2013-01-07 23:35:46 +08:00
//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
2010-03-16 17:55:46 +08:00
//
2019-01-19 16:50:56 +08:00
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
2010-03-16 17:55:46 +08:00
//
//===----------------------------------------------------------------------===//
2013-01-02 19:36:10 +08:00
# include "llvm/IR/Instructions.h"
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
# include "llvm/ADT/CombinationGenerator.h"
2012-12-04 18:23:08 +08:00
# include "llvm/ADT/STLExtras.h"
# include "llvm/Analysis/ValueTracking.h"
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
# include "llvm/Analysis/VectorUtils.h"
# include "llvm/AsmParser/Parser.h"
2013-01-02 19:36:10 +08:00
# include "llvm/IR/BasicBlock.h"
# include "llvm/IR/Constants.h"
# include "llvm/IR/DataLayout.h"
2020-09-09 04:39:52 +08:00
# include "llvm/IR/DebugInfoMetadata.h"
2013-01-02 19:36:10 +08:00
# include "llvm/IR/DerivedTypes.h"
2014-03-27 04:41:15 +08:00
# include "llvm/IR/Function.h"
2013-01-02 19:36:10 +08:00
# include "llvm/IR/IRBuilder.h"
# include "llvm/IR/LLVMContext.h"
# include "llvm/IR/MDBuilder.h"
2014-03-27 04:41:15 +08:00
# include "llvm/IR/Module.h"
2017-02-24 06:50:52 +08:00
# include "llvm/IR/NoFolder.h"
2013-01-02 19:36:10 +08:00
# include "llvm/IR/Operator.h"
2018-06-20 07:42:17 +08:00
# include "llvm/Support/SourceMgr.h"
2017-05-08 20:40:18 +08:00
# include "gmock/gmock-matchers.h"
2010-03-16 17:55:46 +08:00
# include "gtest/gtest.h"
2014-03-27 04:41:15 +08:00
# include <memory>
2010-03-16 17:55:46 +08:00
namespace llvm {
namespace {
2018-06-20 07:42:17 +08:00
static std : : unique_ptr < Module > parseIR ( LLVMContext & C , const char * IR ) {
SMDiagnostic Err ;
std : : unique_ptr < Module > Mod = parseAssemblyString ( IR , Err , C ) ;
if ( ! Mod )
Err . print ( " InstructionsTests " , errs ( ) ) ;
return Mod ;
}
2010-03-16 18:59:48 +08:00
TEST ( InstructionsTest , ReturnInst ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2010-03-16 17:55:46 +08:00
2010-03-16 18:59:48 +08:00
// test for PR6589
2010-03-16 17:55:46 +08:00
const ReturnInst * r0 = ReturnInst : : Create ( C ) ;
2010-03-16 23:26:09 +08:00
EXPECT_EQ ( r0 - > getNumOperands ( ) , 0U ) ;
2010-03-16 18:59:48 +08:00
EXPECT_EQ ( r0 - > op_begin ( ) , r0 - > op_end ( ) ) ;
2010-03-16 19:24:53 +08:00
2011-07-18 12:54:35 +08:00
IntegerType * Int1 = IntegerType : : get ( C , 1 ) ;
2010-03-16 19:24:53 +08:00
Constant * One = ConstantInt : : get ( Int1 , 1 , true ) ;
const ReturnInst * r1 = ReturnInst : : Create ( C , One ) ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( 1U , r1 - > getNumOperands ( ) ) ;
2010-03-16 19:24:53 +08:00
User : : const_op_iterator b ( r1 - > op_begin ( ) ) ;
2011-08-28 03:23:22 +08:00
EXPECT_NE ( r1 - > op_end ( ) , b ) ;
EXPECT_EQ ( One , * b ) ;
EXPECT_EQ ( One , r1 - > getOperand ( 0 ) ) ;
2010-03-16 19:24:53 +08:00
+ + b ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( r1 - > op_end ( ) , b ) ;
2010-03-16 20:32:03 +08:00
// clean up
delete r0 ;
delete r1 ;
2010-03-16 17:55:46 +08:00
}
2014-03-27 05:46:24 +08:00
// Test fixture that provides a module and a single function within it. Useful
// for tests that need to refer to the function in some way.
class ModuleWithFunctionTest : public testing : : Test {
protected :
2014-03-27 19:32:41 +08:00
ModuleWithFunctionTest ( ) : M ( new Module ( " MyModule " , Ctx ) ) {
2014-03-27 19:38:28 +08:00
FArgTypes . push_back ( Type : : getInt8Ty ( Ctx ) ) ;
FArgTypes . push_back ( Type : : getInt32Ty ( Ctx ) ) ;
FArgTypes . push_back ( Type : : getInt64Ty ( Ctx ) ) ;
2014-03-27 05:46:24 +08:00
FunctionType * FTy =
FunctionType : : get ( Type : : getVoidTy ( Ctx ) , FArgTypes , false ) ;
F = Function : : Create ( FTy , Function : : ExternalLinkage , " " , M . get ( ) ) ;
}
2014-03-27 04:41:15 +08:00
2014-03-27 05:46:24 +08:00
LLVMContext Ctx ;
std : : unique_ptr < Module > M ;
2014-03-27 19:33:11 +08:00
SmallVector < Type * , 3 > FArgTypes ;
2014-03-27 05:46:24 +08:00
Function * F ;
} ;
2014-03-27 04:41:15 +08:00
2014-03-27 05:46:24 +08:00
TEST_F ( ModuleWithFunctionTest , CallInst ) {
Value * Args [ ] = { ConstantInt : : get ( Type : : getInt8Ty ( Ctx ) , 20 ) ,
ConstantInt : : get ( Type : : getInt32Ty ( Ctx ) , 9999 ) ,
ConstantInt : : get ( Type : : getInt64Ty ( Ctx ) , 42 ) } ;
2014-03-27 05:11:34 +08:00
std : : unique_ptr < CallInst > Call ( CallInst : : Create ( F , Args ) ) ;
2014-03-27 04:41:15 +08:00
// Make sure iteration over a call's arguments works as expected.
unsigned Idx = 0 ;
2021-09-30 23:51:21 +08:00
for ( Value * Arg : Call - > args ( ) ) {
2014-03-27 05:46:24 +08:00
EXPECT_EQ ( FArgTypes [ Idx ] , Arg - > getType ( ) ) ;
2014-03-27 04:41:15 +08:00
EXPECT_EQ ( Call - > getArgOperand ( Idx ) - > getType ( ) , Arg - > getType ( ) ) ;
Idx + + ;
}
2020-12-11 00:58:16 +08:00
2021-08-18 11:25:16 +08:00
Call - > addRetAttr ( Attribute : : get ( Call - > getContext ( ) , " test-str-attr " ) ) ;
2020-12-11 00:58:16 +08:00
EXPECT_TRUE ( Call - > hasRetAttr ( " test-str-attr " ) ) ;
EXPECT_FALSE ( Call - > hasRetAttr ( " not-on-call " ) ) ;
2014-03-27 04:41:15 +08:00
}
2014-03-27 05:46:24 +08:00
TEST_F ( ModuleWithFunctionTest , InvokeInst ) {
BasicBlock * BB1 = BasicBlock : : Create ( Ctx , " " , F ) ;
BasicBlock * BB2 = BasicBlock : : Create ( Ctx , " " , F ) ;
Value * Args [ ] = { ConstantInt : : get ( Type : : getInt8Ty ( Ctx ) , 20 ) ,
ConstantInt : : get ( Type : : getInt32Ty ( Ctx ) , 9999 ) ,
ConstantInt : : get ( Type : : getInt64Ty ( Ctx ) , 42 ) } ;
std : : unique_ptr < InvokeInst > Invoke ( InvokeInst : : Create ( F , BB1 , BB2 , Args ) ) ;
// Make sure iteration over invoke's arguments works as expected.
unsigned Idx = 0 ;
2021-09-30 23:51:21 +08:00
for ( Value * Arg : Invoke - > args ( ) ) {
2014-03-27 05:46:24 +08:00
EXPECT_EQ ( FArgTypes [ Idx ] , Arg - > getType ( ) ) ;
EXPECT_EQ ( Invoke - > getArgOperand ( Idx ) - > getType ( ) , Arg - > getType ( ) ) ;
Idx + + ;
}
}
2010-03-16 23:26:09 +08:00
TEST ( InstructionsTest , BranchInst ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2010-03-16 23:26:09 +08:00
// Make a BasicBlocks
BasicBlock * bb0 = BasicBlock : : Create ( C ) ;
BasicBlock * bb1 = BasicBlock : : Create ( C ) ;
// Mandatory BranchInst
const BranchInst * b0 = BranchInst : : Create ( bb0 ) ;
2010-03-16 23:53:58 +08:00
EXPECT_TRUE ( b0 - > isUnconditional ( ) ) ;
EXPECT_FALSE ( b0 - > isConditional ( ) ) ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( 1U , b0 - > getNumSuccessors ( ) ) ;
2010-03-16 23:53:58 +08:00
2010-03-16 23:26:09 +08:00
// check num operands
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( 1U , b0 - > getNumOperands ( ) ) ;
2010-03-16 23:26:09 +08:00
EXPECT_NE ( b0 - > op_begin ( ) , b0 - > op_end ( ) ) ;
2014-03-02 20:27:27 +08:00
EXPECT_EQ ( b0 - > op_end ( ) , std : : next ( b0 - > op_begin ( ) ) ) ;
2010-03-16 23:53:58 +08:00
2014-03-02 20:27:27 +08:00
EXPECT_EQ ( b0 - > op_end ( ) , std : : next ( b0 - > op_begin ( ) ) ) ;
2010-03-16 23:26:09 +08:00
2011-07-18 12:54:35 +08:00
IntegerType * Int1 = IntegerType : : get ( C , 1 ) ;
2010-03-16 23:26:09 +08:00
Constant * One = ConstantInt : : get ( Int1 , 1 , true ) ;
// Conditional BranchInst
BranchInst * b1 = BranchInst : : Create ( bb0 , bb1 , One ) ;
2010-03-16 23:53:58 +08:00
EXPECT_FALSE ( b1 - > isUnconditional ( ) ) ;
EXPECT_TRUE ( b1 - > isConditional ( ) ) ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( 2U , b1 - > getNumSuccessors ( ) ) ;
2010-03-16 23:53:58 +08:00
2010-03-16 23:26:09 +08:00
// check num operands
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( 3U , b1 - > getNumOperands ( ) ) ;
2010-03-16 23:26:09 +08:00
User : : const_op_iterator b ( b1 - > op_begin ( ) ) ;
// check COND
EXPECT_NE ( b , b1 - > op_end ( ) ) ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( One , * b ) ;
EXPECT_EQ ( One , b1 - > getOperand ( 0 ) ) ;
EXPECT_EQ ( One , b1 - > getCondition ( ) ) ;
2010-03-16 23:26:09 +08:00
+ + b ;
// check ELSE
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( bb1 , * b ) ;
EXPECT_EQ ( bb1 , b1 - > getOperand ( 1 ) ) ;
EXPECT_EQ ( bb1 , b1 - > getSuccessor ( 1 ) ) ;
2010-03-16 23:26:09 +08:00
+ + b ;
// check THEN
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( bb0 , * b ) ;
EXPECT_EQ ( bb0 , b1 - > getOperand ( 2 ) ) ;
EXPECT_EQ ( bb0 , b1 - > getSuccessor ( 0 ) ) ;
2010-03-16 23:26:09 +08:00
+ + b ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( b1 - > op_end ( ) , b ) ;
2010-03-16 23:26:09 +08:00
// clean up
delete b0 ;
delete b1 ;
delete bb0 ;
delete bb1 ;
}
2011-04-01 11:34:54 +08:00
TEST ( InstructionsTest , CastInst ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2011-04-01 11:34:54 +08:00
2013-07-31 04:45:05 +08:00
Type * Int8Ty = Type : : getInt8Ty ( C ) ;
Type * Int16Ty = Type : : getInt16Ty ( C ) ;
Type * Int32Ty = Type : : getInt32Ty ( C ) ;
Type * Int64Ty = Type : : getInt64Ty ( C ) ;
2020-06-17 05:55:32 +08:00
Type * V8x8Ty = FixedVectorType : : get ( Int8Ty , 8 ) ;
Type * V8x64Ty = FixedVectorType : : get ( Int64Ty , 8 ) ;
2013-07-31 04:45:05 +08:00
Type * X86MMXTy = Type : : getX86_MMXTy ( C ) ;
Type * HalfTy = Type : : getHalfTy ( C ) ;
Type * FloatTy = Type : : getFloatTy ( C ) ;
Type * DoubleTy = Type : : getDoubleTy ( C ) ;
2020-06-17 05:55:32 +08:00
Type * V2Int32Ty = FixedVectorType : : get ( Int32Ty , 2 ) ;
Type * V2Int64Ty = FixedVectorType : : get ( Int64Ty , 2 ) ;
Type * V4Int16Ty = FixedVectorType : : get ( Int16Ty , 4 ) ;
Type * V1Int16Ty = FixedVectorType : : get ( Int16Ty , 1 ) ;
2020-03-25 06:38:12 +08:00
2020-11-28 01:30:29 +08:00
Type * VScaleV2Int32Ty = ScalableVectorType : : get ( Int32Ty , 2 ) ;
Type * VScaleV2Int64Ty = ScalableVectorType : : get ( Int64Ty , 2 ) ;
Type * VScaleV4Int16Ty = ScalableVectorType : : get ( Int16Ty , 4 ) ;
Type * VScaleV1Int16Ty = ScalableVectorType : : get ( Int16Ty , 1 ) ;
2013-07-31 04:45:05 +08:00
Type * Int32PtrTy = PointerType : : get ( Int32Ty , 0 ) ;
Type * Int64PtrTy = PointerType : : get ( Int64Ty , 0 ) ;
Type * Int32PtrAS1Ty = PointerType : : get ( Int32Ty , 1 ) ;
Type * Int64PtrAS1Ty = PointerType : : get ( Int64Ty , 1 ) ;
2020-06-17 05:55:32 +08:00
Type * V2Int32PtrAS1Ty = FixedVectorType : : get ( Int32PtrAS1Ty , 2 ) ;
Type * V2Int64PtrAS1Ty = FixedVectorType : : get ( Int64PtrAS1Ty , 2 ) ;
Type * V4Int32PtrAS1Ty = FixedVectorType : : get ( Int32PtrAS1Ty , 4 ) ;
2020-11-28 01:30:29 +08:00
Type * VScaleV4Int32PtrAS1Ty = ScalableVectorType : : get ( Int32PtrAS1Ty , 4 ) ;
2020-06-17 05:55:32 +08:00
Type * V4Int64PtrAS1Ty = FixedVectorType : : get ( Int64PtrAS1Ty , 4 ) ;
2013-07-31 04:45:05 +08:00
2020-06-17 05:55:32 +08:00
Type * V2Int64PtrTy = FixedVectorType : : get ( Int64PtrTy , 2 ) ;
Type * V2Int32PtrTy = FixedVectorType : : get ( Int32PtrTy , 2 ) ;
2020-11-28 01:30:29 +08:00
Type * VScaleV2Int32PtrTy = ScalableVectorType : : get ( Int32PtrTy , 2 ) ;
2020-06-17 05:55:32 +08:00
Type * V4Int32PtrTy = FixedVectorType : : get ( Int32PtrTy , 4 ) ;
2020-11-28 01:30:29 +08:00
Type * VScaleV4Int32PtrTy = ScalableVectorType : : get ( Int32PtrTy , 4 ) ;
Type * VScaleV4Int64PtrTy = ScalableVectorType : : get ( Int64PtrTy , 4 ) ;
2011-04-01 11:34:54 +08:00
2011-05-18 15:13:41 +08:00
const Constant * c8 = Constant : : getNullValue ( V8x8Ty ) ;
const Constant * c64 = Constant : : getNullValue ( V8x64Ty ) ;
2013-11-15 09:34:59 +08:00
const Constant * v2ptr32 = Constant : : getNullValue ( V2Int32PtrTy ) ;
2011-08-28 03:23:22 +08:00
EXPECT_EQ ( CastInst : : Trunc , CastInst : : getCastOpcode ( c64 , true , V8x8Ty , true ) ) ;
EXPECT_EQ ( CastInst : : SExt , CastInst : : getCastOpcode ( c8 , true , V8x64Ty , true ) ) ;
2011-12-05 14:29:09 +08:00
2013-07-31 04:45:05 +08:00
EXPECT_FALSE ( CastInst : : isBitCastable ( V8x8Ty , X86MMXTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( X86MMXTy , V8x8Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( Int64Ty , X86MMXTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V8x64Ty , V8x8Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V8x8Ty , V8x64Ty ) ) ;
// Check address space casts are rejected since we don't know the sizes here
EXPECT_FALSE ( CastInst : : isBitCastable ( Int32PtrTy , Int32PtrAS1Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( Int32PtrAS1Ty , Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32PtrTy , V2Int32PtrAS1Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32PtrAS1Ty , V2Int32PtrTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( V2Int32PtrAS1Ty , V2Int64PtrAS1Ty ) ) ;
2013-11-15 09:34:59 +08:00
EXPECT_EQ ( CastInst : : AddrSpaceCast , CastInst : : getCastOpcode ( v2ptr32 , true ,
V2Int32PtrAS1Ty ,
true ) ) ;
2013-07-31 04:45:05 +08:00
// Test mismatched number of elements for pointers
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32PtrAS1Ty , V4Int64PtrAS1Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V4Int64PtrAS1Ty , V2Int32PtrAS1Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32PtrAS1Ty , V4Int32PtrAS1Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( Int32PtrTy , V2Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32PtrTy , Int32PtrTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( Int32PtrTy , Int64PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( DoubleTy , FloatTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( FloatTy , DoubleTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( FloatTy , FloatTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( FloatTy , FloatTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( FloatTy , Int32Ty ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( Int16Ty , HalfTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( Int32Ty , FloatTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( V2Int32Ty , Int64Ty ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( V2Int32Ty , V4Int16Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( Int32Ty , Int64Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( Int64Ty , Int32Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32PtrTy , Int64Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( Int64Ty , V2Int32PtrTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( V2Int64PtrTy , V2Int32PtrTy ) ) ;
EXPECT_TRUE ( CastInst : : isBitCastable ( V2Int32PtrTy , V2Int64PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int32Ty , V2Int64Ty ) ) ;
EXPECT_FALSE ( CastInst : : isBitCastable ( V2Int64Ty , V2Int32Ty ) ) ;
2013-07-31 08:17:33 +08:00
2014-01-23 03:21:33 +08:00
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( V4Int32PtrTy ) ,
V2Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( V2Int32PtrTy ) ,
V4Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : AddrSpaceCast ,
Constant : : getNullValue ( V4Int32PtrAS1Ty ) ,
V2Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : AddrSpaceCast ,
Constant : : getNullValue ( V2Int32PtrTy ) ,
V4Int32PtrAS1Ty ) ) ;
2020-03-25 06:38:12 +08:00
// Address space cast of fixed/scalable vectors of pointers to scalable/fixed
// vector of pointers.
EXPECT_FALSE ( CastInst : : castIsValid (
Instruction : : AddrSpaceCast , Constant : : getNullValue ( VScaleV4Int32PtrAS1Ty ) ,
V4Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : AddrSpaceCast ,
Constant : : getNullValue ( V4Int32PtrTy ) ,
VScaleV4Int32PtrAS1Ty ) ) ;
// Address space cast of scalable vectors of pointers to scalable vector of
// pointers.
EXPECT_FALSE ( CastInst : : castIsValid (
Instruction : : AddrSpaceCast , Constant : : getNullValue ( VScaleV4Int32PtrAS1Ty ) ,
VScaleV2Int32PtrTy ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : AddrSpaceCast ,
Constant : : getNullValue ( VScaleV2Int32PtrTy ) ,
VScaleV4Int32PtrAS1Ty ) ) ;
EXPECT_TRUE ( CastInst : : castIsValid ( Instruction : : AddrSpaceCast ,
Constant : : getNullValue ( VScaleV4Int64PtrTy ) ,
VScaleV4Int32PtrAS1Ty ) ) ;
// Same number of lanes, different address space.
EXPECT_TRUE ( CastInst : : castIsValid (
Instruction : : AddrSpaceCast , Constant : : getNullValue ( VScaleV4Int32PtrAS1Ty ) ,
VScaleV4Int32PtrTy ) ) ;
// Same number of lanes, same address space.
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : AddrSpaceCast ,
Constant : : getNullValue ( VScaleV4Int64PtrTy ) ,
VScaleV4Int32PtrTy ) ) ;
// Bit casting fixed/scalable vector to scalable/fixed vectors.
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( V2Int32Ty ) ,
VScaleV2Int32Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( V2Int64Ty ) ,
VScaleV2Int64Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( V4Int16Ty ) ,
VScaleV4Int16Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV2Int32Ty ) ,
V2Int32Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV2Int64Ty ) ,
V2Int64Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV4Int16Ty ) ,
V4Int16Ty ) ) ;
// Bit casting scalable vectors to scalable vectors.
EXPECT_TRUE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV4Int16Ty ) ,
VScaleV2Int32Ty ) ) ;
EXPECT_TRUE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV2Int32Ty ) ,
VScaleV4Int16Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV2Int64Ty ) ,
VScaleV2Int32Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV2Int32Ty ) ,
VScaleV2Int64Ty ) ) ;
// Bitcasting to/from <vscale x 1 x Ty>
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( VScaleV1Int16Ty ) ,
V1Int16Ty ) ) ;
EXPECT_FALSE ( CastInst : : castIsValid ( Instruction : : BitCast ,
Constant : : getNullValue ( V1Int16Ty ) ,
VScaleV1Int16Ty ) ) ;
2014-01-23 03:21:33 +08:00
2013-07-31 08:17:33 +08:00
// Check that assertion is not hit when creating a cast with a vector of
// pointers
// First form
BasicBlock * BB = BasicBlock : : Create ( C ) ;
Constant * NullV2I32Ptr = Constant : : getNullValue ( V2Int32PtrTy ) ;
2016-04-15 05:59:01 +08:00
auto Inst1 = CastInst : : CreatePointerCast ( NullV2I32Ptr , V2Int32Ty , " foo " , BB ) ;
2013-07-31 08:17:33 +08:00
2020-12-02 21:21:00 +08:00
Constant * NullVScaleV2I32Ptr = Constant : : getNullValue ( VScaleV2Int32PtrTy ) ;
auto Inst1VScale = CastInst : : CreatePointerCast (
NullVScaleV2I32Ptr , VScaleV2Int32Ty , " foo.vscale " , BB ) ;
2013-07-31 08:17:33 +08:00
// Second form
2016-04-15 05:59:01 +08:00
auto Inst2 = CastInst : : CreatePointerCast ( NullV2I32Ptr , V2Int32Ty ) ;
2020-12-02 21:21:00 +08:00
auto Inst2VScale =
CastInst : : CreatePointerCast ( NullVScaleV2I32Ptr , VScaleV2Int32Ty ) ;
2016-04-15 05:59:01 +08:00
delete Inst2 ;
2020-12-02 21:21:00 +08:00
delete Inst2VScale ;
2016-04-15 05:59:01 +08:00
Inst1 - > eraseFromParent ( ) ;
2020-12-02 21:21:00 +08:00
Inst1VScale - > eraseFromParent ( ) ;
2016-04-15 05:59:01 +08:00
delete BB ;
2013-07-31 04:45:05 +08:00
}
2011-12-05 14:29:09 +08:00
TEST ( InstructionsTest , VectorGep ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2011-12-05 14:29:09 +08:00
// Type Definitions
2015-03-15 05:40:10 +08:00
Type * I8Ty = IntegerType : : get ( C , 8 ) ;
Type * I32Ty = IntegerType : : get ( C , 32 ) ;
PointerType * Ptri8Ty = PointerType : : get ( I8Ty , 0 ) ;
PointerType * Ptri32Ty = PointerType : : get ( I32Ty , 0 ) ;
2011-12-05 14:29:09 +08:00
2020-06-17 05:55:32 +08:00
VectorType * V2xi8PTy = FixedVectorType : : get ( Ptri8Ty , 2 ) ;
VectorType * V2xi32PTy = FixedVectorType : : get ( Ptri32Ty , 2 ) ;
2011-12-05 14:29:09 +08:00
// Test different aspects of the vector-of-pointers type
// and GEPs which use this type.
ConstantInt * Ci32a = ConstantInt : : get ( C , APInt ( 32 , 1492 ) ) ;
ConstantInt * Ci32b = ConstantInt : : get ( C , APInt ( 32 , 1948 ) ) ;
std : : vector < Constant * > ConstVa ( 2 , Ci32a ) ;
std : : vector < Constant * > ConstVb ( 2 , Ci32b ) ;
Constant * C2xi32a = ConstantVector : : get ( ConstVa ) ;
Constant * C2xi32b = ConstantVector : : get ( ConstVb ) ;
CastInst * PtrVecA = new IntToPtrInst ( C2xi32a , V2xi32PTy ) ;
CastInst * PtrVecB = new IntToPtrInst ( C2xi32b , V2xi32PTy ) ;
ICmpInst * ICmp0 = new ICmpInst ( ICmpInst : : ICMP_SGT , PtrVecA , PtrVecB ) ;
ICmpInst * ICmp1 = new ICmpInst ( ICmpInst : : ICMP_ULT , PtrVecA , PtrVecB ) ;
EXPECT_NE ( ICmp0 , ICmp1 ) ; // suppress warning.
2013-01-16 22:38:50 +08:00
BasicBlock * BB0 = BasicBlock : : Create ( C ) ;
// Test InsertAtEnd ICmpInst constructor.
ICmpInst * ICmp2 = new ICmpInst ( * BB0 , ICmpInst : : ICMP_SGE , PtrVecA , PtrVecB ) ;
EXPECT_NE ( ICmp0 , ICmp2 ) ; // suppress warning.
2015-03-15 05:40:10 +08:00
GetElementPtrInst * Gep0 = GetElementPtrInst : : Create ( I32Ty , PtrVecA , C2xi32a ) ;
GetElementPtrInst * Gep1 = GetElementPtrInst : : Create ( I32Ty , PtrVecA , C2xi32b ) ;
GetElementPtrInst * Gep2 = GetElementPtrInst : : Create ( I32Ty , PtrVecB , C2xi32a ) ;
GetElementPtrInst * Gep3 = GetElementPtrInst : : Create ( I32Ty , PtrVecB , C2xi32b ) ;
2011-12-05 14:29:09 +08:00
CastInst * BTC0 = new BitCastInst ( Gep0 , V2xi8PTy ) ;
CastInst * BTC1 = new BitCastInst ( Gep1 , V2xi8PTy ) ;
CastInst * BTC2 = new BitCastInst ( Gep2 , V2xi8PTy ) ;
CastInst * BTC3 = new BitCastInst ( Gep3 , V2xi8PTy ) ;
Value * S0 = BTC0 - > stripPointerCasts ( ) ;
Value * S1 = BTC1 - > stripPointerCasts ( ) ;
Value * S2 = BTC2 - > stripPointerCasts ( ) ;
Value * S3 = BTC3 - > stripPointerCasts ( ) ;
EXPECT_NE ( S0 , Gep0 ) ;
EXPECT_NE ( S1 , Gep1 ) ;
EXPECT_NE ( S2 , Gep2 ) ;
EXPECT_NE ( S3 , Gep3 ) ;
int64_t Offset ;
2012-10-09 00:39:34 +08:00
DataLayout TD ( " e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3 "
2013-12-14 02:56:34 +08:00
" 2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80 "
2011-12-05 14:29:09 +08:00
" :128:128-n8:16:32:64-S128 " ) ;
// Make sure we don't crash
2015-03-10 10:37:25 +08:00
GetPointerBaseWithConstantOffset ( Gep0 , Offset , TD ) ;
GetPointerBaseWithConstantOffset ( Gep1 , Offset , TD ) ;
GetPointerBaseWithConstantOffset ( Gep2 , Offset , TD ) ;
GetPointerBaseWithConstantOffset ( Gep3 , Offset , TD ) ;
2011-12-05 14:29:09 +08:00
// Gep of Geps
2015-03-15 05:40:10 +08:00
GetElementPtrInst * GepII0 = GetElementPtrInst : : Create ( I32Ty , Gep0 , C2xi32b ) ;
GetElementPtrInst * GepII1 = GetElementPtrInst : : Create ( I32Ty , Gep1 , C2xi32a ) ;
GetElementPtrInst * GepII2 = GetElementPtrInst : : Create ( I32Ty , Gep2 , C2xi32b ) ;
GetElementPtrInst * GepII3 = GetElementPtrInst : : Create ( I32Ty , Gep3 , C2xi32a ) ;
2011-12-05 14:29:09 +08:00
EXPECT_EQ ( GepII0 - > getNumIndices ( ) , 1u ) ;
EXPECT_EQ ( GepII1 - > getNumIndices ( ) , 1u ) ;
EXPECT_EQ ( GepII2 - > getNumIndices ( ) , 1u ) ;
EXPECT_EQ ( GepII3 - > getNumIndices ( ) , 1u ) ;
EXPECT_FALSE ( GepII0 - > hasAllZeroIndices ( ) ) ;
EXPECT_FALSE ( GepII1 - > hasAllZeroIndices ( ) ) ;
EXPECT_FALSE ( GepII2 - > hasAllZeroIndices ( ) ) ;
EXPECT_FALSE ( GepII3 - > hasAllZeroIndices ( ) ) ;
delete GepII0 ;
delete GepII1 ;
delete GepII2 ;
delete GepII3 ;
delete BTC0 ;
delete BTC1 ;
delete BTC2 ;
delete BTC3 ;
delete Gep0 ;
delete Gep1 ;
delete Gep2 ;
delete Gep3 ;
2013-01-16 22:38:50 +08:00
ICmp2 - > eraseFromParent ( ) ;
delete BB0 ;
2011-12-05 14:29:09 +08:00
delete ICmp0 ;
delete ICmp1 ;
delete PtrVecA ;
delete PtrVecB ;
}
2012-04-17 00:28:59 +08:00
TEST ( InstructionsTest , FPMathOperator ) {
2016-04-15 05:59:01 +08:00
LLVMContext Context ;
2012-04-17 00:28:59 +08:00
IRBuilder < > Builder ( Context ) ;
MDBuilder MDHelper ( Context ) ;
Instruction * I = Builder . CreatePHI ( Builder . getDoubleTy ( ) , 0 ) ;
MDNode * MD1 = MDHelper . createFPMath ( 1.0 ) ;
Value * V1 = Builder . CreateFAdd ( I , I , " " , MD1 ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( V1 ) ) ;
FPMathOperator * O1 = cast < FPMathOperator > ( V1 ) ;
EXPECT_EQ ( O1 - > getFPAccuracy ( ) , 1.0 ) ;
[IR] De-virtualize ~Value to save a vptr
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
2017-05-19 01:24:10 +08:00
V1 - > deleteValue ( ) ;
I - > deleteValue ( ) ;
2012-04-17 00:28:59 +08:00
}
2012-10-31 00:03:32 +08:00
TEST ( InstructionsTest , isEliminableCastPair ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2012-10-31 00:03:32 +08:00
2013-07-31 06:27:10 +08:00
Type * Int16Ty = Type : : getInt16Ty ( C ) ;
2012-10-31 00:03:32 +08:00
Type * Int32Ty = Type : : getInt32Ty ( C ) ;
Type * Int64Ty = Type : : getInt64Ty ( C ) ;
Type * Int64PtrTy = Type : : getInt64PtrTy ( C ) ;
// Source and destination pointers have same size -> bitcast.
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : PtrToInt ,
CastInst : : IntToPtr ,
Int64PtrTy , Int64Ty , Int64PtrTy ,
2014-06-09 06:29:17 +08:00
Int32Ty , nullptr , Int32Ty ) ,
2012-10-31 00:03:32 +08:00
CastInst : : BitCast ) ;
2013-07-31 06:27:10 +08:00
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is the maximum pointer size -> bitcast
2012-10-31 00:03:32 +08:00
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : PtrToInt ,
CastInst : : IntToPtr ,
Int64PtrTy , Int64Ty , Int64PtrTy ,
2014-06-09 06:29:17 +08:00
nullptr , nullptr , nullptr ) ,
2013-07-31 06:27:10 +08:00
CastInst : : BitCast ) ;
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is not the maximum pointer size -> nothing
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : PtrToInt ,
CastInst : : IntToPtr ,
Int64PtrTy , Int32Ty , Int64PtrTy ,
2014-06-09 06:29:17 +08:00
nullptr , nullptr , nullptr ) ,
2012-10-31 00:03:32 +08:00
0U ) ;
// Middle pointer big enough -> bitcast.
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : IntToPtr ,
CastInst : : PtrToInt ,
Int64Ty , Int64PtrTy , Int64Ty ,
2014-06-09 06:29:17 +08:00
nullptr , Int64Ty , nullptr ) ,
2012-10-31 00:03:32 +08:00
CastInst : : BitCast ) ;
// Middle pointer too small -> fail.
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : IntToPtr ,
CastInst : : PtrToInt ,
Int64Ty , Int64PtrTy , Int64Ty ,
2014-06-09 06:29:17 +08:00
nullptr , Int32Ty , nullptr ) ,
2012-10-31 00:03:32 +08:00
0U ) ;
2013-07-31 06:27:10 +08:00
// Test that we don't eliminate bitcasts between different address spaces,
// or if we don't have available pointer size information.
DataLayout DL ( " e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16 "
" -i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64 "
2013-12-14 02:56:34 +08:00
" -v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128 " ) ;
2013-07-31 06:27:10 +08:00
Type * Int64PtrTyAS1 = Type : : getInt64PtrTy ( C , 1 ) ;
Type * Int64PtrTyAS2 = Type : : getInt64PtrTy ( C , 2 ) ;
IntegerType * Int16SizePtr = DL . getIntPtrType ( C , 1 ) ;
IntegerType * Int64SizePtr = DL . getIntPtrType ( C , 2 ) ;
2013-11-15 09:34:59 +08:00
// Cannot simplify inttoptr, addrspacecast
2013-07-31 06:27:10 +08:00
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : IntToPtr ,
2013-11-15 09:34:59 +08:00
CastInst : : AddrSpaceCast ,
2013-07-31 06:27:10 +08:00
Int16Ty , Int64PtrTyAS1 , Int64PtrTyAS2 ,
2014-06-09 06:29:17 +08:00
nullptr , Int16SizePtr , Int64SizePtr ) ,
2013-07-31 06:27:10 +08:00
0U ) ;
2013-11-15 09:34:59 +08:00
// Cannot simplify addrspacecast, ptrtoint
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : AddrSpaceCast ,
CastInst : : PtrToInt ,
Int64PtrTyAS1 , Int64PtrTyAS2 , Int16Ty ,
2014-06-09 06:29:17 +08:00
Int64SizePtr , Int16SizePtr , nullptr ) ,
2013-07-31 06:27:10 +08:00
0U ) ;
// Pass since the bitcast address spaces are the same
EXPECT_EQ ( CastInst : : isEliminableCastPair ( CastInst : : IntToPtr ,
CastInst : : BitCast ,
Int16Ty , Int64PtrTyAS1 , Int64PtrTyAS1 ,
2014-06-09 06:29:17 +08:00
nullptr , nullptr , nullptr ) ,
2013-07-31 06:27:10 +08:00
CastInst : : IntToPtr ) ;
2012-10-31 00:03:32 +08:00
}
2014-05-07 04:08:20 +08:00
TEST ( InstructionsTest , CloneCall ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2014-05-07 04:08:20 +08:00
Type * Int32Ty = Type : : getInt32Ty ( C ) ;
Type * ArgTys [ ] = { Int32Ty , Int32Ty , Int32Ty } ;
2019-02-02 04:43:25 +08:00
FunctionType * FnTy = FunctionType : : get ( Int32Ty , ArgTys , /*isVarArg=*/ false ) ;
2014-05-07 04:08:20 +08:00
Value * Callee = Constant : : getNullValue ( FnTy - > getPointerTo ( ) ) ;
Value * Args [ ] = {
ConstantInt : : get ( Int32Ty , 1 ) ,
ConstantInt : : get ( Int32Ty , 2 ) ,
ConstantInt : : get ( Int32Ty , 3 )
} ;
2019-02-02 04:43:25 +08:00
std : : unique_ptr < CallInst > Call (
CallInst : : Create ( FnTy , Callee , Args , " result " ) ) ;
2014-05-07 04:08:20 +08:00
// Test cloning the tail call kind.
CallInst : : TailCallKind Kinds [ ] = { CallInst : : TCK_None , CallInst : : TCK_Tail ,
CallInst : : TCK_MustTail } ;
for ( CallInst : : TailCallKind TCK : Kinds ) {
Call - > setTailCallKind ( TCK ) ;
std : : unique_ptr < CallInst > Clone ( cast < CallInst > ( Call - > clone ( ) ) ) ;
EXPECT_EQ ( Call - > getTailCallKind ( ) , Clone - > getTailCallKind ( ) ) ;
}
Call - > setTailCallKind ( CallInst : : TCK_None ) ;
// Test cloning an attribute.
{
2022-01-04 02:32:19 +08:00
AttrBuilder AB ( C ) ;
2014-05-07 04:08:20 +08:00
AB . addAttribute ( Attribute : : ReadOnly ) ;
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
Call - > setAttributes (
AttributeList : : get ( C , AttributeList : : FunctionIndex , AB ) ) ;
2014-05-07 04:08:20 +08:00
std : : unique_ptr < CallInst > Clone ( cast < CallInst > ( Call - > clone ( ) ) ) ;
EXPECT_TRUE ( Clone - > onlyReadsMemory ( ) ) ;
}
}
2016-01-14 14:21:42 +08:00
TEST ( InstructionsTest , AlterCallBundles ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2016-01-14 14:21:42 +08:00
Type * Int32Ty = Type : : getInt32Ty ( C ) ;
2019-02-02 04:43:25 +08:00
FunctionType * FnTy = FunctionType : : get ( Int32Ty , Int32Ty , /*isVarArg=*/ false ) ;
2016-01-14 14:21:42 +08:00
Value * Callee = Constant : : getNullValue ( FnTy - > getPointerTo ( ) ) ;
Value * Args [ ] = { ConstantInt : : get ( Int32Ty , 42 ) } ;
OperandBundleDef OldBundle ( " before " , UndefValue : : get ( Int32Ty ) ) ;
std : : unique_ptr < CallInst > Call (
2019-02-02 04:43:25 +08:00
CallInst : : Create ( FnTy , Callee , Args , OldBundle , " result " ) ) ;
2016-01-14 14:21:42 +08:00
Call - > setTailCallKind ( CallInst : : TailCallKind : : TCK_NoTail ) ;
2022-01-04 02:32:19 +08:00
AttrBuilder AB ( C ) ;
2016-01-14 14:21:42 +08:00
AB . addAttribute ( Attribute : : Cold ) ;
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
Call - > setAttributes ( AttributeList : : get ( C , AttributeList : : FunctionIndex , AB ) ) ;
2016-01-14 14:21:42 +08:00
Call - > setDebugLoc ( DebugLoc ( MDNode : : get ( C , None ) ) ) ;
OperandBundleDef NewBundle ( " after " , ConstantInt : : get ( Int32Ty , 7 ) ) ;
std : : unique_ptr < CallInst > Clone ( CallInst : : Create ( Call . get ( ) , NewBundle ) ) ;
2021-10-05 23:29:19 +08:00
EXPECT_EQ ( Call - > arg_size ( ) , Clone - > arg_size ( ) ) ;
2016-01-14 14:21:42 +08:00
EXPECT_EQ ( Call - > getArgOperand ( 0 ) , Clone - > getArgOperand ( 0 ) ) ;
EXPECT_EQ ( Call - > getCallingConv ( ) , Clone - > getCallingConv ( ) ) ;
EXPECT_EQ ( Call - > getTailCallKind ( ) , Clone - > getTailCallKind ( ) ) ;
EXPECT_TRUE ( Clone - > hasFnAttr ( Attribute : : AttrKind : : Cold ) ) ;
EXPECT_EQ ( Call - > getDebugLoc ( ) , Clone - > getDebugLoc ( ) ) ;
2016-01-14 14:30:19 +08:00
EXPECT_EQ ( Clone - > getNumOperandBundles ( ) , 1U ) ;
2016-01-14 14:21:42 +08:00
EXPECT_TRUE ( Clone - > getOperandBundle ( " after " ) . hasValue ( ) ) ;
}
2013-07-31 06:27:10 +08:00
2016-01-14 14:21:42 +08:00
TEST ( InstructionsTest , AlterInvokeBundles ) {
2016-04-15 05:59:01 +08:00
LLVMContext C ;
2016-01-14 14:21:42 +08:00
Type * Int32Ty = Type : : getInt32Ty ( C ) ;
2019-02-02 04:43:34 +08:00
FunctionType * FnTy = FunctionType : : get ( Int32Ty , Int32Ty , /*isVarArg=*/ false ) ;
2016-01-14 14:21:42 +08:00
Value * Callee = Constant : : getNullValue ( FnTy - > getPointerTo ( ) ) ;
Value * Args [ ] = { ConstantInt : : get ( Int32Ty , 42 ) } ;
2016-01-15 23:08:36 +08:00
std : : unique_ptr < BasicBlock > NormalDest ( BasicBlock : : Create ( C ) ) ;
std : : unique_ptr < BasicBlock > UnwindDest ( BasicBlock : : Create ( C ) ) ;
2016-01-14 14:21:42 +08:00
OperandBundleDef OldBundle ( " before " , UndefValue : : get ( Int32Ty ) ) ;
2019-02-02 04:43:34 +08:00
std : : unique_ptr < InvokeInst > Invoke (
InvokeInst : : Create ( FnTy , Callee , NormalDest . get ( ) , UnwindDest . get ( ) , Args ,
OldBundle , " result " ) ) ;
2022-01-04 02:32:19 +08:00
AttrBuilder AB ( C ) ;
2016-01-14 14:21:42 +08:00
AB . addAttribute ( Attribute : : Cold ) ;
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
Invoke - > setAttributes (
AttributeList : : get ( C , AttributeList : : FunctionIndex , AB ) ) ;
2016-01-14 14:21:42 +08:00
Invoke - > setDebugLoc ( DebugLoc ( MDNode : : get ( C , None ) ) ) ;
OperandBundleDef NewBundle ( " after " , ConstantInt : : get ( Int32Ty , 7 ) ) ;
2016-01-15 23:08:36 +08:00
std : : unique_ptr < InvokeInst > Clone (
InvokeInst : : Create ( Invoke . get ( ) , NewBundle ) ) ;
2016-01-14 14:21:42 +08:00
EXPECT_EQ ( Invoke - > getNormalDest ( ) , Clone - > getNormalDest ( ) ) ;
EXPECT_EQ ( Invoke - > getUnwindDest ( ) , Clone - > getUnwindDest ( ) ) ;
2021-10-05 23:29:19 +08:00
EXPECT_EQ ( Invoke - > arg_size ( ) , Clone - > arg_size ( ) ) ;
2016-01-14 14:21:42 +08:00
EXPECT_EQ ( Invoke - > getArgOperand ( 0 ) , Clone - > getArgOperand ( 0 ) ) ;
EXPECT_EQ ( Invoke - > getCallingConv ( ) , Clone - > getCallingConv ( ) ) ;
EXPECT_TRUE ( Clone - > hasFnAttr ( Attribute : : AttrKind : : Cold ) ) ;
EXPECT_EQ ( Invoke - > getDebugLoc ( ) , Clone - > getDebugLoc ( ) ) ;
2016-01-14 17:21:49 +08:00
EXPECT_EQ ( Clone - > getNumOperandBundles ( ) , 1U ) ;
2016-01-14 14:21:42 +08:00
EXPECT_TRUE ( Clone - > getOperandBundle ( " after " ) . hasValue ( ) ) ;
}
2013-07-31 06:27:10 +08:00
2017-02-24 06:50:52 +08:00
TEST_F ( ModuleWithFunctionTest , DropPoisonGeneratingFlags ) {
auto * OnlyBB = BasicBlock : : Create ( Ctx , " bb " , F ) ;
auto * Arg0 = & * F - > arg_begin ( ) ;
IRBuilder < NoFolder > B ( Ctx ) ;
B . SetInsertPoint ( OnlyBB ) ;
{
auto * UI =
cast < Instruction > ( B . CreateUDiv ( Arg0 , Arg0 , " " , /*isExact*/ true ) ) ;
ASSERT_TRUE ( UI - > isExact ( ) ) ;
UI - > dropPoisonGeneratingFlags ( ) ;
ASSERT_FALSE ( UI - > isExact ( ) ) ;
}
{
auto * ShrI =
cast < Instruction > ( B . CreateLShr ( Arg0 , Arg0 , " " , /*isExact*/ true ) ) ;
ASSERT_TRUE ( ShrI - > isExact ( ) ) ;
ShrI - > dropPoisonGeneratingFlags ( ) ;
ASSERT_FALSE ( ShrI - > isExact ( ) ) ;
}
{
auto * AI = cast < Instruction > (
B . CreateAdd ( Arg0 , Arg0 , " " , /*HasNUW*/ true , /*HasNSW*/ false ) ) ;
ASSERT_TRUE ( AI - > hasNoUnsignedWrap ( ) ) ;
AI - > dropPoisonGeneratingFlags ( ) ;
ASSERT_FALSE ( AI - > hasNoUnsignedWrap ( ) ) ;
ASSERT_FALSE ( AI - > hasNoSignedWrap ( ) ) ;
}
{
auto * SI = cast < Instruction > (
B . CreateAdd ( Arg0 , Arg0 , " " , /*HasNUW*/ false , /*HasNSW*/ true ) ) ;
ASSERT_TRUE ( SI - > hasNoSignedWrap ( ) ) ;
SI - > dropPoisonGeneratingFlags ( ) ;
ASSERT_FALSE ( SI - > hasNoUnsignedWrap ( ) ) ;
ASSERT_FALSE ( SI - > hasNoSignedWrap ( ) ) ;
}
{
auto * ShlI = cast < Instruction > (
B . CreateShl ( Arg0 , Arg0 , " " , /*HasNUW*/ true , /*HasNSW*/ true ) ) ;
ASSERT_TRUE ( ShlI - > hasNoSignedWrap ( ) ) ;
ASSERT_TRUE ( ShlI - > hasNoUnsignedWrap ( ) ) ;
ShlI - > dropPoisonGeneratingFlags ( ) ;
ASSERT_FALSE ( ShlI - > hasNoUnsignedWrap ( ) ) ;
ASSERT_FALSE ( ShlI - > hasNoSignedWrap ( ) ) ;
}
{
Value * GEPBase = Constant : : getNullValue ( B . getInt8PtrTy ( ) ) ;
2019-02-02 04:44:47 +08:00
auto * GI = cast < GetElementPtrInst > (
B . CreateInBoundsGEP ( B . getInt8Ty ( ) , GEPBase , Arg0 ) ) ;
2017-02-24 06:50:52 +08:00
ASSERT_TRUE ( GI - > isInBounds ( ) ) ;
GI - > dropPoisonGeneratingFlags ( ) ;
ASSERT_FALSE ( GI - > isInBounds ( ) ) ;
}
}
2017-02-28 16:04:20 +08:00
TEST ( InstructionsTest , GEPIndices ) {
LLVMContext Context ;
IRBuilder < NoFolder > Builder ( Context ) ;
Type * ElementTy = Builder . getInt8Ty ( ) ;
Type * ArrTy = ArrayType : : get ( ArrayType : : get ( ElementTy , 64 ) , 64 ) ;
Value * Indices [ ] = {
Builder . getInt32 ( 0 ) ,
Builder . getInt32 ( 13 ) ,
Builder . getInt32 ( 42 ) } ;
Value * V = Builder . CreateGEP ( ArrTy , UndefValue : : get ( PointerType : : getUnqual ( ArrTy ) ) ,
Indices ) ;
ASSERT_TRUE ( isa < GetElementPtrInst > ( V ) ) ;
auto * GEPI = cast < GetElementPtrInst > ( V ) ;
ASSERT_NE ( GEPI - > idx_begin ( ) , GEPI - > idx_end ( ) ) ;
ASSERT_EQ ( GEPI - > idx_end ( ) , std : : next ( GEPI - > idx_begin ( ) , 3 ) ) ;
EXPECT_EQ ( Indices [ 0 ] , GEPI - > idx_begin ( ) [ 0 ] ) ;
EXPECT_EQ ( Indices [ 1 ] , GEPI - > idx_begin ( ) [ 1 ] ) ;
EXPECT_EQ ( Indices [ 2 ] , GEPI - > idx_begin ( ) [ 2 ] ) ;
EXPECT_EQ ( GEPI - > idx_begin ( ) , GEPI - > indices ( ) . begin ( ) ) ;
EXPECT_EQ ( GEPI - > idx_end ( ) , GEPI - > indices ( ) . end ( ) ) ;
const auto * CGEPI = GEPI ;
ASSERT_NE ( CGEPI - > idx_begin ( ) , CGEPI - > idx_end ( ) ) ;
ASSERT_EQ ( CGEPI - > idx_end ( ) , std : : next ( CGEPI - > idx_begin ( ) , 3 ) ) ;
EXPECT_EQ ( Indices [ 0 ] , CGEPI - > idx_begin ( ) [ 0 ] ) ;
EXPECT_EQ ( Indices [ 1 ] , CGEPI - > idx_begin ( ) [ 1 ] ) ;
EXPECT_EQ ( Indices [ 2 ] , CGEPI - > idx_begin ( ) [ 2 ] ) ;
EXPECT_EQ ( CGEPI - > idx_begin ( ) , CGEPI - > indices ( ) . begin ( ) ) ;
EXPECT_EQ ( CGEPI - > idx_end ( ) , CGEPI - > indices ( ) . end ( ) ) ;
delete GEPI ;
}
2017-04-12 15:27:28 +08:00
TEST ( InstructionsTest , SwitchInst ) {
LLVMContext C ;
std : : unique_ptr < BasicBlock > BB1 , BB2 , BB3 ;
BB1 . reset ( BasicBlock : : Create ( C ) ) ;
BB2 . reset ( BasicBlock : : Create ( C ) ) ;
BB3 . reset ( BasicBlock : : Create ( C ) ) ;
// We create block 0 after the others so that it gets destroyed first and
// clears the uses of the other basic blocks.
std : : unique_ptr < BasicBlock > BB0 ( BasicBlock : : Create ( C ) ) ;
auto * Int32Ty = Type : : getInt32Ty ( C ) ;
SwitchInst * SI =
SwitchInst : : Create ( UndefValue : : get ( Int32Ty ) , BB0 . get ( ) , 3 , BB0 . get ( ) ) ;
SI - > addCase ( ConstantInt : : get ( Int32Ty , 1 ) , BB1 . get ( ) ) ;
SI - > addCase ( ConstantInt : : get ( Int32Ty , 2 ) , BB2 . get ( ) ) ;
SI - > addCase ( ConstantInt : : get ( Int32Ty , 3 ) , BB3 . get ( ) ) ;
auto CI = SI - > case_begin ( ) ;
ASSERT_NE ( CI , SI - > case_end ( ) ) ;
EXPECT_EQ ( 1 , CI - > getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB1 . get ( ) , CI - > getCaseSuccessor ( ) ) ;
EXPECT_EQ ( 2 , ( CI + 1 ) - > getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB2 . get ( ) , ( CI + 1 ) - > getCaseSuccessor ( ) ) ;
EXPECT_EQ ( 3 , ( CI + 2 ) - > getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB3 . get ( ) , ( CI + 2 ) - > getCaseSuccessor ( ) ) ;
EXPECT_EQ ( CI + 1 , std : : next ( CI ) ) ;
EXPECT_EQ ( CI + 2 , std : : next ( CI , 2 ) ) ;
EXPECT_EQ ( CI + 3 , std : : next ( CI , 3 ) ) ;
EXPECT_EQ ( SI - > case_end ( ) , CI + 3 ) ;
EXPECT_EQ ( 0 , CI - CI ) ;
EXPECT_EQ ( 1 , ( CI + 1 ) - CI ) ;
EXPECT_EQ ( 2 , ( CI + 2 ) - CI ) ;
EXPECT_EQ ( 3 , SI - > case_end ( ) - CI ) ;
EXPECT_EQ ( 3 , std : : distance ( CI , SI - > case_end ( ) ) ) ;
auto CCI = const_cast < const SwitchInst * > ( SI ) - > case_begin ( ) ;
SwitchInst : : ConstCaseIt CCE = SI - > case_end ( ) ;
ASSERT_NE ( CCI , SI - > case_end ( ) ) ;
EXPECT_EQ ( 1 , CCI - > getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB1 . get ( ) , CCI - > getCaseSuccessor ( ) ) ;
EXPECT_EQ ( 2 , ( CCI + 1 ) - > getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB2 . get ( ) , ( CCI + 1 ) - > getCaseSuccessor ( ) ) ;
EXPECT_EQ ( 3 , ( CCI + 2 ) - > getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB3 . get ( ) , ( CCI + 2 ) - > getCaseSuccessor ( ) ) ;
EXPECT_EQ ( CCI + 1 , std : : next ( CCI ) ) ;
EXPECT_EQ ( CCI + 2 , std : : next ( CCI , 2 ) ) ;
EXPECT_EQ ( CCI + 3 , std : : next ( CCI , 3 ) ) ;
EXPECT_EQ ( CCE , CCI + 3 ) ;
EXPECT_EQ ( 0 , CCI - CCI ) ;
EXPECT_EQ ( 1 , ( CCI + 1 ) - CCI ) ;
EXPECT_EQ ( 2 , ( CCI + 2 ) - CCI ) ;
EXPECT_EQ ( 3 , CCE - CCI ) ;
EXPECT_EQ ( 3 , std : : distance ( CCI , CCE ) ) ;
// Make sure that the const iterator is compatible with a const auto ref.
const auto & Handle = * CCI ;
EXPECT_EQ ( 1 , Handle . getCaseValue ( ) - > getSExtValue ( ) ) ;
EXPECT_EQ ( BB1 . get ( ) , Handle . getCaseSuccessor ( ) ) ;
}
2019-06-04 17:03:39 +08:00
TEST ( InstructionsTest , SwitchInstProfUpdateWrapper ) {
LLVMContext C ;
std : : unique_ptr < BasicBlock > BB1 , BB2 , BB3 ;
BB1 . reset ( BasicBlock : : Create ( C ) ) ;
BB2 . reset ( BasicBlock : : Create ( C ) ) ;
BB3 . reset ( BasicBlock : : Create ( C ) ) ;
// We create block 0 after the others so that it gets destroyed first and
// clears the uses of the other basic blocks.
std : : unique_ptr < BasicBlock > BB0 ( BasicBlock : : Create ( C ) ) ;
auto * Int32Ty = Type : : getInt32Ty ( C ) ;
SwitchInst * SI =
SwitchInst : : Create ( UndefValue : : get ( Int32Ty ) , BB0 . get ( ) , 4 , BB0 . get ( ) ) ;
SI - > addCase ( ConstantInt : : get ( Int32Ty , 1 ) , BB1 . get ( ) ) ;
SI - > addCase ( ConstantInt : : get ( Int32Ty , 2 ) , BB2 . get ( ) ) ;
SI - > setMetadata ( LLVMContext : : MD_prof ,
MDBuilder ( C ) . createBranchWeights ( { 9 , 1 , 22 } ) ) ;
{
SwitchInstProfUpdateWrapper SIW ( * SI ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 0 ) , 9u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 1 ) , 1u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 2 ) , 22u ) ;
SIW . setSuccessorWeight ( 0 , 99u ) ;
SIW . setSuccessorWeight ( 1 , 11u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 0 ) , 99u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 1 ) , 11u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 2 ) , 22u ) ;
}
{ // Create another wrapper and check that the data persist.
SwitchInstProfUpdateWrapper SIW ( * SI ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 0 ) , 99u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 1 ) , 11u ) ;
EXPECT_EQ ( * SIW . getSuccessorWeight ( 2 ) , 22u ) ;
}
}
2017-05-08 20:40:18 +08:00
TEST ( InstructionsTest , CommuteShuffleMask ) {
SmallVector < int , 16 > Indices ( { - 1 , 0 , 7 } ) ;
ShuffleVectorInst : : commuteShuffleMask ( Indices , 4 ) ;
EXPECT_THAT ( Indices , testing : : ContainerEq ( ArrayRef < int > ( { - 1 , 4 , 3 } ) ) ) ;
}
2018-06-20 02:44:00 +08:00
TEST ( InstructionsTest , ShuffleMaskQueries ) {
// Create the elements for various constant vectors.
LLVMContext Ctx ;
Type * Int32Ty = Type : : getInt32Ty ( Ctx ) ;
Constant * CU = UndefValue : : get ( Int32Ty ) ;
Constant * C0 = ConstantInt : : get ( Int32Ty , 0 ) ;
Constant * C1 = ConstantInt : : get ( Int32Ty , 1 ) ;
Constant * C2 = ConstantInt : : get ( Int32Ty , 2 ) ;
Constant * C3 = ConstantInt : : get ( Int32Ty , 3 ) ;
Constant * C4 = ConstantInt : : get ( Int32Ty , 4 ) ;
Constant * C5 = ConstantInt : : get ( Int32Ty , 5 ) ;
Constant * C6 = ConstantInt : : get ( Int32Ty , 6 ) ;
Constant * C7 = ConstantInt : : get ( Int32Ty , 7 ) ;
Constant * Identity = ConstantVector : : get ( { C0 , CU , C2 , C3 , C4 } ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isIdentityMask ( Identity ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSelectMask ( Identity ) ) ; // identity is distinguished from select
EXPECT_FALSE ( ShuffleVectorInst : : isReverseMask ( Identity ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSingleSourceMask ( Identity ) ) ; // identity is always single source
EXPECT_FALSE ( ShuffleVectorInst : : isZeroEltSplatMask ( Identity ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isTransposeMask ( Identity ) ) ;
Constant * Select = ConstantVector : : get ( { CU , C1 , C5 } ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isIdentityMask ( Select ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSelectMask ( Select ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isReverseMask ( Select ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSingleSourceMask ( Select ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isZeroEltSplatMask ( Select ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isTransposeMask ( Select ) ) ;
Constant * Reverse = ConstantVector : : get ( { C3 , C2 , C1 , CU } ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isIdentityMask ( Reverse ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSelectMask ( Reverse ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isReverseMask ( Reverse ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSingleSourceMask ( Reverse ) ) ; // reverse is always single source
EXPECT_FALSE ( ShuffleVectorInst : : isZeroEltSplatMask ( Reverse ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isTransposeMask ( Reverse ) ) ;
Constant * SingleSource = ConstantVector : : get ( { C2 , C2 , C0 , CU } ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isIdentityMask ( SingleSource ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSelectMask ( SingleSource ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isReverseMask ( SingleSource ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSingleSourceMask ( SingleSource ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isZeroEltSplatMask ( SingleSource ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isTransposeMask ( SingleSource ) ) ;
Constant * ZeroEltSplat = ConstantVector : : get ( { C0 , C0 , CU , C0 } ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isIdentityMask ( ZeroEltSplat ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSelectMask ( ZeroEltSplat ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isReverseMask ( ZeroEltSplat ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSingleSourceMask ( ZeroEltSplat ) ) ; // 0-splat is always single source
EXPECT_TRUE ( ShuffleVectorInst : : isZeroEltSplatMask ( ZeroEltSplat ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isTransposeMask ( ZeroEltSplat ) ) ;
Constant * Transpose = ConstantVector : : get ( { C0 , C4 , C2 , C6 } ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isIdentityMask ( Transpose ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSelectMask ( Transpose ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isReverseMask ( Transpose ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isSingleSourceMask ( Transpose ) ) ;
EXPECT_FALSE ( ShuffleVectorInst : : isZeroEltSplatMask ( Transpose ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isTransposeMask ( Transpose ) ) ;
// More tests to make sure the logic is/stays correct...
EXPECT_TRUE ( ShuffleVectorInst : : isIdentityMask ( ConstantVector : : get ( { CU , C1 , CU , C3 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isIdentityMask ( ConstantVector : : get ( { C4 , CU , C6 , CU } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSelectMask ( ConstantVector : : get ( { C4 , C1 , C6 , CU } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSelectMask ( ConstantVector : : get ( { CU , C1 , C6 , C3 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isReverseMask ( ConstantVector : : get ( { C7 , C6 , CU , C4 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isReverseMask ( ConstantVector : : get ( { C3 , CU , C1 , CU } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSingleSourceMask ( ConstantVector : : get ( { C7 , C5 , CU , C7 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isSingleSourceMask ( ConstantVector : : get ( { C3 , C0 , CU , C3 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isZeroEltSplatMask ( ConstantVector : : get ( { C4 , CU , CU , C4 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isZeroEltSplatMask ( ConstantVector : : get ( { CU , C0 , CU , C0 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isTransposeMask ( ConstantVector : : get ( { C1 , C5 , C3 , C7 } ) ) ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isTransposeMask ( ConstantVector : : get ( { C1 , C3 } ) ) ) ;
2018-08-30 23:05:38 +08:00
2018-09-20 22:36:09 +08:00
// Nothing special about the values here - just re-using inputs to reduce code.
Constant * V0 = ConstantVector : : get ( { C0 , C1 , C2 , C3 } ) ;
Constant * V1 = ConstantVector : : get ( { C3 , C2 , C1 , C0 } ) ;
2018-08-30 23:05:38 +08:00
// Identity with undef elts.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id1 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C0 , C1 , CU , CU } ) ) ;
EXPECT_TRUE ( Id1 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id1 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id1 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id1 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id1 ;
// Result has less elements than operands.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id2 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C0 , C1 , C2 } ) ) ;
EXPECT_FALSE ( Id2 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id2 - > isIdentityWithPadding ( ) ) ;
EXPECT_TRUE ( Id2 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id2 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id2 ;
// Result has less elements than operands; choose from Op1.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id3 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C4 , CU , C6 } ) ) ;
EXPECT_FALSE ( Id3 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id3 - > isIdentityWithPadding ( ) ) ;
EXPECT_TRUE ( Id3 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id3 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id3 ;
// Result has less elements than operands; choose from Op0 and Op1 is not identity.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id4 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C4 , C1 , C6 } ) ) ;
EXPECT_FALSE ( Id4 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id4 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id4 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id4 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id4 ;
// Result has more elements than operands, and extra elements are undef.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id5 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { CU , C1 , C2 , C3 , CU , CU } ) ) ;
EXPECT_FALSE ( Id5 - > isIdentity ( ) ) ;
EXPECT_TRUE ( Id5 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id5 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id5 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id5 ;
// Result has more elements than operands, and extra elements are undef; choose from Op1.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id6 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C4 , C5 , C6 , CU , CU , CU } ) ) ;
EXPECT_FALSE ( Id6 - > isIdentity ( ) ) ;
EXPECT_TRUE ( Id6 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id6 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id6 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id6 ;
// Result has more elements than operands, but extra elements are not undef.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id7 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C0 , C1 , C2 , C3 , CU , C1 } ) ) ;
EXPECT_FALSE ( Id7 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id7 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id7 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id7 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id7 ;
// Result has more elements than operands; choose from Op0 and Op1 is not identity.
2018-09-20 22:36:09 +08:00
ShuffleVectorInst * Id8 = new ShuffleVectorInst ( V0 , V1 ,
2018-08-30 23:05:38 +08:00
ConstantVector : : get ( { C4 , CU , C2 , C3 , CU , CU } ) ) ;
EXPECT_FALSE ( Id8 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id8 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id8 - > isIdentityWithExtract ( ) ) ;
2018-09-20 23:21:52 +08:00
EXPECT_FALSE ( Id8 - > isConcat ( ) ) ;
2018-08-30 23:05:38 +08:00
delete Id8 ;
2018-09-20 23:21:52 +08:00
// Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
ShuffleVectorInst * Id9 = new ShuffleVectorInst ( V0 , V1 ,
ConstantVector : : get ( { C0 , CU , C2 , C3 , CU , CU , C6 , C7 } ) ) ;
EXPECT_FALSE ( Id9 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id9 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id9 - > isIdentityWithExtract ( ) ) ;
EXPECT_TRUE ( Id9 - > isConcat ( ) ) ;
delete Id9 ;
// Result has less than twice as many elements as operands, so not a concat.
ShuffleVectorInst * Id10 = new ShuffleVectorInst ( V0 , V1 ,
ConstantVector : : get ( { C0 , CU , C2 , C3 , CU , CU , C6 } ) ) ;
EXPECT_FALSE ( Id10 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id10 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id10 - > isIdentityWithExtract ( ) ) ;
EXPECT_FALSE ( Id10 - > isConcat ( ) ) ;
delete Id10 ;
// Result has more than twice as many elements as operands, so not a concat.
ShuffleVectorInst * Id11 = new ShuffleVectorInst ( V0 , V1 ,
ConstantVector : : get ( { C0 , CU , C2 , C3 , CU , CU , C6 , C7 , CU } ) ) ;
EXPECT_FALSE ( Id11 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id11 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id11 - > isIdentityWithExtract ( ) ) ;
EXPECT_FALSE ( Id11 - > isConcat ( ) ) ;
delete Id11 ;
// If an input is undef, it's not a concat.
// TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
ShuffleVectorInst * Id12 = new ShuffleVectorInst ( V0 , ConstantVector : : get ( { CU , CU , CU , CU } ) ,
ConstantVector : : get ( { C0 , CU , C2 , C3 , CU , CU , C6 , C7 } ) ) ;
EXPECT_FALSE ( Id12 - > isIdentity ( ) ) ;
EXPECT_FALSE ( Id12 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id12 - > isIdentityWithExtract ( ) ) ;
EXPECT_FALSE ( Id12 - > isConcat ( ) ) ;
delete Id12 ;
2020-11-30 19:35:46 +08:00
// Not possible to express shuffle mask for scalable vector for extract
// subvector.
Type * VScaleV4Int32Ty = ScalableVectorType : : get ( Int32Ty , 4 ) ;
ShuffleVectorInst * Id13 =
new ShuffleVectorInst ( Constant : : getAllOnesValue ( VScaleV4Int32Ty ) ,
UndefValue : : get ( VScaleV4Int32Ty ) ,
Constant : : getNullValue ( VScaleV4Int32Ty ) ) ;
int Index = 0 ;
EXPECT_FALSE ( Id13 - > isExtractSubvectorMask ( Index ) ) ;
2020-11-30 19:35:46 +08:00
EXPECT_FALSE ( Id13 - > changesLength ( ) ) ;
EXPECT_FALSE ( Id13 - > increasesLength ( ) ) ;
2020-11-30 19:35:46 +08:00
delete Id13 ;
2020-11-30 19:35:46 +08:00
// Result has twice as many operands.
Type * VScaleV2Int32Ty = ScalableVectorType : : get ( Int32Ty , 2 ) ;
ShuffleVectorInst * Id14 =
new ShuffleVectorInst ( Constant : : getAllOnesValue ( VScaleV2Int32Ty ) ,
UndefValue : : get ( VScaleV2Int32Ty ) ,
Constant : : getNullValue ( VScaleV4Int32Ty ) ) ;
EXPECT_TRUE ( Id14 - > changesLength ( ) ) ;
EXPECT_TRUE ( Id14 - > increasesLength ( ) ) ;
delete Id14 ;
2020-11-30 19:35:46 +08:00
// Not possible to express these masks for scalable vectors, make sure we
// don't crash.
ShuffleVectorInst * Id15 =
new ShuffleVectorInst ( Constant : : getAllOnesValue ( VScaleV2Int32Ty ) ,
Constant : : getNullValue ( VScaleV2Int32Ty ) ,
Constant : : getNullValue ( VScaleV2Int32Ty ) ) ;
EXPECT_FALSE ( Id15 - > isIdentityWithPadding ( ) ) ;
EXPECT_FALSE ( Id15 - > isIdentityWithExtract ( ) ) ;
EXPECT_FALSE ( Id15 - > isConcat ( ) ) ;
delete Id15 ;
2018-06-20 02:44:00 +08:00
}
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
TEST ( InstructionsTest , ShuffleMaskIsReplicationMask ) {
for ( int ReplicationFactor : seq_inclusive ( 1 , 8 ) ) {
for ( int VF : seq_inclusive ( 1 , 8 ) ) {
const auto ReplicatedMask = createReplicatedMask ( ReplicationFactor , VF ) ;
int GuessedReplicationFactor = - 1 , GuessedVF = - 1 ;
EXPECT_TRUE ( ShuffleVectorInst : : isReplicationMask (
ReplicatedMask , GuessedReplicationFactor , GuessedVF ) ) ;
EXPECT_EQ ( GuessedReplicationFactor , ReplicationFactor ) ;
EXPECT_EQ ( GuessedVF , VF ) ;
2021-11-06 00:11:55 +08:00
for ( int OpVF : seq_inclusive ( VF , 2 * VF + 1 ) ) {
LLVMContext Ctx ;
Type * OpVFTy = FixedVectorType : : get ( IntegerType : : getInt1Ty ( Ctx ) , OpVF ) ;
Value * Op = ConstantVector : : getNullValue ( OpVFTy ) ;
ShuffleVectorInst * SVI = new ShuffleVectorInst ( Op , Op , ReplicatedMask ) ;
EXPECT_EQ ( SVI - > isReplicationMask ( GuessedReplicationFactor , GuessedVF ) ,
OpVF = = VF ) ;
delete SVI ;
}
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
}
}
}
TEST ( InstructionsTest , ShuffleMaskIsReplicationMask_undef ) {
2021-11-06 00:22:27 +08:00
for ( int ReplicationFactor : seq_inclusive ( 1 , 4 ) ) {
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
for ( int VF : seq_inclusive ( 1 , 4 ) ) {
const auto ReplicatedMask = createReplicatedMask ( ReplicationFactor , VF ) ;
int GuessedReplicationFactor = - 1 , GuessedVF = - 1 ;
// If we change some mask elements to undef, we should still match.
SmallVector < SmallVector < bool > > ElementChoices ( ReplicatedMask . size ( ) ,
{ false , true } ) ;
CombinationGenerator < bool , decltype ( ElementChoices ) : : value_type ,
/*variable_smallsize=*/ 4 >
G ( ElementChoices ) ;
G . generate ( [ & ] ( ArrayRef < bool > UndefOverrides ) - > bool {
SmallVector < int > AdjustedMask ;
AdjustedMask . reserve ( ReplicatedMask . size ( ) ) ;
for ( auto I : zip ( ReplicatedMask , UndefOverrides ) )
AdjustedMask . emplace_back ( std : : get < 1 > ( I ) ? - 1 : std : : get < 0 > ( I ) ) ;
assert ( AdjustedMask . size ( ) = = ReplicatedMask . size ( ) & &
" Size misprediction " ) ;
EXPECT_TRUE ( ShuffleVectorInst : : isReplicationMask (
AdjustedMask , GuessedReplicationFactor , GuessedVF ) ) ;
// Do not check GuessedReplicationFactor and GuessedVF,
// with enough undef's we may deduce a different tuple.
return /*Abort=*/ false ;
} ) ;
}
}
}
TEST ( InstructionsTest , ShuffleMaskIsReplicationMask_Exhaustive_Correctness ) {
2021-11-06 00:22:27 +08:00
for ( int ShufMaskNumElts : seq_inclusive ( 1 , 6 ) ) {
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
SmallVector < int > PossibleShufMaskElts ;
PossibleShufMaskElts . reserve ( ShufMaskNumElts + 2 ) ;
for ( int PossibleShufMaskElt : seq_inclusive ( - 1 , ShufMaskNumElts ) )
PossibleShufMaskElts . emplace_back ( PossibleShufMaskElt ) ;
assert ( PossibleShufMaskElts . size ( ) = = ShufMaskNumElts + 2U & &
" Size misprediction " ) ;
SmallVector < SmallVector < int > > ElementChoices ( ShufMaskNumElts ,
PossibleShufMaskElts ) ;
CombinationGenerator < int , decltype ( ElementChoices ) : : value_type ,
/*variable_smallsize=*/ 4 >
G ( ElementChoices ) ;
G . generate ( [ & ] ( ArrayRef < int > Mask ) - > bool {
int GuessedReplicationFactor = - 1 , GuessedVF = - 1 ;
bool Match = ShuffleVectorInst : : isReplicationMask (
Mask , GuessedReplicationFactor , GuessedVF ) ;
if ( ! Match )
return /*Abort=*/ false ;
const auto ActualMask =
createReplicatedMask ( GuessedReplicationFactor , GuessedVF ) ;
EXPECT_EQ ( Mask . size ( ) , ActualMask . size ( ) ) ;
for ( auto I : zip ( Mask , ActualMask ) ) {
int Elt = std : : get < 0 > ( I ) ;
int ActualElt = std : : get < 0 > ( I ) ;
2021-11-07 05:06:55 +08:00
if ( Elt ! = - 1 ) {
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
EXPECT_EQ ( Elt , ActualElt ) ;
2021-11-07 05:06:55 +08:00
}
[IR][ShuffleVector] Introduce `isReplicationMask()` matcher
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
2021-11-05 21:50:24 +08:00
}
return /*Abort=*/ false ;
} ) ;
}
}
2019-12-11 04:41:19 +08:00
TEST ( InstructionsTest , GetSplat ) {
// Create the elements for various constant vectors.
LLVMContext Ctx ;
Type * Int32Ty = Type : : getInt32Ty ( Ctx ) ;
Constant * CU = UndefValue : : get ( Int32Ty ) ;
Constant * C0 = ConstantInt : : get ( Int32Ty , 0 ) ;
Constant * C1 = ConstantInt : : get ( Int32Ty , 1 ) ;
Constant * Splat0 = ConstantVector : : get ( { C0 , C0 , C0 , C0 } ) ;
Constant * Splat1 = ConstantVector : : get ( { C1 , C1 , C1 , C1 , C1 } ) ;
Constant * Splat0Undef = ConstantVector : : get ( { C0 , CU , C0 , CU } ) ;
Constant * Splat1Undef = ConstantVector : : get ( { CU , CU , C1 , CU } ) ;
Constant * NotSplat = ConstantVector : : get ( { C1 , C1 , C0 , C1 , C1 } ) ;
Constant * NotSplatUndef = ConstantVector : : get ( { CU , C1 , CU , CU , C0 } ) ;
// Default - undefs are not allowed.
EXPECT_EQ ( Splat0 - > getSplatValue ( ) , C0 ) ;
EXPECT_EQ ( Splat1 - > getSplatValue ( ) , C1 ) ;
EXPECT_EQ ( Splat0Undef - > getSplatValue ( ) , nullptr ) ;
EXPECT_EQ ( Splat1Undef - > getSplatValue ( ) , nullptr ) ;
EXPECT_EQ ( NotSplat - > getSplatValue ( ) , nullptr ) ;
EXPECT_EQ ( NotSplatUndef - > getSplatValue ( ) , nullptr ) ;
// Disallow undefs explicitly.
EXPECT_EQ ( Splat0 - > getSplatValue ( false ) , C0 ) ;
EXPECT_EQ ( Splat1 - > getSplatValue ( false ) , C1 ) ;
EXPECT_EQ ( Splat0Undef - > getSplatValue ( false ) , nullptr ) ;
EXPECT_EQ ( Splat1Undef - > getSplatValue ( false ) , nullptr ) ;
EXPECT_EQ ( NotSplat - > getSplatValue ( false ) , nullptr ) ;
EXPECT_EQ ( NotSplatUndef - > getSplatValue ( false ) , nullptr ) ;
// Allow undefs.
EXPECT_EQ ( Splat0 - > getSplatValue ( true ) , C0 ) ;
EXPECT_EQ ( Splat1 - > getSplatValue ( true ) , C1 ) ;
EXPECT_EQ ( Splat0Undef - > getSplatValue ( true ) , C0 ) ;
EXPECT_EQ ( Splat1Undef - > getSplatValue ( true ) , C1 ) ;
EXPECT_EQ ( NotSplat - > getSplatValue ( true ) , nullptr ) ;
EXPECT_EQ ( NotSplatUndef - > getSplatValue ( true ) , nullptr ) ;
}
2018-06-20 07:42:17 +08:00
TEST ( InstructionsTest , SkipDebug ) {
LLVMContext C ;
std : : unique_ptr < Module > M = parseIR ( C ,
R " (
declare void @ llvm . dbg . value ( metadata , metadata , metadata )
define void @ f ( ) {
entry :
call void @ llvm . dbg . value ( metadata i32 0 , metadata ! 11 , metadata ! DIExpression ( ) ) , ! dbg ! 13
ret void
}
! llvm . dbg . cu = ! { ! 0 }
! llvm . module . flags = ! { ! 3 , ! 4 }
! 0 = distinct ! DICompileUnit ( language : DW_LANG_C99 , file : ! 1 , producer : " clang version 6.0.0 " , isOptimized : false , runtimeVersion : 0 , emissionKind : FullDebug , enums : ! 2 )
! 1 = ! DIFile ( filename : " t2.c " , directory : " foo " )
! 2 = ! { }
! 3 = ! { i32 2 , ! " Dwarf Version " , i32 4 }
! 4 = ! { i32 2 , ! " Debug Info Version " , i32 3 }
! 8 = distinct ! DISubprogram ( name : " f " , scope : ! 1 , file : ! 1 , line : 1 , type : ! 9 , isLocal : false , isDefinition : true , scopeLine : 1 , isOptimized : false , unit : ! 0 , retainedNodes : ! 2 )
! 9 = ! DISubroutineType ( types : ! 10 )
! 10 = ! { null }
! 11 = ! DILocalVariable ( name : " x " , scope : ! 8 , file : ! 1 , line : 2 , type : ! 12 )
! 12 = ! DIBasicType ( name : " int " , size : 32 , encoding : DW_ATE_signed )
! 13 = ! DILocation ( line : 2 , column : 7 , scope : ! 8 )
) " );
ASSERT_TRUE ( M ) ;
Function * F = cast < Function > ( M - > getNamedValue ( " f " ) ) ;
BasicBlock & BB = F - > front ( ) ;
// The first non-debug instruction is the terminator.
auto * Term = BB . getTerminator ( ) ;
EXPECT_EQ ( Term , BB . begin ( ) - > getNextNonDebugInstruction ( ) ) ;
2018-06-27 05:16:59 +08:00
EXPECT_EQ ( Term - > getIterator ( ) , skipDebugIntrinsics ( BB . begin ( ) ) ) ;
2018-06-20 07:42:17 +08:00
// After the terminator, there are no non-debug instructions.
EXPECT_EQ ( nullptr , Term - > getNextNonDebugInstruction ( ) ) ;
}
2019-09-25 22:35:02 +08:00
TEST ( InstructionsTest , PhiMightNotBeFPMathOperator ) {
2019-03-05 09:15:08 +08:00
LLVMContext Context ;
IRBuilder < > Builder ( Context ) ;
MDBuilder MDHelper ( Context ) ;
2019-09-25 22:35:02 +08:00
Instruction * I = Builder . CreatePHI ( Builder . getInt32Ty ( ) , 0 ) ;
2019-03-05 09:15:08 +08:00
EXPECT_FALSE ( isa < FPMathOperator > ( I ) ) ;
I - > deleteValue ( ) ;
2019-09-25 22:35:02 +08:00
Instruction * FP = Builder . CreatePHI ( Builder . getDoubleTy ( ) , 0 ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( FP ) ) ;
FP - > deleteValue ( ) ;
2019-03-05 09:15:08 +08:00
}
[IR] Allow fast math flags on calls with floating point array type.
Summary:
This extends the rules for when a call instruction is deemed to be an
FPMathOperator, which is based on the type of the call (i.e. the return
type of the function being called). Previously we only allowed
floating-point and vector-of-floating-point types. Now we also allow
arrays (nested to any depth) of floating-point and
vector-of-floating-point types.
This was motivated by llpc, the pipeline compiler for AMD GPUs
(https://github.com/GPUOpen-Drivers/llpc). llpc has many math library
functions that operate on vectors, typically represented as <4 x float>,
and some that operate on matrices, typically represented as
[4 x <4 x float>], and it's useful to be able to decorate calls to all
of them with fast math flags.
Reviewers: spatel, wristow, arsenm, hfinkel, aemerson, efriedma, cameron.mcinally, mcberg2017, jmolloy
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69161
2019-10-17 16:25:23 +08:00
TEST ( InstructionsTest , FPCallIsFPMathOperator ) {
LLVMContext C ;
Type * ITy = Type : : getInt32Ty ( C ) ;
FunctionType * IFnTy = FunctionType : : get ( ITy , { } ) ;
Value * ICallee = Constant : : getNullValue ( IFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > ICall ( CallInst : : Create ( IFnTy , ICallee , { } , " " ) ) ;
EXPECT_FALSE ( isa < FPMathOperator > ( ICall ) ) ;
2020-06-17 05:55:32 +08:00
Type * VITy = FixedVectorType : : get ( ITy , 2 ) ;
[IR] Allow fast math flags on calls with floating point array type.
Summary:
This extends the rules for when a call instruction is deemed to be an
FPMathOperator, which is based on the type of the call (i.e. the return
type of the function being called). Previously we only allowed
floating-point and vector-of-floating-point types. Now we also allow
arrays (nested to any depth) of floating-point and
vector-of-floating-point types.
This was motivated by llpc, the pipeline compiler for AMD GPUs
(https://github.com/GPUOpen-Drivers/llpc). llpc has many math library
functions that operate on vectors, typically represented as <4 x float>,
and some that operate on matrices, typically represented as
[4 x <4 x float>], and it's useful to be able to decorate calls to all
of them with fast math flags.
Reviewers: spatel, wristow, arsenm, hfinkel, aemerson, efriedma, cameron.mcinally, mcberg2017, jmolloy
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69161
2019-10-17 16:25:23 +08:00
FunctionType * VIFnTy = FunctionType : : get ( VITy , { } ) ;
Value * VICallee = Constant : : getNullValue ( VIFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > VICall ( CallInst : : Create ( VIFnTy , VICallee , { } , " " ) ) ;
EXPECT_FALSE ( isa < FPMathOperator > ( VICall ) ) ;
Type * AITy = ArrayType : : get ( ITy , 2 ) ;
FunctionType * AIFnTy = FunctionType : : get ( AITy , { } ) ;
Value * AICallee = Constant : : getNullValue ( AIFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > AICall ( CallInst : : Create ( AIFnTy , AICallee , { } , " " ) ) ;
EXPECT_FALSE ( isa < FPMathOperator > ( AICall ) ) ;
Type * FTy = Type : : getFloatTy ( C ) ;
FunctionType * FFnTy = FunctionType : : get ( FTy , { } ) ;
Value * FCallee = Constant : : getNullValue ( FFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > FCall ( CallInst : : Create ( FFnTy , FCallee , { } , " " ) ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( FCall ) ) ;
2020-06-17 05:55:32 +08:00
Type * VFTy = FixedVectorType : : get ( FTy , 2 ) ;
[IR] Allow fast math flags on calls with floating point array type.
Summary:
This extends the rules for when a call instruction is deemed to be an
FPMathOperator, which is based on the type of the call (i.e. the return
type of the function being called). Previously we only allowed
floating-point and vector-of-floating-point types. Now we also allow
arrays (nested to any depth) of floating-point and
vector-of-floating-point types.
This was motivated by llpc, the pipeline compiler for AMD GPUs
(https://github.com/GPUOpen-Drivers/llpc). llpc has many math library
functions that operate on vectors, typically represented as <4 x float>,
and some that operate on matrices, typically represented as
[4 x <4 x float>], and it's useful to be able to decorate calls to all
of them with fast math flags.
Reviewers: spatel, wristow, arsenm, hfinkel, aemerson, efriedma, cameron.mcinally, mcberg2017, jmolloy
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69161
2019-10-17 16:25:23 +08:00
FunctionType * VFFnTy = FunctionType : : get ( VFTy , { } ) ;
Value * VFCallee = Constant : : getNullValue ( VFFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > VFCall ( CallInst : : Create ( VFFnTy , VFCallee , { } , " " ) ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( VFCall ) ) ;
Type * AFTy = ArrayType : : get ( FTy , 2 ) ;
FunctionType * AFFnTy = FunctionType : : get ( AFTy , { } ) ;
Value * AFCallee = Constant : : getNullValue ( AFFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > AFCall ( CallInst : : Create ( AFFnTy , AFCallee , { } , " " ) ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( AFCall ) ) ;
Type * AVFTy = ArrayType : : get ( VFTy , 2 ) ;
FunctionType * AVFFnTy = FunctionType : : get ( AVFTy , { } ) ;
Value * AVFCallee = Constant : : getNullValue ( AVFFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > AVFCall (
CallInst : : Create ( AVFFnTy , AVFCallee , { } , " " ) ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( AVFCall ) ) ;
Type * AAVFTy = ArrayType : : get ( AVFTy , 2 ) ;
FunctionType * AAVFFnTy = FunctionType : : get ( AAVFTy , { } ) ;
Value * AAVFCallee = Constant : : getNullValue ( AAVFFnTy - > getPointerTo ( ) ) ;
std : : unique_ptr < CallInst > AAVFCall (
CallInst : : Create ( AAVFFnTy , AAVFCallee , { } , " " ) ) ;
EXPECT_TRUE ( isa < FPMathOperator > ( AAVFCall ) ) ;
}
2019-06-08 02:59:51 +08:00
TEST ( InstructionsTest , FNegInstruction ) {
LLVMContext Context ;
Type * FltTy = Type : : getFloatTy ( Context ) ;
Constant * One = ConstantFP : : get ( FltTy , 1.0 ) ;
BinaryOperator * FAdd = BinaryOperator : : CreateFAdd ( One , One ) ;
FAdd - > setHasNoNaNs ( true ) ;
UnaryOperator * FNeg = UnaryOperator : : CreateFNegFMF ( One , FAdd ) ;
EXPECT_TRUE ( FNeg - > hasNoNaNs ( ) ) ;
EXPECT_FALSE ( FNeg - > hasNoInfs ( ) ) ;
EXPECT_FALSE ( FNeg - > hasNoSignedZeros ( ) ) ;
EXPECT_FALSE ( FNeg - > hasAllowReciprocal ( ) ) ;
EXPECT_FALSE ( FNeg - > hasAllowContract ( ) ) ;
EXPECT_FALSE ( FNeg - > hasAllowReassoc ( ) ) ;
EXPECT_FALSE ( FNeg - > hasApproxFunc ( ) ) ;
FAdd - > deleteValue ( ) ;
FNeg - > deleteValue ( ) ;
}
[IR] CallBrInst: scan+update arg list when indirect dest list changes
Summary:
There's an unspoken invariant of callbr that the list of BlockAddress
Constants in the "function args" list match the BasicBlocks in the
"other labels" list. (This invariant is being added to the LangRef in
https://reviews.llvm.org/D67196).
When modifying the any of the indirect destinations of a callbr
instruction (possible jump targets), we need to update the function
arguments if the argument is a BlockAddress whose BasicBlock refers to
the indirect destination BasicBlock being replaced. Otherwise, many
transforms that modify successors will end up violating that invariant.
A recent change to the arm64 Linux kernel exposed this bug, which
prevents the kernel from booting.
I considered maintaining a mapping from indirect destination BasicBlock
to argument operand BlockAddress, but this ends up being a one to
potentially many (though usually one) mapping. Also, the list of
arguments to a function (or more typically inline assembly) ends up
being less than 10. The implementation is significantly simpler to just
rescan the full list of arguments. Because of the one to potentially
many relationship, the full arg list must be scanned (we can't stop at
the first instance).
Thanks to the following folks that reported the issue and helped debug
it:
* Nathan Chancellor
* Will Deacon
* Andrew Murray
* Craig Topper
Link: https://bugs.llvm.org/show_bug.cgi?id=43222
Link: https://github.com/ClangBuiltLinux/linux/issues/649
Link: https://lists.infradead.org/pipermail/linux-arm-kernel/2019-September/678330.html
Reviewers: craig.topper, chandlerc
Reviewed By: craig.topper
Subscribers: void, javed.absar, kristof.beyls, hiraditya, llvm-commits, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67252
llvm-svn: 371262
2019-09-07 05:50:11 +08:00
TEST ( InstructionsTest , CallBrInstruction ) {
LLVMContext Context ;
std : : unique_ptr < Module > M = parseIR ( Context , R " (
define void @ foo ( ) {
entry :
callbr void asm sideeffect " // XXX: ${0:l} " , " X " ( i8 * blockaddress ( @ foo , % branch_test . exit ) )
to label % land . rhs . i [ label % branch_test . exit ]
land . rhs . i :
br label % branch_test . exit
branch_test . exit :
% 0 = phi i1 [ true , % entry ] , [ false , % land . rhs . i ]
br i1 % 0 , label % if . end , label % if . then
if . then :
ret void
if . end :
ret void
}
) " );
Function * Foo = M - > getFunction ( " foo " ) ;
auto BBs = Foo - > getBasicBlockList ( ) . begin ( ) ;
CallBrInst & CBI = cast < CallBrInst > ( BBs - > front ( ) ) ;
+ + BBs ;
+ + BBs ;
BasicBlock & BranchTestExit = * BBs ;
+ + BBs ;
BasicBlock & IfThen = * BBs ;
// Test that setting the first indirect destination of callbr updates the dest
EXPECT_EQ ( & BranchTestExit , CBI . getIndirectDest ( 0 ) ) ;
CBI . setIndirectDest ( 0 , & IfThen ) ;
EXPECT_EQ ( & IfThen , CBI . getIndirectDest ( 0 ) ) ;
// Further, test that changing the indirect destination updates the arg
// operand to use the block address of the new indirect destination basic
// block. This is a critical invariant of CallBrInst.
BlockAddress * IndirectBA = BlockAddress : : get ( CBI . getIndirectDest ( 0 ) ) ;
BlockAddress * ArgBA = cast < BlockAddress > ( CBI . getArgOperand ( 0 ) ) ;
EXPECT_EQ ( IndirectBA , ArgBA )
< < " After setting the indirect destination, callbr had an indirect "
" destination of ' "
< < CBI . getIndirectDest ( 0 ) - > getName ( ) < < " ', but a argument of ' "
< < ArgBA - > getBasicBlock ( ) - > getName ( ) < < " '. These should always match: \n "
< < CBI ;
EXPECT_EQ ( IndirectBA - > getBasicBlock ( ) , & IfThen ) ;
EXPECT_EQ ( ArgBA - > getBasicBlock ( ) , & IfThen ) ;
}
2019-10-14 23:35:01 +08:00
TEST ( InstructionsTest , UnaryOperator ) {
LLVMContext Context ;
IRBuilder < > Builder ( Context ) ;
Instruction * I = Builder . CreatePHI ( Builder . getDoubleTy ( ) , 0 ) ;
Value * F = Builder . CreateFNeg ( I ) ;
EXPECT_TRUE ( isa < Value > ( F ) ) ;
EXPECT_TRUE ( isa < Instruction > ( F ) ) ;
EXPECT_TRUE ( isa < UnaryInstruction > ( F ) ) ;
EXPECT_TRUE ( isa < UnaryOperator > ( F ) ) ;
EXPECT_FALSE ( isa < BinaryOperator > ( F ) ) ;
F - > deleteValue ( ) ;
2019-10-15 03:17:31 +08:00
I - > deleteValue ( ) ;
2019-10-14 23:35:01 +08:00
}
2020-09-09 04:39:52 +08:00
TEST ( InstructionsTest , DropLocation ) {
LLVMContext C ;
std : : unique_ptr < Module > M = parseIR ( C ,
R " (
declare void @ callee ( )
define void @ no_parent_scope ( ) {
call void @ callee ( ) ; I1 : Call with no location .
call void @ callee ( ) , ! dbg ! 11 ; I2 : Call with location .
ret void , ! dbg ! 11 ; I3 : Non - call with location .
}
define void @ with_parent_scope ( ) ! dbg ! 8 {
call void @ callee ( ) ; I1 : Call with no location .
call void @ callee ( ) , ! dbg ! 11 ; I2 : Call with location .
ret void , ! dbg ! 11 ; I3 : Non - call with location .
}
! llvm . dbg . cu = ! { ! 0 }
! llvm . module . flags = ! { ! 3 , ! 4 }
! 0 = distinct ! DICompileUnit ( language : DW_LANG_C99 , file : ! 1 , producer : " " , isOptimized : false , runtimeVersion : 0 , emissionKind : FullDebug , enums : ! 2 )
! 1 = ! DIFile ( filename : " t2.c " , directory : " foo " )
! 2 = ! { }
! 3 = ! { i32 2 , ! " Dwarf Version " , i32 4 }
! 4 = ! { i32 2 , ! " Debug Info Version " , i32 3 }
! 8 = distinct ! DISubprogram ( name : " f " , scope : ! 1 , file : ! 1 , line : 1 , type : ! 9 , isLocal : false , isDefinition : true , scopeLine : 1 , isOptimized : false , unit : ! 0 , retainedNodes : ! 2 )
! 9 = ! DISubroutineType ( types : ! 10 )
! 10 = ! { null }
! 11 = ! DILocation ( line : 2 , column : 7 , scope : ! 8 , inlinedAt : ! 12 )
! 12 = ! DILocation ( line : 3 , column : 8 , scope : ! 8 )
) " );
ASSERT_TRUE ( M ) ;
{
Function * NoParentScopeF =
cast < Function > ( M - > getNamedValue ( " no_parent_scope " ) ) ;
BasicBlock & BB = NoParentScopeF - > front ( ) ;
auto * I1 = BB . getFirstNonPHI ( ) ;
auto * I2 = I1 - > getNextNode ( ) ;
auto * I3 = BB . getTerminator ( ) ;
EXPECT_EQ ( I1 - > getDebugLoc ( ) , DebugLoc ( ) ) ;
I1 - > dropLocation ( ) ;
EXPECT_EQ ( I1 - > getDebugLoc ( ) , DebugLoc ( ) ) ;
EXPECT_EQ ( I2 - > getDebugLoc ( ) . getLine ( ) , 2U ) ;
I2 - > dropLocation ( ) ;
EXPECT_EQ ( I1 - > getDebugLoc ( ) , DebugLoc ( ) ) ;
EXPECT_EQ ( I3 - > getDebugLoc ( ) . getLine ( ) , 2U ) ;
I3 - > dropLocation ( ) ;
EXPECT_EQ ( I3 - > getDebugLoc ( ) , DebugLoc ( ) ) ;
}
{
Function * WithParentScopeF =
cast < Function > ( M - > getNamedValue ( " with_parent_scope " ) ) ;
BasicBlock & BB = WithParentScopeF - > front ( ) ;
auto * I2 = BB . getFirstNonPHI ( ) - > getNextNode ( ) ;
MDNode * Scope = cast < MDNode > ( WithParentScopeF - > getSubprogram ( ) ) ;
EXPECT_EQ ( I2 - > getDebugLoc ( ) . getLine ( ) , 2U ) ;
I2 - > dropLocation ( ) ;
EXPECT_EQ ( I2 - > getDebugLoc ( ) . getLine ( ) , 0U ) ;
EXPECT_EQ ( I2 - > getDebugLoc ( ) . getScope ( ) , Scope ) ;
EXPECT_EQ ( I2 - > getDebugLoc ( ) . getInlinedAt ( ) , nullptr ) ;
}
}
2020-11-01 03:38:03 +08:00
TEST ( InstructionsTest , BranchWeightOverflow ) {
LLVMContext C ;
std : : unique_ptr < Module > M = parseIR ( C ,
R " (
declare void @ callee ( )
define void @ caller ( ) {
call void @ callee ( ) , ! prof ! 1
ret void
}
! 1 = ! { ! " branch_weights " , i32 20000 }
) " );
ASSERT_TRUE ( M ) ;
CallInst * CI =
cast < CallInst > ( & M - > getFunction ( " caller " ) - > getEntryBlock ( ) . front ( ) ) ;
uint64_t ProfWeight ;
CI - > extractProfTotalWeight ( ProfWeight ) ;
ASSERT_EQ ( ProfWeight , 20000U ) ;
CI - > updateProfWeight ( 10000000 , 1 ) ;
CI - > extractProfTotalWeight ( ProfWeight ) ;
ASSERT_EQ ( ProfWeight , UINT32_MAX ) ;
}
2020-11-28 00:32:05 +08:00
TEST ( InstructionsTest , AllocaInst ) {
LLVMContext Ctx ;
std : : unique_ptr < Module > M = parseIR ( Ctx , R " (
% T = type { i64 , [ 3 x i32 ] }
define void @ f ( i32 % n ) {
entry :
% A = alloca i32 , i32 1
% B = alloca i32 , i32 4
% C = alloca i32 , i32 % n
% D = alloca < 8 x double >
% E = alloca < vscale x 8 x double >
% F = alloca [ 2 x half ]
% G = alloca [ 2 x [ 3 x i128 ] ]
% H = alloca % T
ret void
}
) " );
const DataLayout & DL = M - > getDataLayout ( ) ;
ASSERT_TRUE ( M ) ;
Function * Fun = cast < Function > ( M - > getNamedValue ( " f " ) ) ;
BasicBlock & BB = Fun - > front ( ) ;
auto It = BB . begin ( ) ;
AllocaInst & A = cast < AllocaInst > ( * It + + ) ;
AllocaInst & B = cast < AllocaInst > ( * It + + ) ;
AllocaInst & C = cast < AllocaInst > ( * It + + ) ;
AllocaInst & D = cast < AllocaInst > ( * It + + ) ;
AllocaInst & E = cast < AllocaInst > ( * It + + ) ;
AllocaInst & F = cast < AllocaInst > ( * It + + ) ;
AllocaInst & G = cast < AllocaInst > ( * It + + ) ;
AllocaInst & H = cast < AllocaInst > ( * It + + ) ;
EXPECT_EQ ( A . getAllocationSizeInBits ( DL ) , TypeSize : : getFixed ( 32 ) ) ;
EXPECT_EQ ( B . getAllocationSizeInBits ( DL ) , TypeSize : : getFixed ( 128 ) ) ;
EXPECT_FALSE ( C . getAllocationSizeInBits ( DL ) ) ;
EXPECT_EQ ( D . getAllocationSizeInBits ( DL ) , TypeSize : : getFixed ( 512 ) ) ;
EXPECT_EQ ( E . getAllocationSizeInBits ( DL ) , TypeSize : : getScalable ( 512 ) ) ;
EXPECT_EQ ( F . getAllocationSizeInBits ( DL ) , TypeSize : : getFixed ( 32 ) ) ;
EXPECT_EQ ( G . getAllocationSizeInBits ( DL ) , TypeSize : : getFixed ( 768 ) ) ;
EXPECT_EQ ( H . getAllocationSizeInBits ( DL ) , TypeSize : : getFixed ( 160 ) ) ;
}
2016-01-14 14:21:42 +08:00
} // end anonymous namespace
} // end namespace llvm