|
|
|
|
UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
|
|
|
|
|
|
|
|
if (ExternalLayout) {
|
|
|
|
FieldOffset = Context.toCharUnitsFromBits(
|
|
|
|
updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
|
|
|
|
|
|
|
|
if (!IsUnion && EmptySubobjects) {
|
|
|
|
// Record the fact that we're placing a field at this offset.
|
|
|
|
bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
|
|
|
|
(void)Allowed;
|
|
|
|
assert(Allowed && "Externally-placed field cannot be placed here");
|
|
|
|
}
|
|
|
|
} else {
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
if (!IsUnion && EmptySubobjects) {
|
|
|
|
// Check if we can place the field at this offset.
|
|
|
|
while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
|
|
|
|
// We couldn't place the field at the offset. Try again at a new offset.
|
|
|
|
FieldOffset += FieldAlign;
|
|
|
|
}
|
2009-09-25 08:02:51 +08:00
|
|
|
}
|
2009-07-19 04:20:21 +08:00
|
|
|
}
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
|
2009-07-19 04:20:21 +08:00
|
|
|
// Place this field at the current location.
|
2011-02-20 10:06:09 +08:00
|
|
|
FieldOffsets.push_back(Context.toBits(FieldOffset));
|
2009-09-09 23:08:12 +08:00
|
|
|
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
if (!ExternalLayout)
|
|
|
|
CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
|
|
|
|
Context.toBits(UnpackedFieldOffset),
|
|
|
|
Context.toBits(UnpackedFieldAlign), FieldPacked, D);
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2009-07-19 04:20:21 +08:00
|
|
|
// Reserve space for this field.
|
2012-01-13 07:27:03 +08:00
|
|
|
uint64_t FieldSizeInBits = Context.toBits(FieldSize);
|
2009-07-19 04:20:21 +08:00
|
|
|
if (IsUnion)
|
2012-01-13 07:48:56 +08:00
|
|
|
setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
|
2009-07-19 04:20:21 +08:00
|
|
|
else
|
2012-01-13 07:48:56 +08:00
|
|
|
setDataSize(FieldOffset + FieldSize);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-01-13 07:48:56 +08:00
|
|
|
// Update the size.
|
|
|
|
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-07-19 04:20:21 +08:00
|
|
|
// Remember max struct/class alignment.
|
2011-02-20 10:06:09 +08:00
|
|
|
UpdateAlignment(FieldAlign, UnpackedFieldAlign);
|
2009-07-19 04:20:21 +08:00
|
|
|
}
|
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
|
2009-07-19 04:20:21 +08:00
|
|
|
// In C++, records cannot be of size 0.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
|
2011-02-03 03:36:18 +08:00
|
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
|
|
// Compatibility with gcc requires a class (pod or non-pod)
|
|
|
|
// which is not empty but of size 0; such as having fields of
|
|
|
|
// array of zero-length, remains of Size 0
|
|
|
|
if (RD->isEmpty())
|
2011-02-28 10:01:38 +08:00
|
|
|
setSize(CharUnits::One());
|
2011-02-03 03:36:18 +08:00
|
|
|
}
|
|
|
|
else
|
2011-02-28 10:01:38 +08:00
|
|
|
setSize(CharUnits::One());
|
2011-02-03 03:36:18 +08:00
|
|
|
}
|
2011-12-01 08:37:01 +08:00
|
|
|
|
2012-10-27 06:31:14 +08:00
|
|
|
// Finally, round the size of the record up to the alignment of the
|
|
|
|
// record itself.
|
2013-06-27 04:50:34 +08:00
|
|
|
uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
|
2012-10-27 06:31:14 +08:00
|
|
|
uint64_t UnpackedSizeInBits =
|
|
|
|
llvm::RoundUpToAlignment(getSizeInBits(),
|
|
|
|
Context.toBits(UnpackedAlignment));
|
|
|
|
CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
|
|
|
|
uint64_t RoundedSize
|
|
|
|
= llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
|
|
|
|
|
|
|
|
if (ExternalLayout) {
|
|
|
|
// If we're inferring alignment, and the external size is smaller than
|
|
|
|
// our size after we've rounded up to alignment, conservatively set the
|
|
|
|
// alignment to 1.
|
|
|
|
if (InferAlignment && ExternalSize < RoundedSize) {
|
|
|
|
Alignment = CharUnits::One();
|
|
|
|
InferAlignment = false;
|
|
|
|
}
|
|
|
|
setSize(ExternalSize);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-12-01 08:37:01 +08:00
|
|
|
// MSVC doesn't round up to the alignment of the record with virtual bases.
|
|
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
|
|
if (isMicrosoftCXXABI() && RD->getNumVBases())
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-10-27 06:31:14 +08:00
|
|
|
// Set the size to the final size.
|
|
|
|
setSize(RoundedSize);
|
2010-09-22 22:32:24 +08:00
|
|
|
|
2011-09-02 08:18:52 +08:00
|
|
|
unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
|
2010-09-22 22:32:24 +08:00
|
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
|
|
|
|
// Warn if padding was introduced to the struct/class/union.
|
2011-02-24 09:13:28 +08:00
|
|
|
if (getSizeInBits() > UnpaddedSize) {
|
|
|
|
unsigned PadSize = getSizeInBits() - UnpaddedSize;
|
2010-09-22 22:32:24 +08:00
|
|
|
bool InBits = true;
|
|
|
|
if (PadSize % CharBitNum == 0) {
|
|
|
|
PadSize = PadSize / CharBitNum;
|
|
|
|
InBits = false;
|
|
|
|
}
|
|
|
|
Diag(RD->getLocation(), diag::warn_padded_struct_size)
|
|
|
|
<< Context.getTypeDeclType(RD)
|
|
|
|
<< PadSize
|
|
|
|
<< (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
|
|
|
|
}
|
|
|
|
|
|
|
|
// Warn if we packed it unnecessarily. If the alignment is 1 byte don't
|
|
|
|
// bother since there won't be alignment issues.
|
2011-02-24 09:13:28 +08:00
|
|
|
if (Packed && UnpackedAlignment > CharUnits::One() &&
|
2011-02-28 10:01:38 +08:00
|
|
|
getSize() == UnpackedSize)
|
2010-09-22 22:32:24 +08:00
|
|
|
Diag(D->getLocation(), diag::warn_unnecessary_packed)
|
|
|
|
<< Context.getTypeDeclType(RD);
|
|
|
|
}
|
2009-07-19 04:20:21 +08:00
|
|
|
}
|
|
|
|
|
2011-02-20 02:58:07 +08:00
|
|
|
void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
|
|
|
|
CharUnits UnpackedNewAlignment) {
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
// The alignment is not modified when using 'mac68k' alignment or when
|
2012-01-28 08:53:29 +08:00
|
|
|
// we have an externally-supplied layout that also provides overall alignment.
|
|
|
|
if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
|
2010-05-27 13:45:51 +08:00
|
|
|
return;
|
|
|
|
|
2011-02-20 02:58:07 +08:00
|
|
|
if (NewAlignment > Alignment) {
|
|
|
|
assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
|
|
|
|
"Alignment not a power of 2"));
|
|
|
|
Alignment = NewAlignment;
|
2010-09-22 22:32:24 +08:00
|
|
|
}
|
|
|
|
|
2011-02-20 02:58:07 +08:00
|
|
|
if (UnpackedNewAlignment > UnpackedAlignment) {
|
|
|
|
assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
|
2010-09-22 22:32:24 +08:00
|
|
|
"Alignment not a power of 2"));
|
2011-02-20 02:58:07 +08:00
|
|
|
UnpackedAlignment = UnpackedNewAlignment;
|
2010-09-22 22:32:24 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-01-28 08:53:29 +08:00
|
|
|
uint64_t
|
|
|
|
RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
|
|
|
|
uint64_t ComputedOffset) {
|
|
|
|
assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
|
|
|
|
"Field does not have an external offset");
|
|
|
|
|
|
|
|
uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
|
|
|
|
|
|
|
|
if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
|
|
|
|
// The externally-supplied field offset is before the field offset we
|
|
|
|
// computed. Assume that the structure is packed.
|
2012-10-27 06:31:14 +08:00
|
|
|
Alignment = CharUnits::One();
|
2012-01-28 08:53:29 +08:00
|
|
|
InferAlignment = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use the externally-supplied field offset.
|
2012-09-01 06:14:25 +08:00
|
|
|
return ExternalFieldOffset;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Get diagnostic %select index for tag kind for
|
|
|
|
/// field padding diagnostic message.
|
|
|
|
/// WARNING: Indexes apply to particular diagnostics only!
|
|
|
|
///
|
|
|
|
/// \returns diagnostic %select index.
|
|
|
|
static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
|
|
|
|
switch (Tag) {
|
|
|
|
case TTK_Struct: return 0;
|
|
|
|
case TTK_Interface: return 1;
|
|
|
|
case TTK_Class: return 2;
|
|
|
|
default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
|
|
|
|
uint64_t UnpaddedOffset,
|
|
|
|
uint64_t UnpackedOffset,
|
2010-09-22 22:32:24 +08:00
|
|
|
unsigned UnpackedAlign,
|
|
|
|
bool isPacked,
|
|
|
|
const FieldDecl *D) {
|
|
|
|
// We let objc ivars without warning, objc interfaces generally are not used
|
|
|
|
// for padding tricks.
|
|
|
|
if (isa<ObjCIvarDecl>(D))
|
2009-07-19 04:20:21 +08:00
|
|
|
return;
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-09-07 03:40:45 +08:00
|
|
|
// Don't warn about structs created without a SourceLocation. This can
|
|
|
|
// be done by clients of the AST, such as codegen.
|
|
|
|
if (D->getLocation().isInvalid())
|
|
|
|
return;
|
|
|
|
|
2011-09-02 08:18:52 +08:00
|
|
|
unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
// Warn if padding was introduced to the struct/class.
|
|
|
|
if (!IsUnion && Offset > UnpaddedOffset) {
|
|
|
|
unsigned PadSize = Offset - UnpaddedOffset;
|
|
|
|
bool InBits = true;
|
|
|
|
if (PadSize % CharBitNum == 0) {
|
|
|
|
PadSize = PadSize / CharBitNum;
|
|
|
|
InBits = false;
|
2012-09-01 06:14:25 +08:00
|
|
|
}
|
|
|
|
if (D->getIdentifier())
|
|
|
|
Diag(D->getLocation(), diag::warn_padded_struct_field)
|
|
|
|
<< getPaddingDiagFromTagKind(D->getParent()->getTagKind())
|
|
|
|
<< Context.getTypeDeclType(D->getParent())
|
|
|
|
<< PadSize
|
|
|
|
<< (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
|
|
|
|
<< D->getIdentifier();
|
|
|
|
else
|
|
|
|
Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
|
|
|
|
<< getPaddingDiagFromTagKind(D->getParent()->getTagKind())
|
|
|
|
<< Context.getTypeDeclType(D->getParent())
|
|
|
|
<< PadSize
|
|
|
|
<< (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
|
2010-09-22 22:32:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Warn if we packed it unnecessarily. If the alignment is 1 byte don't
|
|
|
|
// bother since there won't be alignment issues.
|
|
|
|
if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
|
|
|
|
Diag(D->getLocation(), diag::warn_unnecessary_packed)
|
|
|
|
<< D->getIdentifier();
|
2009-07-19 04:20:21 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
|
|
|
|
const CXXRecordDecl *RD) {
|
2010-04-20 04:44:53 +08:00
|
|
|
// If a class isn't polymorphic it doesn't have a key function.
|
2009-12-07 12:35:11 +08:00
|
|
|
if (!RD->isPolymorphic())
|
|
|
|
return 0;
|
2009-12-08 11:56:49 +08:00
|
|
|
|
2011-06-11 05:53:06 +08:00
|
|
|
// A class that is not externally visible doesn't have a key function. (Or
|
2009-12-08 11:56:49 +08:00
|
|
|
// at least, there's no point to assigning a key function to such a class;
|
|
|
|
// this doesn't affect the ABI.)
|
2013-05-13 08:12:11 +08:00
|
|
|
if (!RD->isExternallyVisible())
|
2009-12-08 11:56:49 +08:00
|
|
|
return 0;
|
|
|
|
|
2010-10-13 10:39:41 +08:00
|
|
|
// Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
|
|
|
|
// Same behavior as GCC.
|
|
|
|
TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
|
|
|
|
if (TSK == TSK_ImplicitInstantiation ||
|
|
|
|
TSK == TSK_ExplicitInstantiationDefinition)
|
|
|
|
return 0;
|
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
bool allowInlineFunctions =
|
|
|
|
Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
|
|
|
|
|
2010-04-08 10:59:49 +08:00
|
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
|
|
E = RD->method_end(); I != E; ++I) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const CXXMethodDecl *MD = *I;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-12-07 12:35:11 +08:00
|
|
|
if (!MD->isVirtual())
|
|
|
|
continue;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-12-07 12:35:11 +08:00
|
|
|
if (MD->isPure())
|
|
|
|
continue;
|
2009-12-08 11:56:49 +08:00
|
|
|
|
2009-12-07 12:35:11 +08:00
|
|
|
// Ignore implicit member functions, they are always marked as inline, but
|
|
|
|
// they don't have a body until they're defined.
|
|
|
|
if (MD->isImplicit())
|
|
|
|
continue;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2010-01-06 03:06:31 +08:00
|
|
|
if (MD->isInlineSpecified())
|
|
|
|
continue;
|
2009-12-07 12:35:11 +08:00
|
|
|
|
|
|
|
if (MD->hasInlineBody())
|
|
|
|
continue;
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2012-08-03 23:43:22 +08:00
|
|
|
// Ignore inline deleted or defaulted functions.
|
2012-08-03 16:39:58 +08:00
|
|
|
if (!MD->isUserProvided())
|
|
|
|
continue;
|
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
// In certain ABIs, ignore functions with out-of-line inline definitions.
|
|
|
|
if (!allowInlineFunctions) {
|
|
|
|
const FunctionDecl *Def;
|
|
|
|
if (MD->hasBody(Def) && Def->isInlineSpecified())
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2009-12-07 12:35:11 +08:00
|
|
|
// We found it.
|
|
|
|
return MD;
|
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2009-12-07 12:35:11 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-09-22 22:32:24 +08:00
|
|
|
DiagnosticBuilder
|
|
|
|
RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
|
2010-11-19 04:06:41 +08:00
|
|
|
return Context.getDiagnostics().Report(Loc, DiagID);
|
2010-09-22 22:32:24 +08:00
|
|
|
}
|
|
|
|
|
2013-01-29 09:14:22 +08:00
|
|
|
/// Does the target C++ ABI require us to skip over the tail-padding
|
|
|
|
/// of the given class (considering it as a base class) when allocating
|
|
|
|
/// objects?
|
|
|
|
static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
|
|
|
|
switch (ABI.getTailPaddingUseRules()) {
|
|
|
|
case TargetCXXABI::AlwaysUseTailPadding:
|
|
|
|
return false;
|
|
|
|
|
|
|
|
case TargetCXXABI::UseTailPaddingUnlessPOD03:
|
|
|
|
// FIXME: To the extent that this is meant to cover the Itanium ABI
|
|
|
|
// rules, we should implement the restrictions about over-sized
|
|
|
|
// bitfields:
|
|
|
|
//
|
|
|
|
// http://mentorembedded.github.com/cxx-abi/abi.html#POD :
|
|
|
|
// In general, a type is considered a POD for the purposes of
|
|
|
|
// layout if it is a POD type (in the sense of ISO C++
|
|
|
|
// [basic.types]). However, a POD-struct or POD-union (in the
|
|
|
|
// sense of ISO C++ [class]) with a bitfield member whose
|
|
|
|
// declared width is wider than the declared type of the
|
|
|
|
// bitfield is not a POD for the purpose of layout. Similarly,
|
|
|
|
// an array type is not a POD for the purpose of layout if the
|
|
|
|
// element type of the array is not a POD for the purpose of
|
|
|
|
// layout.
|
|
|
|
//
|
|
|
|
// Where references to the ISO C++ are made in this paragraph,
|
|
|
|
// the Technical Corrigendum 1 version of the standard is
|
|
|
|
// intended.
|
|
|
|
return RD->isPOD();
|
|
|
|
|
|
|
|
case TargetCXXABI::UseTailPaddingUnlessPOD11:
|
|
|
|
// This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
|
|
|
|
// but with a lot of abstraction penalty stripped off. This does
|
|
|
|
// assume that these properties are set correctly even in C++98
|
|
|
|
// mode; fortunately, that is true because we want to assign
|
|
|
|
// consistently semantics to the type-traits intrinsics (or at
|
|
|
|
// least as many of them as possible).
|
|
|
|
return RD->isTrivial() && RD->isStandardLayout();
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm_unreachable("bad tail-padding use kind");
|
|
|
|
}
|
|
|
|
|
2010-05-26 12:56:53 +08:00
|
|
|
/// getASTRecordLayout - Get or compute information about the layout of the
|
|
|
|
/// specified record (struct/union/class), which indicates its size and field
|
|
|
|
/// position information.
|
2011-01-12 17:06:06 +08:00
|
|
|
const ASTRecordLayout &
|
|
|
|
ASTContext::getASTRecordLayout(const RecordDecl *D) const {
|
2011-10-07 10:39:22 +08:00
|
|
|
// These asserts test different things. A record has a definition
|
|
|
|
// as soon as we begin to parse the definition. That definition is
|
|
|
|
// not a complete definition (which is what isDefinition() tests)
|
|
|
|
// until we *finish* parsing the definition.
|
2012-02-08 08:04:52 +08:00
|
|
|
|
|
|
|
if (D->hasExternalLexicalStorage() && !D->getDefinition())
|
|
|
|
getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
|
|
|
|
|
2010-05-26 12:56:53 +08:00
|
|
|
D = D->getDefinition();
|
|
|
|
assert(D && "Cannot get layout of forward declarations!");
|
2013-06-26 06:19:15 +08:00
|
|
|
assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
|
2011-10-07 14:10:15 +08:00
|
|
|
assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
|
2010-05-26 12:56:53 +08:00
|
|
|
|
|
|
|
// Look up this layout, if already laid out, return what we have.
|
|
|
|
// Note that we can't save a reference to the entry because this function
|
|
|
|
// is recursive.
|
|
|
|
const ASTRecordLayout *Entry = ASTRecordLayouts[D];
|
|
|
|
if (Entry) return *Entry;
|
|
|
|
|
2010-05-26 13:10:47 +08:00
|
|
|
const ASTRecordLayout *NewEntry;
|
|
|
|
|
|
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
2010-05-27 08:07:01 +08:00
|
|
|
EmptySubobjectMap EmptySubobjects(*this, RD);
|
2011-11-08 12:01:03 +08:00
|
|
|
RecordLayoutBuilder Builder(*this, &EmptySubobjects);
|
|
|
|
Builder.Layout(RD);
|
|
|
|
|
|
|
|
// MSVC gives the vb-table pointer an alignment equal to that of
|
|
|
|
// the non-virtual part of the structure. That's an inherently
|
|
|
|
// multi-pass operation. If our first pass doesn't give us
|
|
|
|
// adequate alignment, try again with the specified minimum
|
|
|
|
// alignment. This is *much* more maintainable than computing the
|
|
|
|
// alignment in advance in a separately-coded pass; it's also
|
|
|
|
// significantly more efficient in the common case where the
|
|
|
|
// vb-table doesn't need extra padding.
|
|
|
|
if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
|
|
|
|
(Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
|
|
|
|
Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
|
|
|
|
Builder.Layout(RD);
|
2011-09-28 03:12:27 +08:00
|
|
|
}
|
|
|
|
|
2013-01-29 09:14:22 +08:00
|
|
|
// In certain situations, we are allowed to lay out objects in the
|
|
|
|
// tail-padding of base classes. This is ABI-dependent.
|
|
|
|
// FIXME: this should be stored in the record layout.
|
|
|
|
bool skipTailPadding =
|
|
|
|
mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
|
2010-05-26 13:10:47 +08:00
|
|
|
|
|
|
|
// FIXME: This should be done in FinalizeLayout.
|
2011-02-28 10:01:38 +08:00
|
|
|
CharUnits DataSize =
|
2013-01-29 09:14:22 +08:00
|
|
|
skipTailPadding ? Builder.getSize() : Builder.getDataSize();
|
2011-02-28 10:01:38 +08:00
|
|
|
CharUnits NonVirtualSize =
|
2013-01-29 09:14:22 +08:00
|
|
|
skipTailPadding ? DataSize : Builder.NonVirtualSize;
|
2010-05-26 13:10:47 +08:00
|
|
|
|
2010-05-27 10:25:46 +08:00
|
|
|
NewEntry =
|
2011-11-08 12:01:03 +08:00
|
|
|
new (*this) ASTRecordLayout(*this, Builder.getSize(),
|
|
|
|
Builder.Alignment,
|
2012-05-01 16:55:32 +08:00
|
|
|
Builder.HasOwnVFPtr,
|
2011-11-08 12:01:03 +08:00
|
|
|
Builder.VBPtrOffset,
|
2011-02-28 10:01:38 +08:00
|
|
|
DataSize,
|
2011-11-08 12:01:03 +08:00
|
|
|
Builder.FieldOffsets.data(),
|
|
|
|
Builder.FieldOffsets.size(),
|
2011-02-16 09:52:01 +08:00
|
|
|
NonVirtualSize,
|
2011-11-08 12:01:03 +08:00
|
|
|
Builder.NonVirtualAlignment,
|
2010-05-27 08:07:01 +08:00
|
|
|
EmptySubobjects.SizeOfLargestEmptySubobject,
|
2011-11-08 12:01:03 +08:00
|
|
|
Builder.PrimaryBase,
|
|
|
|
Builder.PrimaryBaseIsVirtual,
|
|
|
|
Builder.Bases, Builder.VBases);
|
2010-05-26 13:10:47 +08:00
|
|
|
} else {
|
2011-11-08 12:01:03 +08:00
|
|
|
RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
|
2010-05-26 13:10:47 +08:00
|
|
|
Builder.Layout(D);
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 13:10:47 +08:00
|
|
|
NewEntry =
|
2011-02-28 10:01:38 +08:00
|
|
|
new (*this) ASTRecordLayout(*this, Builder.getSize(),
|
2011-02-16 10:05:21 +08:00
|
|
|
Builder.Alignment,
|
2011-02-28 10:01:38 +08:00
|
|
|
Builder.getSize(),
|
2010-05-26 13:10:47 +08:00
|
|
|
Builder.FieldOffsets.data(),
|
|
|
|
Builder.FieldOffsets.size());
|
|
|
|
}
|
|
|
|
|
2010-05-26 12:56:53 +08:00
|
|
|
ASTRecordLayouts[D] = NewEntry;
|
|
|
|
|
2012-03-11 15:00:24 +08:00
|
|
|
if (getLangOpts().DumpRecordLayouts) {
|
2010-05-26 12:56:53 +08:00
|
|
|
llvm::errs() << "\n*** Dumping AST Record Layout\n";
|
2012-03-11 15:00:24 +08:00
|
|
|
DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple);
|
2010-05-26 12:56:53 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return *NewEntry;
|
|
|
|
}
|
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
|
2013-05-30 00:18:30 +08:00
|
|
|
if (!getTargetInfo().getCXXABI().hasKeyFunctions())
|
|
|
|
return 0;
|
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
assert(RD->getDefinition() && "Cannot get key function for forward decl!");
|
2010-05-26 12:56:53 +08:00
|
|
|
RD = cast<CXXRecordDecl>(RD->getDefinition());
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
const CXXMethodDecl *&entry = KeyFunctions[RD];
|
|
|
|
if (!entry) {
|
|
|
|
entry = computeKeyFunction(*this, RD);
|
|
|
|
}
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ASTContext::setNonKeyFunction(const CXXMethodDecl *method) {
|
|
|
|
assert(method == method->getFirstDeclaration() &&
|
|
|
|
"not working with method declaration from class definition");
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2013-01-26 06:31:03 +08:00
|
|
|
// Look up the cache entry. Since we're working with the first
|
|
|
|
// declaration, its parent must be the class definition, which is
|
|
|
|
// the correct key for the KeyFunctions hash.
|
|
|
|
llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*>::iterator
|
|
|
|
i = KeyFunctions.find(method->getParent());
|
|
|
|
|
|
|
|
// If it's not cached, there's nothing to do.
|
|
|
|
if (i == KeyFunctions.end()) return;
|
|
|
|
|
|
|
|
// If it is cached, check whether it's the target method, and if so,
|
|
|
|
// remove it from the cache.
|
|
|
|
if (i->second == method) {
|
|
|
|
// FIXME: remember that we did this for module / chained PCH state?
|
|
|
|
KeyFunctions.erase(i);
|
|
|
|
}
|
2010-05-26 12:56:53 +08:00
|
|
|
}
|
|
|
|
|
2012-01-14 12:30:29 +08:00
|
|
|
static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
|
|
|
|
const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
|
|
|
|
return Layout.getFieldOffset(FD->getFieldIndex());
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
|
|
|
|
uint64_t OffsetInBits;
|
|
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
|
|
|
|
OffsetInBits = ::getFieldOffset(*this, FD);
|
|
|
|
} else {
|
|
|
|
const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
|
|
|
|
|
|
|
|
OffsetInBits = 0;
|
|
|
|
for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
|
|
|
|
CE = IFD->chain_end();
|
|
|
|
CI != CE; ++CI)
|
|
|
|
OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
|
|
|
|
}
|
|
|
|
|
|
|
|
return OffsetInBits;
|
|
|
|
}
|
|
|
|
|
2011-10-05 14:00:51 +08:00
|
|
|
/// getObjCLayout - Get or compute information about the layout of the
|
|
|
|
/// given interface.
|
2010-05-26 12:56:53 +08:00
|
|
|
///
|
|
|
|
/// \param Impl - If given, also include the layout of the interface's
|
|
|
|
/// implementation. This may differ by including synthesized ivars.
|
|
|
|
const ASTRecordLayout &
|
|
|
|
ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
|
2011-01-12 17:06:06 +08:00
|
|
|
const ObjCImplementationDecl *Impl) const {
|
2011-12-20 23:50:13 +08:00
|
|
|
// Retrieve the definition
|
2012-03-16 00:33:08 +08:00
|
|
|
if (D->hasExternalLexicalStorage() && !D->getDefinition())
|
|
|
|
getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
|
2011-12-20 23:50:13 +08:00
|
|
|
D = D->getDefinition();
|
|
|
|
assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
|
2010-05-26 12:56:53 +08:00
|
|
|
|
|
|
|
// Look up this layout, if already laid out, return what we have.
|
2012-09-06 23:59:27 +08:00
|
|
|
const ObjCContainerDecl *Key =
|
|
|
|
Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
|
2010-05-26 12:56:53 +08:00
|
|
|
if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
|
|
|
|
return *Entry;
|
|
|
|
|
|
|
|
// Add in synthesized ivar count if laying out an implementation.
|
|
|
|
if (Impl) {
|
|
|
|
unsigned SynthCount = CountNonClassIvars(D);
|
|
|
|
// If there aren't any sythesized ivars then reuse the interface
|
|
|
|
// entry. Note we can't cache this because we simply free all
|
|
|
|
// entries later; however we shouldn't look up implementations
|
|
|
|
// frequently.
|
|
|
|
if (SynthCount == 0)
|
|
|
|
return getObjCLayout(D, 0);
|
|
|
|
}
|
|
|
|
|
2011-11-08 12:01:03 +08:00
|
|
|
RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
|
2010-05-26 13:04:25 +08:00
|
|
|
Builder.Layout(D);
|
|
|
|
|
2010-05-26 12:56:53 +08:00
|
|
|
const ASTRecordLayout *NewEntry =
|
2011-02-28 10:01:38 +08:00
|
|
|
new (*this) ASTRecordLayout(*this, Builder.getSize(),
|
2011-02-16 10:05:21 +08:00
|
|
|
Builder.Alignment,
|
2011-02-28 10:01:38 +08:00
|
|
|
Builder.getDataSize(),
|
2010-05-26 13:04:25 +08:00
|
|
|
Builder.FieldOffsets.data(),
|
|
|
|
Builder.FieldOffsets.size());
|
2010-05-27 10:25:46 +08:00
|
|
|
|
2010-05-26 12:56:53 +08:00
|
|
|
ObjCLayouts[Key] = NewEntry;
|
|
|
|
|
|
|
|
return *NewEntry;
|
|
|
|
}
|
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
static void PrintOffset(raw_ostream &OS,
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits Offset, unsigned IndentLevel) {
|
2011-11-05 17:02:52 +08:00
|
|
|
OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
|
2010-04-08 10:59:49 +08:00
|
|
|
OS.indent(IndentLevel * 2);
|
|
|
|
}
|
|
|
|
|
2012-12-08 08:07:24 +08:00
|
|
|
static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
|
|
|
|
OS << " | ";
|
|
|
|
OS.indent(IndentLevel * 2);
|
|
|
|
}
|
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
static void DumpCXXRecordLayout(raw_ostream &OS,
|
2011-01-12 17:06:06 +08:00
|
|
|
const CXXRecordDecl *RD, const ASTContext &C,
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits Offset,
|
2010-04-08 10:59:49 +08:00
|
|
|
unsigned IndentLevel,
|
|
|
|
const char* Description,
|
|
|
|
bool IncludeVirtualBases) {
|
2010-11-01 07:45:59 +08:00
|
|
|
const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
|
|
|
PrintOffset(OS, Offset, IndentLevel);
|
2010-04-20 00:39:44 +08:00
|
|
|
OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
|
2010-04-08 10:59:49 +08:00
|
|
|
if (Description)
|
|
|
|
OS << ' ' << Description;
|
|
|
|
if (RD->isEmpty())
|
|
|
|
OS << " (empty)";
|
|
|
|
OS << '\n';
|
|
|
|
|
|
|
|
IndentLevel++;
|
|
|
|
|
2010-11-01 07:45:59 +08:00
|
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
2012-05-01 16:55:32 +08:00
|
|
|
bool HasVfptr = Layout.hasOwnVFPtr();
|
2011-09-28 03:12:27 +08:00
|
|
|
bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
|
|
|
// Vtable pointer.
|
2011-10-22 06:49:56 +08:00
|
|
|
if (RD->isDynamicClass() && !PrimaryBase &&
|
2013-01-26 06:30:49 +08:00
|
|
|
!C.getTargetInfo().getCXXABI().isMicrosoft()) {
|
2010-04-08 10:59:49 +08:00
|
|
|
PrintOffset(OS, Offset, IndentLevel);
|
2011-10-15 02:45:37 +08:00
|
|
|
OS << '(' << *RD << " vtable pointer)\n";
|
2010-04-08 10:59:49 +08:00
|
|
|
}
|
2011-09-28 03:12:27 +08:00
|
|
|
|
2010-04-08 10:59:49 +08:00
|
|
|
// Dump (non-virtual) bases
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
assert(!I->getType()->isDependentType() &&
|
|
|
|
"Cannot layout class with dependent bases.");
|
|
|
|
if (I->isVirtual())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const CXXRecordDecl *Base =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
|
2010-04-08 10:59:49 +08:00
|
|
|
|
|
|
|
DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
|
|
|
|
Base == PrimaryBase ? "(primary base)" : "(base)",
|
|
|
|
/*IncludeVirtualBases=*/false);
|
|
|
|
}
|
2011-10-22 06:49:56 +08:00
|
|
|
|
|
|
|
// vfptr and vbptr (for Microsoft C++ ABI)
|
|
|
|
if (HasVfptr) {
|
2012-05-01 16:55:32 +08:00
|
|
|
PrintOffset(OS, Offset, IndentLevel);
|
2011-10-22 06:49:56 +08:00
|
|
|
OS << '(' << *RD << " vftable pointer)\n";
|
|
|
|
}
|
2011-09-28 03:12:27 +08:00
|
|
|
if (HasVbptr) {
|
|
|
|
PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
|
2011-10-15 02:45:37 +08:00
|
|
|
OS << '(' << *RD << " vbtable pointer)\n";
|
2011-09-28 03:12:27 +08:00
|
|
|
}
|
2010-04-08 10:59:49 +08:00
|
|
|
|
|
|
|
// Dump fields.
|
|
|
|
uint64_t FieldNo = 0;
|
|
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(),
|
|
|
|
E = RD->field_end(); I != E; ++I, ++FieldNo) {
|
2012-06-07 04:45:41 +08:00
|
|
|
const FieldDecl &Field = **I;
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits FieldOffset = Offset +
|
2011-01-18 09:56:16 +08:00
|
|
|
C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
|
2010-04-08 10:59:49 +08:00
|
|
|
|
2012-04-30 10:36:29 +08:00
|
|
|
if (const RecordType *RT = Field.getType()->getAs<RecordType>()) {
|
2010-04-08 10:59:49 +08:00
|
|
|
if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
|
|
DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
|
2012-04-30 10:36:29 +08:00
|
|
|
Field.getName().data(),
|
2010-04-08 10:59:49 +08:00
|
|
|
/*IncludeVirtualBases=*/true);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PrintOffset(OS, FieldOffset, IndentLevel);
|
2012-04-30 10:36:29 +08:00
|
|
|
OS << Field.getType().getAsString() << ' ' << Field << '\n';
|
2010-04-08 10:59:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!IncludeVirtualBases)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Dump virtual bases.
|
2012-05-01 16:55:32 +08:00
|
|
|
const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
|
|
|
|
Layout.getVBaseOffsetsMap();
|
2010-04-08 10:59:49 +08:00
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
|
|
E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
assert(I->isVirtual() && "Found non-virtual class!");
|
|
|
|
const CXXRecordDecl *VBase =
|
|
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
|
2010-11-01 07:45:59 +08:00
|
|
|
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
|
2012-05-01 16:55:32 +08:00
|
|
|
|
|
|
|
if (vtordisps.find(VBase)->second.hasVtorDisp()) {
|
|
|
|
PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
|
|
|
|
OS << "(vtordisp for vbase " << *VBase << ")\n";
|
|
|
|
}
|
|
|
|
|
2010-04-08 10:59:49 +08:00
|
|
|
DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
|
|
|
|
VBase == PrimaryBase ?
|
|
|
|
"(primary virtual base)" : "(virtual base)",
|
|
|
|
/*IncludeVirtualBases=*/false);
|
|
|
|
}
|
|
|
|
|
2012-12-08 08:07:24 +08:00
|
|
|
PrintIndentNoOffset(OS, IndentLevel - 1);
|
|
|
|
OS << "[sizeof=" << Layout.getSize().getQuantity();
|
2011-02-11 10:20:09 +08:00
|
|
|
OS << ", dsize=" << Layout.getDataSize().getQuantity();
|
2011-02-15 10:32:40 +08:00
|
|
|
OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
|
2012-12-08 08:07:24 +08:00
|
|
|
|
|
|
|
PrintIndentNoOffset(OS, IndentLevel - 1);
|
|
|
|
OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
|
|
|
|
OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << "]\n";
|
2010-04-08 10:59:49 +08:00
|
|
|
OS << '\n';
|
|
|
|
}
|
2010-04-20 04:44:53 +08:00
|
|
|
|
|
|
|
void ASTContext::DumpRecordLayout(const RecordDecl *RD,
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
raw_ostream &OS,
|
|
|
|
bool Simple) const {
|
2010-04-20 04:44:53 +08:00
|
|
|
const ASTRecordLayout &Info = getASTRecordLayout(RD);
|
|
|
|
|
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
if (!Simple)
|
|
|
|
return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
|
|
|
|
/*IncludeVirtualBases=*/true);
|
2010-04-20 04:44:53 +08:00
|
|
|
|
|
|
|
OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
|
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
|
|
|
if (!Simple) {
|
|
|
|
OS << "Record: ";
|
|
|
|
RD->dump();
|
|
|
|
}
|
2010-04-20 04:44:53 +08:00
|
|
|
OS << "\nLayout: ";
|
|
|
|
OS << "<ASTRecordLayout\n";
|
2011-02-11 09:54:29 +08:00
|
|
|
OS << " Size:" << toBits(Info.getSize()) << "\n";
|
2011-02-11 10:20:09 +08:00
|
|
|
OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
|
2011-02-15 10:32:40 +08:00
|
|
|
OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
|
2010-04-20 04:44:53 +08:00
|
|
|
OS << " FieldOffsets: [";
|
|
|
|
for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
|
|
|
|
if (i) OS << ", ";
|
|
|
|
OS << Info.getFieldOffset(i);
|
|
|
|
}
|
|
|
|
OS << "]>\n";
|
|
|
|
}
|