llvm-project/clang/lib/CodeGen/CGVTables.h

278 lines
10 KiB
C
Raw Normal View History

//===--- CGVTables.h - Emit LLVM Code for C++ vtables ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of virtual tables.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CGVTABLE_H
#define CLANG_CODEGEN_CGVTABLE_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/GlobalVariable.h"
#include "clang/Basic/ABI.h"
#include "GlobalDecl.h"
namespace clang {
class CXXRecordDecl;
namespace CodeGen {
class CodeGenModule;
// BaseSubobject - Uniquely identifies a direct or indirect base class.
// Stores both the base class decl and the offset from the most derived class to
// the base class.
class BaseSubobject {
/// Base - The base class declaration.
const CXXRecordDecl *Base;
/// BaseOffset - The offset from the most derived class to the base class.
uint64_t BaseOffset;
public:
BaseSubobject(const CXXRecordDecl *Base, uint64_t BaseOffset)
: Base(Base), BaseOffset(BaseOffset) { }
/// getBase - Returns the base class declaration.
const CXXRecordDecl *getBase() const { return Base; }
/// getBaseOffset - Returns the base class offset.
uint64_t getBaseOffset() const { return BaseOffset; }
friend bool operator==(const BaseSubobject &LHS, const BaseSubobject &RHS) {
return LHS.Base == RHS.Base && LHS.BaseOffset == RHS.BaseOffset;
}
};
} // end namespace CodeGen
} // end namespace clang
namespace llvm {
template<> struct DenseMapInfo<clang::CodeGen::BaseSubobject> {
static clang::CodeGen::BaseSubobject getEmptyKey() {
return clang::CodeGen::BaseSubobject(
DenseMapInfo<const clang::CXXRecordDecl *>::getEmptyKey(),
DenseMapInfo<uint64_t>::getEmptyKey());
}
static clang::CodeGen::BaseSubobject getTombstoneKey() {
return clang::CodeGen::BaseSubobject(
DenseMapInfo<const clang::CXXRecordDecl *>::getTombstoneKey(),
DenseMapInfo<uint64_t>::getTombstoneKey());
}
static unsigned getHashValue(const clang::CodeGen::BaseSubobject &Base) {
return
DenseMapInfo<const clang::CXXRecordDecl *>::getHashValue(Base.getBase()) ^
DenseMapInfo<uint64_t>::getHashValue(Base.getBaseOffset());
}
static bool isEqual(const clang::CodeGen::BaseSubobject &LHS,
const clang::CodeGen::BaseSubobject &RHS) {
return LHS == RHS;
}
};
// It's OK to treat BaseSubobject as a POD type.
template <> struct isPodLike<clang::CodeGen::BaseSubobject> {
static const bool value = true;
};
}
namespace clang {
namespace CodeGen {
class CodeGenVTables {
CodeGenModule &CGM;
/// MethodVTableIndices - Contains the index (relative to the vtable address
/// point) where the function pointer for a virtual function is stored.
typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
MethodVTableIndicesTy MethodVTableIndices;
typedef std::pair<const CXXRecordDecl *,
const CXXRecordDecl *> ClassPairTy;
/// VirtualBaseClassOffsetOffsets - Contains the vtable offset (relative to
/// the address point) in bytes where the offsets for virtual bases of a class
/// are stored.
typedef llvm::DenseMap<ClassPairTy, int64_t>
VirtualBaseClassOffsetOffsetsMapTy;
VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;
/// VTables - All the vtables which have been defined.
llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
/// NumVirtualFunctionPointers - Contains the number of virtual function
/// pointers in the vtable for a given record decl.
llvm::DenseMap<const CXXRecordDecl *, uint64_t> NumVirtualFunctionPointers;
2010-03-24 00:36:50 +08:00
typedef llvm::SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
/// Thunks - Contains all thunks that a given method decl will need.
ThunksMapTy Thunks;
// The layout entry and a bool indicating whether we've actually emitted
// the vtable.
typedef llvm::PointerIntPair<uint64_t *, 1, bool> VTableLayoutData;
typedef llvm::DenseMap<const CXXRecordDecl *, VTableLayoutData>
VTableLayoutMapTy;
/// VTableLayoutMap - Stores the vtable layout for all record decls.
/// The layout is stored as an array of 64-bit integers, where the first
/// integer is the number of vtable entries in the layout, and the subsequent
/// integers are the vtable components.
VTableLayoutMapTy VTableLayoutMap;
typedef std::pair<const CXXRecordDecl *, BaseSubobject> BaseSubobjectPairTy;
typedef llvm::DenseMap<BaseSubobjectPairTy, uint64_t> AddressPointsMapTy;
/// Address points - Address points for all vtables.
AddressPointsMapTy AddressPoints;
/// VTableAddressPointsMapTy - Address points for a single vtable.
typedef llvm::DenseMap<BaseSubobject, uint64_t> VTableAddressPointsMapTy;
typedef llvm::SmallVector<std::pair<uint64_t, ThunkInfo>, 1>
VTableThunksTy;
typedef llvm::DenseMap<const CXXRecordDecl *, VTableThunksTy>
VTableThunksMapTy;
/// VTableThunksMap - Contains thunks needed by vtables.
VTableThunksMapTy VTableThunksMap;
uint64_t getNumVTableComponents(const CXXRecordDecl *RD) const {
assert(VTableLayoutMap.count(RD) && "No vtable layout for this class!");
return VTableLayoutMap.lookup(RD).getPointer()[0];
}
const uint64_t *getVTableComponentsData(const CXXRecordDecl *RD) const {
assert(VTableLayoutMap.count(RD) && "No vtable layout for this class!");
uint64_t *Components = VTableLayoutMap.lookup(RD).getPointer();
return &Components[1];
}
typedef llvm::DenseMap<BaseSubobjectPairTy, uint64_t> SubVTTIndiciesMapTy;
/// SubVTTIndicies - Contains indices into the various sub-VTTs.
SubVTTIndiciesMapTy SubVTTIndicies;
typedef llvm::DenseMap<BaseSubobjectPairTy, uint64_t>
SecondaryVirtualPointerIndicesMapTy;
/// SecondaryVirtualPointerIndices - Contains the secondary virtual pointer
/// indices.
SecondaryVirtualPointerIndicesMapTy SecondaryVirtualPointerIndices;
/// getNumVirtualFunctionPointers - Return the number of virtual function
/// pointers in the vtable for a given record decl.
uint64_t getNumVirtualFunctionPointers(const CXXRecordDecl *RD);
void ComputeMethodVTableIndices(const CXXRecordDecl *RD);
llvm::GlobalVariable *GenerateVTT(llvm::GlobalVariable::LinkageTypes Linkage,
bool GenerateDefinition,
const CXXRecordDecl *RD);
2010-03-24 00:36:50 +08:00
/// EmitThunk - Emit a single thunk.
void EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk);
/// ComputeVTableRelatedInformation - Compute and store all vtable related
/// information (vtable layout, vbase offset offsets, thunks etc) for the
/// given record decl.
void ComputeVTableRelatedInformation(const CXXRecordDecl *RD,
bool VTableRequired);
/// CreateVTableInitializer - Create a vtable initializer for the given record
/// decl.
/// \param Components - The vtable components; this is really an array of
/// VTableComponents.
llvm::Constant *CreateVTableInitializer(const CXXRecordDecl *RD,
const uint64_t *Components,
unsigned NumComponents,
const VTableThunksTy &VTableThunks);
public:
CodeGenVTables(CodeGenModule &CGM)
: CGM(CGM) { }
/// \brief True if the VTable of this record must be emitted in the
/// translation unit.
bool ShouldEmitVTableInThisTU(const CXXRecordDecl *RD);
/// needsVTTParameter - Return whether the given global decl needs a VTT
/// parameter, which it does if it's a base constructor or destructor with
/// virtual bases.
static bool needsVTTParameter(GlobalDecl GD);
/// getSubVTTIndex - Return the index of the sub-VTT for the base class of the
/// given record decl.
uint64_t getSubVTTIndex(const CXXRecordDecl *RD, BaseSubobject Base);
/// getSecondaryVirtualPointerIndex - Return the index in the VTT where the
/// virtual pointer for the given subobject is located.
uint64_t getSecondaryVirtualPointerIndex(const CXXRecordDecl *RD,
BaseSubobject Base);
/// getMethodVTableIndex - Return the index (relative to the vtable address
/// point) where the function pointer for the given virtual function is
/// stored.
uint64_t getMethodVTableIndex(GlobalDecl GD);
/// getVirtualBaseOffsetOffset - Return the offset in bytes (relative to the
/// vtable address point) where the offset of the virtual base that contains
/// the given base is stored, otherwise, if no virtual base contains the given
/// class, return 0. Base must be a virtual base class or an unambigious
/// base.
int64_t getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
const CXXRecordDecl *VBase);
/// getAddressPoint - Get the address point of the given subobject in the
/// class decl.
uint64_t getAddressPoint(BaseSubobject Base, const CXXRecordDecl *RD);
/// GetAddrOfVTable - Get the address of the vtable for the given record decl.
llvm::GlobalVariable *GetAddrOfVTable(const CXXRecordDecl *RD);
/// EmitVTableDefinition - Emit the definition of the given vtable.
void EmitVTableDefinition(llvm::GlobalVariable *VTable,
llvm::GlobalVariable::LinkageTypes Linkage,
const CXXRecordDecl *RD);
/// GenerateConstructionVTable - Generate a construction vtable for the given
/// base subobject.
llvm::GlobalVariable *
GenerateConstructionVTable(const CXXRecordDecl *RD, const BaseSubobject &Base,
bool BaseIsVirtual,
VTableAddressPointsMapTy& AddressPoints);
llvm::GlobalVariable *getVTT(const CXXRecordDecl *RD);
Rework when and how vtables are emitted, by tracking where vtables are "used" (e.g., we will refer to the vtable in the generated code) and when they are defined (i.e., because we've seen the key function definition). Previously, we were effectively tracking "potential definitions" rather than uses, so we were a bit too eager about emitting vtables for classes without key functions. The new scheme: - For every use of a vtable, Sema calls MarkVTableUsed() to indicate the use. For example, this occurs when calling a virtual member function of the class, defining a constructor of that class type, dynamic_cast'ing from that type to a derived class, casting to/through a virtual base class, etc. - For every definition of a vtable, Sema calls MarkVTableUsed() to indicate the definition. This happens at the end of the translation unit for classes whose key function has been defined (so we can delay computation of the key function; see PR6564), and will also occur with explicit template instantiation definitions. - For every vtable defined/used, we mark all of the virtual member functions of that vtable as defined/used, unless we know that the key function is in another translation unit. This instantiates virtual member functions when needed. - At the end of the translation unit, Sema tells CodeGen (via the ASTConsumer) which vtables must be defined (CodeGen will define them) and which may be used (for which CodeGen will define the vtables lazily). From a language perspective, both the old and the new schemes are permissible: we're allowed to instantiate virtual member functions whenever we want per the standard. However, all other C++ compilers were more lazy than we were, and our eagerness was both a performance issue (we instantiated too much) and a portability problem (we broke Boost test cases, which now pass). Notes: (1) There's a ton of churn in the tests, because the order in which vtables get emitted to IR has changed. I've tried to isolate some of the larger tests from these issues. (2) Some diagnostics related to implicitly-instantiated/implicitly-defined virtual member functions have moved to the point of first use/definition. It's better this way. (3) I could use a review of the places where we MarkVTableUsed, to see if I missed any place where the language effectively requires a vtable. Fixes PR7114 and PR6564. llvm-svn: 103718
2010-05-14 00:44:06 +08:00
/// EmitThunks - Emit the associated thunks for the given global decl.
void EmitThunks(GlobalDecl GD);
/// GenerateClassData - Generate all the class data required to be generated
/// upon definition of a KeyFunction. This includes the vtable, the
/// rtti data structure and the VTT.
///
/// \param Linkage - The desired linkage of the vtable, the RTTI and the VTT.
void GenerateClassData(llvm::GlobalVariable::LinkageTypes Linkage,
const CXXRecordDecl *RD);
};
} // end namespace CodeGen
} // end namespace clang
#endif