llvm-project/llvm/lib/Transforms/Instrumentation/CFGMST.h

225 lines
7.5 KiB
C
Raw Normal View History

//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a Union-find algorithm to compute Minimum Spanning Tree
// for a given CFG.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <utility>
#include <vector>
namespace llvm {
#define DEBUG_TYPE "cfgmst"
/// \brief An union-find based Minimum Spanning Tree for CFG
///
/// Implements a Union-find algorithm to compute Minimum Spanning Tree
/// for a given CFG.
template <class Edge, class BBInfo> class CFGMST {
public:
Function &F;
// Store all the edges in CFG. It may contain some stale edges
// when Removed is set.
std::vector<std::unique_ptr<Edge>> AllEdges;
// This map records the auxiliary information for each BB.
DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
// Find the root group of the G and compress the path from G to the root.
BBInfo *findAndCompressGroup(BBInfo *G) {
if (G->Group != G)
G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
return static_cast<BBInfo *>(G->Group);
}
// Union BB1 and BB2 into the same group and return true.
// Returns false if BB1 and BB2 are already in the same group.
bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
if (BB1G == BB2G)
return false;
// Make the smaller rank tree a direct child or the root of high rank tree.
if (BB1G->Rank < BB2G->Rank)
BB1G->Group = BB2G;
else {
BB2G->Group = BB1G;
// If the ranks are the same, increment root of one tree by one.
if (BB1G->Rank == BB2G->Rank)
BB1G->Rank++;
}
return true;
}
// Give BB, return the auxiliary information.
BBInfo &getBBInfo(const BasicBlock *BB) const {
auto It = BBInfos.find(BB);
assert(It->second.get() != nullptr);
return *It->second.get();
}
// Give BB, return the auxiliary information if it's available.
BBInfo *findBBInfo(const BasicBlock *BB) const {
auto It = BBInfos.find(BB);
if (It == BBInfos.end())
return nullptr;
return It->second.get();
}
// Traverse the CFG using a stack. Find all the edges and assign the weight.
// Edges with large weight will be put into MST first so they are less likely
// to be instrumented.
void buildEdges() {
DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
const BasicBlock *BB = &(F.getEntryBlock());
uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
// Add a fake edge to the entry.
addEdge(nullptr, BB, EntryWeight);
// Special handling for single BB functions.
if (succ_empty(BB)) {
addEdge(BB, nullptr, EntryWeight);
return;
}
static const uint32_t CriticalEdgeMultiplier = 1000;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
TerminatorInst *TI = BB->getTerminator();
uint64_t BBWeight =
(BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
uint64_t Weight = 2;
if (int successors = TI->getNumSuccessors()) {
for (int i = 0; i != successors; ++i) {
BasicBlock *TargetBB = TI->getSuccessor(i);
bool Critical = isCriticalEdge(TI, i);
uint64_t scaleFactor = BBWeight;
if (Critical) {
if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
scaleFactor *= CriticalEdgeMultiplier;
else
scaleFactor = UINT64_MAX;
}
if (BPI != nullptr)
Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
addEdge(&*BB, TargetBB, Weight).IsCritical = Critical;
DEBUG(dbgs() << " Edge: from " << BB->getName() << " to "
<< TargetBB->getName() << " w=" << Weight << "\n");
}
} else {
addEdge(&*BB, nullptr, BBWeight);
DEBUG(dbgs() << " Edge: from " << BB->getName() << " to exit"
<< " w = " << BBWeight << "\n");
}
}
}
// Sort CFG edges based on its weight.
void sortEdgesByWeight() {
std::stable_sort(AllEdges.begin(), AllEdges.end(),
[](const std::unique_ptr<Edge> &Edge1,
const std::unique_ptr<Edge> &Edge2) {
return Edge1->Weight > Edge2->Weight;
});
}
// Traverse all the edges and compute the Minimum Weight Spanning Tree
// using union-find algorithm.
void computeMinimumSpanningTree() {
// First, put all the critical edge with landing-pad as the Dest to MST.
// This works around the insufficient support of critical edges split
// when destination BB is a landing pad.
for (auto &Ei : AllEdges) {
if (Ei->Removed)
continue;
if (Ei->IsCritical) {
if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
if (unionGroups(Ei->SrcBB, Ei->DestBB))
Ei->InMST = true;
}
}
}
for (auto &Ei : AllEdges) {
if (Ei->Removed)
continue;
if (unionGroups(Ei->SrcBB, Ei->DestBB))
Ei->InMST = true;
}
}
// Dump the Debug information about the instrumentation.
void dumpEdges(raw_ostream &OS, const Twine &Message) const {
if (!Message.str().empty())
OS << Message << "\n";
OS << " Number of Basic Blocks: " << BBInfos.size() << "\n";
for (auto &BI : BBInfos) {
const BasicBlock *BB = BI.first;
OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " "
<< BI.second->infoString() << "\n";
}
OS << " Number of Edges: " << AllEdges.size()
<< " (*: Instrument, C: CriticalEdge, -: Removed)\n";
uint32_t Count = 0;
for (auto &EI : AllEdges)
OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
<< getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
}
// Add an edge to AllEdges with weight W.
Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
uint32_t Index = BBInfos.size();
auto Iter = BBInfos.end();
bool Inserted;
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
if (Inserted) {
// Newly inserted, update the real info.
Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
Index++;
}
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
if (Inserted)
// Newly inserted, update the real info.
Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
AllEdges.emplace_back(new Edge(Src, Dest, W));
return *AllEdges.back();
}
BranchProbabilityInfo *BPI;
BlockFrequencyInfo *BFI;
public:
CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
BlockFrequencyInfo *BFI_ = nullptr)
: F(Func), BPI(BPI_), BFI(BFI_) {
buildEdges();
sortEdgesByWeight();
computeMinimumSpanningTree();
}
};
#undef DEBUG_TYPE // "cfgmst"
} // end namespace llvm