llvm-project/llvm/test/CodeGen/Thumb2/float-ops.ll

297 lines
6.6 KiB
LLVM
Raw Normal View History

[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; RUN: llc < %s -mtriple=thumbv7-none-eabi -mcpu=cortex-m3 | FileCheck %s -check-prefix=CHECK -check-prefix=NONE -check-prefix=NOREGS
; RUN: llc < %s -mtriple=thumbv7-none-eabihf -mcpu=cortex-m4 | FileCheck %s -check-prefix=CHECK -check-prefix=HARD -check-prefix=SP -check-prefix=VFP4-ALL
; RUN: llc < %s -mtriple=thumbv7-none-eabihf -mcpu=cortex-m7 | FileCheck %s -check-prefix=CHECK -check-prefix=HARD -check-prefix=DP -check-prefix=FP-ARMv8
; RUN: llc < %s -mtriple=thumbv7-none-eabihf -mcpu=cortex-a8 | FileCheck %s -check-prefix=CHECK -check-prefix=HARD -check-prefix=DP -check-prefix=VFP4-ALL -check-prefix=VFP4-DP
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; RUN: llc < %s -mtriple=thumbv8.1m.main-none-eabihf -mattr=+mve | FileCheck %s -check-prefix=CHECK -check-prefix=NONE -check-prefix=ONLYREGS
define float @add_f(float %a, float %b) {
entry:
; CHECK-LABEL: add_f:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_fadd
; HARD: vadd.f32 s0, s0, s1
%0 = fadd float %a, %b
ret float %0
}
define double @add_d(double %a, double %b) {
entry:
; CHECK-LABEL: add_d:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_dadd
; SP: {{b|bl}} __aeabi_dadd
; DP: vadd.f64 d0, d0, d1
%0 = fadd double %a, %b
ret double %0
}
define float @sub_f(float %a, float %b) {
entry:
; CHECK-LABEL: sub_f:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_fsub
; HARD: vsub.f32 s
%0 = fsub float %a, %b
ret float %0
}
define double @sub_d(double %a, double %b) {
entry:
; CHECK-LABEL: sub_d:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_dsub
; SP: {{b|bl}} __aeabi_dsub
; DP: vsub.f64 d0, d0, d1
%0 = fsub double %a, %b
ret double %0
}
define float @mul_f(float %a, float %b) {
entry:
; CHECK-LABEL: mul_f:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_fmul
; HARD: vmul.f32 s
%0 = fmul float %a, %b
ret float %0
}
define double @mul_d(double %a, double %b) {
entry:
; CHECK-LABEL: mul_d:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_dmul
; SP: {{b|bl}} __aeabi_dmul
; DP: vmul.f64 d0, d0, d1
%0 = fmul double %a, %b
ret double %0
}
define float @div_f(float %a, float %b) {
entry:
; CHECK-LABEL: div_f:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_fdiv
; HARD: vdiv.f32 s
%0 = fdiv float %a, %b
ret float %0
}
define double @div_d(double %a, double %b) {
entry:
; CHECK-LABEL: div_d:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE: {{b|bl}} __aeabi_ddiv
; SP: {{b|bl}} __aeabi_ddiv
; DP: vdiv.f64 d0, d0, d1
%0 = fdiv double %a, %b
ret double %0
}
define float @rem_f(float %a, float %b) {
entry:
; CHECK-LABEL: rem_f:
; NONE: bl fmodf
; HARD: b fmodf
%0 = frem float %a, %b
ret float %0
}
define double @rem_d(double %a, double %b) {
entry:
; CHECK-LABEL: rem_d:
; NONE: bl fmod
; HARD: b fmod
%0 = frem double %a, %b
ret double %0
}
define float @load_f(float* %a) {
entry:
; CHECK-LABEL: load_f:
; NONE: ldr r0, [r0]
; HARD: vldr s0, [r0]
%0 = load float, float* %a, align 4
ret float %0
}
define double @load_d(double* %a) {
entry:
; CHECK-LABEL: load_d:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NOREGS: ldm r0, {r0, r1}
; ONLYREGS: vldr d0, [r0]
; HARD: vldr d0, [r0]
%0 = load double, double* %a, align 8
ret double %0
}
define void @store_f(float* %a, float %b) {
entry:
; CHECK-LABEL: store_f:
; NONE: str r1, [r0]
; HARD: vstr s0, [r0]
store float %b, float* %a, align 4
ret void
}
define void @store_d(double* %a, double %b) {
entry:
; CHECK-LABEL: store_d:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NOREGS: strd r2, r3, [r0]
; ONLYREGS: vstr d0, [r0]
; HARD: vstr d0, [r0]
store double %b, double* %a, align 8
ret void
}
define double @f_to_d(float %a) {
; CHECK-LABEL: f_to_d:
; NONE: bl __aeabi_f2d
; SP: bl __aeabi_f2d
; DP: vcvt.f64.f32 d0, s0
%1 = fpext float %a to double
ret double %1
}
define float @d_to_f(double %a) {
; CHECK-LABEL: d_to_f:
; NONE: bl __aeabi_d2f
; SP: bl __aeabi_d2f
; DP: vcvt.f32.f64 s0, d0
%1 = fptrunc double %a to float
ret float %1
}
define i32 @f_to_si(float %a) {
; CHECK-LABEL: f_to_si:
; NONE: bl __aeabi_f2iz
; HARD: vcvt.s32.f32 s0, s0
; HARD: vmov r0, s0
%1 = fptosi float %a to i32
ret i32 %1
}
define i32 @d_to_si(double %a) {
; CHECK-LABEL: d_to_si:
; NONE: bl __aeabi_d2iz
; SP: vmov r0, r1, d0
; SP: bl __aeabi_d2iz
; DP: vcvt.s32.f64 s0, d0
; DP: vmov r0, s0
%1 = fptosi double %a to i32
ret i32 %1
}
define i32 @f_to_ui(float %a) {
; CHECK-LABEL: f_to_ui:
; NONE: bl __aeabi_f2uiz
; HARD: vcvt.u32.f32 s0, s0
; HARD: vmov r0, s0
%1 = fptoui float %a to i32
ret i32 %1
}
define i32 @d_to_ui(double %a) {
; CHECK-LABEL: d_to_ui:
; NONE: bl __aeabi_d2uiz
; SP: vmov r0, r1, d0
; SP: bl __aeabi_d2uiz
; DP: vcvt.u32.f64 s0, d0
; DP: vmov r0, s0
%1 = fptoui double %a to i32
ret i32 %1
}
define float @si_to_f(i32 %a) {
; CHECK-LABEL: si_to_f:
; NONE: bl __aeabi_i2f
; HARD: vcvt.f32.s32 s0, s0
%1 = sitofp i32 %a to float
ret float %1
}
define double @si_to_d(i32 %a) {
; CHECK-LABEL: si_to_d:
; NONE: bl __aeabi_i2d
; SP: bl __aeabi_i2d
; DP: vcvt.f64.s32 d0, s0
%1 = sitofp i32 %a to double
ret double %1
}
define float @ui_to_f(i32 %a) {
; CHECK-LABEL: ui_to_f:
; NONE: bl __aeabi_ui2f
; HARD: vcvt.f32.u32 s0, s0
%1 = uitofp i32 %a to float
ret float %1
}
define double @ui_to_d(i32 %a) {
; CHECK-LABEL: ui_to_d:
; NONE: bl __aeabi_ui2d
; SP: bl __aeabi_ui2d
; DP: vcvt.f64.u32 d0, s0
%1 = uitofp i32 %a to double
ret double %1
}
define float @bitcast_i_to_f(i32 %a) {
; CHECK-LABEL: bitcast_i_to_f:
; NONE-NOT: mov
; HARD: vmov s0, r0
%1 = bitcast i32 %a to float
ret float %1
}
define double @bitcast_i_to_d(i64 %a) {
; CHECK-LABEL: bitcast_i_to_d:
; NONE-NOT: mov
; HARD: vmov d0, r0, r1
%1 = bitcast i64 %a to double
ret double %1
}
define i32 @bitcast_f_to_i(float %a) {
; CHECK-LABEL: bitcast_f_to_i:
; NONE-NOT: mov
; HARD: vmov r0, s0
%1 = bitcast float %a to i32
ret i32 %1
}
define i64 @bitcast_d_to_i(double %a) {
; CHECK-LABEL: bitcast_d_to_i:
; NONE-NOT: mov
; HARD: vmov r0, r1, d0
%1 = bitcast double %a to i64
ret i64 %1
}
define float @select_f(float %a, float %b, i1 %c) {
; CHECK-LABEL: select_f:
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NOREGS: lsls r2, r2, #31
; NOREGS: moveq r0, r1
; ONLYREGS: lsls r2, r2, #31
; ONLYREGS: vmovne.f32 s2, s0
[Thumb] Teach ISel how to lower compares of AND bitmasks efficiently This is essentially a recommit of r285893, but with a correctness fix. The problem of the original commit was that this: bic r5, r7, #31 cbz r5, .LBB2_10 got rewritten into: lsrs r5, r7, #5 beq .LBB2_10 The result in destination register r5 is not the same and this is incorrect when r5 is not dead. So this fix includes checking the uses of the AND destination register. And also, compared to the original commit, some regression tests didn't need changing anymore because of this extra check. For completeness, this was the original commit message: For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)). 1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS. 2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS. 3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS). 4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask. 1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win. Differential Revision: https://reviews.llvm.org/D27761 llvm-svn: 289794
2016-12-15 17:38:59 +08:00
; HARD: lsls r0, r0, #31
; VFP4-ALL: vmovne.f32 s1, s0
; VFP4-ALL: vmov.f32 s0, s1
; FP-ARMv8: vseleq.f32 s0, s1, s0
%1 = select i1 %c, float %a, float %b
ret float %1
}
define double @select_d(double %a, double %b, i1 %c) {
; CHECK-LABEL: select_d:
[Thumb] Teach ISel how to lower compares of AND bitmasks efficiently This is essentially a recommit of r285893, but with a correctness fix. The problem of the original commit was that this: bic r5, r7, #31 cbz r5, .LBB2_10 got rewritten into: lsrs r5, r7, #5 beq .LBB2_10 The result in destination register r5 is not the same and this is incorrect when r5 is not dead. So this fix includes checking the uses of the AND destination register. And also, compared to the original commit, some regression tests didn't need changing anymore because of this extra check. For completeness, this was the original commit message: For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)). 1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS. 2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS. 3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS). 4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask. 1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win. Differential Revision: https://reviews.llvm.org/D27761 llvm-svn: 289794
2016-12-15 17:38:59 +08:00
; NONE: ldr{{(.w)?}} [[REG:r[0-9]+]], [sp]
; NONE ands [[REG]], [[REG]], #1
[ARM] Stop using scalar FP instructions in integer-only MVE mode. If you compile with `-mattr=+mve` (enabling integer MVE instructions but not floating-point ones), then the scalar FP //registers// exist and it's legal to move things in and out of them, load and store them, but it's not legal to do arithmetic on them. In D60708, the calls to `addRegisterClass` in ARMISelLowering that enable use of the scalar FP registers became conditionalised on `Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so that loads, stores and moves of those registers would work. But I didn't realise that that would also enable all the operations on those types by default. Now, if the target doesn't have basic VFP, we follow up those `addRegisterClass` calls by turning back off all the nontrivial operations you can perform on f32 and f64. That causes several knock-on failures, which are fixed by allowing the `VMOVDcc` and `VMOVScc` instructions to be selected even if all you have is `HasFPRegs`, and adjusting several checks for 'is this a double in a single-precision-only world?' to the more general 'is this any FP type we can't do arithmetic on?'. Between those, the whole of the `float-ops.ll` and `fp16-instructions.ll` tests can now run in MVE-without-FP mode and generate correct-looking code. One odd side effect is that I had to relax the check lines in that test so that they permit test functions like `add_f` to be generated as tailcalls to software FP library functions, instead of ordinary calls. Doing that is entirely legal, but the mystery is why this is the first RUN line that's needed the relaxation: on the usual kind of non-FP target, no tailcalls ever seem to be generated. Going by the llc messages, I think `SoftenFloatResult` must be perturbing the code generation in some way, but that's as much as I can guess. Reviewers: dmgreen, ostannard Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D63938 llvm-svn: 364909
2019-07-02 19:26:00 +08:00
; NONE-DAG: moveq r0, r2
; NONE-DAG: moveq r1, r3
; SP: ands r0, r0, #1
; SP-DAG: vmov [[ALO:r[0-9]+]], [[AHI:r[0-9]+]], d0
; SP-DAG: vmov [[BLO:r[0-9]+]], [[BHI:r[0-9]+]], d1
; SP: itt ne
; SP-DAG: movne [[BLO]], [[ALO]]
; SP-DAG: movne [[BHI]], [[AHI]]
; SP: vmov d0, [[BLO]], [[BHI]]
[Thumb] Teach ISel how to lower compares of AND bitmasks efficiently This is essentially a recommit of r285893, but with a correctness fix. The problem of the original commit was that this: bic r5, r7, #31 cbz r5, .LBB2_10 got rewritten into: lsrs r5, r7, #5 beq .LBB2_10 The result in destination register r5 is not the same and this is incorrect when r5 is not dead. So this fix includes checking the uses of the AND destination register. And also, compared to the original commit, some regression tests didn't need changing anymore because of this extra check. For completeness, this was the original commit message: For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)). 1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS. 2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS. 3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS). 4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask. 1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win. Differential Revision: https://reviews.llvm.org/D27761 llvm-svn: 289794
2016-12-15 17:38:59 +08:00
; DP: lsls r0, r0, #31
; VFP4-DP: vmovne.f64 d1, d0
; VFP4-DP: vmov.f64 d0, d1
; FP-ARMV8: vseleq.f64 d0, d1, d0
%1 = select i1 %c, double %a, double %b
ret double %1
}