llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp

609 lines
23 KiB
C++
Raw Normal View History

//===-- AsmPrinterInlineAsm.cpp - AsmPrinter Inline Asm Handling ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the inline assembler pieces of the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
/// srcMgrDiagHandler - This callback is invoked when the SourceMgr for an
/// inline asm has an error in it. diagInfo is a pointer to the SrcMgrDiagInfo
/// struct above.
static void srcMgrDiagHandler(const SMDiagnostic &Diag, void *diagInfo) {
AsmPrinter::SrcMgrDiagInfo *DiagInfo =
static_cast<AsmPrinter::SrcMgrDiagInfo *>(diagInfo);
assert(DiagInfo && "Diagnostic context not passed down?");
2011-09-22 05:36:53 +08:00
// Look up a LocInfo for the buffer this diagnostic is coming from.
unsigned BufNum = DiagInfo->SrcMgr.FindBufferContainingLoc(Diag.getLoc());
const MDNode *LocInfo = nullptr;
if (BufNum > 0 && BufNum <= DiagInfo->LocInfos.size())
LocInfo = DiagInfo->LocInfos[BufNum-1];
// If the inline asm had metadata associated with it, pull out a location
// cookie corresponding to which line the error occurred on.
unsigned LocCookie = 0;
if (LocInfo) {
unsigned ErrorLine = Diag.getLineNo()-1;
if (ErrorLine >= LocInfo->getNumOperands())
ErrorLine = 0;
2011-09-22 05:36:53 +08:00
if (LocInfo->getNumOperands() != 0)
if (const ConstantInt *CI =
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
mdconst::dyn_extract<ConstantInt>(LocInfo->getOperand(ErrorLine)))
LocCookie = CI->getZExtValue();
}
2011-09-22 05:36:53 +08:00
DiagInfo->DiagHandler(Diag, DiagInfo->DiagContext, LocCookie);
}
/// EmitInlineAsm - Emit a blob of inline asm to the output streamer.
void AsmPrinter::EmitInlineAsm(StringRef Str, const MCSubtargetInfo &STI,
const MCTargetOptions &MCOptions,
const MDNode *LocMDNode,
InlineAsm::AsmDialect Dialect) const {
assert(!Str.empty() && "Can't emit empty inline asm block");
// Remember if the buffer is nul terminated or not so we can avoid a copy.
bool isNullTerminated = Str.back() == 0;
if (isNullTerminated)
Str = Str.substr(0, Str.size()-1);
Re-commit: Demote EmitRawText call in AsmPrinter::EmitInlineAsm() and remove hasRawTextSupport() call Summary: AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output. The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as. All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler. Changes since review (and last commit attempt): - Fixed test failures that were missed due to configuration of local build. (fixes crash.ll and a couple others). - Fixed tests that happened to pass because the local build was on X86 (should fix 2007-12-17-InvokeAsm.ll) - mature-mc-support.ll's should no longer require all targets to be compiled. (should fix ARM and PPC buildbots) - Object output (-filetype=obj and similar) now forces the integrated assembler to be enabled regardless of default setting or -no-integrated-as. (should fix SystemZ buildbots) Reviewers: rafael Reviewed By: rafael CC: llvm-commits Differential Revision: http://llvm-reviews.chandlerc.com/D2686 llvm-svn: 201333
2014-02-13 22:44:26 +08:00
// If the output streamer does not have mature MC support or the integrated
// assembler has been disabled, just emit the blob textually.
// Otherwise parse the asm and emit it via MC support.
// This is useful in case the asm parser doesn't handle something but the
// system assembler does.
Re-commit: Demote EmitRawText call in AsmPrinter::EmitInlineAsm() and remove hasRawTextSupport() call Summary: AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output. The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as. All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler. Changes since review (and last commit attempt): - Fixed test failures that were missed due to configuration of local build. (fixes crash.ll and a couple others). - Fixed tests that happened to pass because the local build was on X86 (should fix 2007-12-17-InvokeAsm.ll) - mature-mc-support.ll's should no longer require all targets to be compiled. (should fix ARM and PPC buildbots) - Object output (-filetype=obj and similar) now forces the integrated assembler to be enabled regardless of default setting or -no-integrated-as. (should fix SystemZ buildbots) Reviewers: rafael Reviewed By: rafael CC: llvm-commits Differential Revision: http://llvm-reviews.chandlerc.com/D2686 llvm-svn: 201333
2014-02-13 22:44:26 +08:00
const MCAsmInfo *MCAI = TM.getMCAsmInfo();
assert(MCAI && "No MCAsmInfo");
if (!MCAI->useIntegratedAssembler() &&
!OutStreamer->isIntegratedAssemblerRequired()) {
emitInlineAsmStart();
OutStreamer->EmitRawText(Str);
emitInlineAsmEnd(STI, nullptr);
return;
}
if (!DiagInfo) {
DiagInfo = make_unique<SrcMgrDiagInfo>();
MCContext &Context = MMI->getContext();
Context.setInlineSourceManager(&DiagInfo->SrcMgr);
LLVMContext &LLVMCtx = MMI->getModule()->getContext();
if (LLVMCtx.getInlineAsmDiagnosticHandler()) {
DiagInfo->DiagHandler = LLVMCtx.getInlineAsmDiagnosticHandler();
DiagInfo->DiagContext = LLVMCtx.getInlineAsmDiagnosticContext();
DiagInfo->SrcMgr.setDiagHandler(srcMgrDiagHandler, DiagInfo.get());
}
}
SourceMgr &SrcMgr = DiagInfo->SrcMgr;
SrcMgr.setIncludeDirs(MCOptions.IASSearchPaths);
std::unique_ptr<MemoryBuffer> Buffer;
// The inline asm source manager will outlive Str, so make a copy of the
// string for SourceMgr to own.
Buffer = MemoryBuffer::getMemBufferCopy(Str, "<inline asm>");
// Tell SrcMgr about this buffer, it takes ownership of the buffer.
unsigned BufNum = SrcMgr.AddNewSourceBuffer(std::move(Buffer), SMLoc());
// Store LocMDNode in DiagInfo, using BufNum as an identifier.
if (LocMDNode) {
DiagInfo->LocInfos.resize(BufNum);
DiagInfo->LocInfos[BufNum-1] = LocMDNode;
}
std::unique_ptr<MCAsmParser> Parser(
createMCAsmParser(SrcMgr, OutContext, *OutStreamer, *MAI, BufNum));
// Do not use assembler-level information for parsing inline assembly.
OutStreamer->setUseAssemblerInfoForParsing(false);
// We create a new MCInstrInfo here since we might be at the module level
// and not have a MachineFunction to initialize the TargetInstrInfo from and
// we only need MCInstrInfo for asm parsing. We create one unconditionally
// because it's not subtarget dependent.
std::unique_ptr<MCInstrInfo> MII(TM.getTarget().createMCInstrInfo());
std::unique_ptr<MCTargetAsmParser> TAP(TM.getTarget().createMCAsmParser(
STI, *Parser, *MII, MCOptions));
if (!TAP)
report_fatal_error("Inline asm not supported by this streamer because"
" we don't have an asm parser for this target\n");
Parser->setAssemblerDialect(Dialect);
Parser->setTargetParser(*TAP.get());
Parser->setEnablePrintSchedInfo(EnablePrintSchedInfo);
if (Dialect == InlineAsm::AD_Intel)
// We need this flag to be able to parse numbers like "0bH"
Parser->setParsingInlineAsm(true);
if (MF) {
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
TAP->SetFrameRegister(TRI->getFrameRegister(*MF));
}
emitInlineAsmStart();
// Don't implicitly switch to the text section before the asm.
int Res = Parser->Run(/*NoInitialTextSection*/ true,
/*NoFinalize*/ true);
emitInlineAsmEnd(STI, &TAP->getSTI());
if (Res && !DiagInfo->DiagHandler)
report_fatal_error("Error parsing inline asm\n");
}
static void EmitMSInlineAsmStr(const char *AsmStr, const MachineInstr *MI,
MachineModuleInfo *MMI, int InlineAsmVariant,
AsmPrinter *AP, unsigned LocCookie,
raw_ostream &OS) {
// Switch to the inline assembly variant.
OS << "\t.intel_syntax\n\t";
const char *LastEmitted = AsmStr; // One past the last character emitted.
unsigned NumOperands = MI->getNumOperands();
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
OS.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
OS << '\n'; // Indent code with newline.
break;
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$':
++LastEmitted; // Consume second '$' character.
break;
}
if (Done) break;
// If we have ${:foo}, then this is not a real operand reference, it is a
// "magic" string reference, just like in .td files. Arrange to call
// PrintSpecial.
if (LastEmitted[0] == '{' && LastEmitted[1] == ':') {
LastEmitted += 2;
const char *StrStart = LastEmitted;
const char *StrEnd = strchr(StrStart, '}');
if (!StrEnd)
report_fatal_error("Unterminated ${:foo} operand in inline asm"
" string: '" + Twine(AsmStr) + "'");
std::string Val(StrStart, StrEnd);
AP->PrintSpecial(MI, OS, Val.c_str());
LastEmitted = StrEnd+1;
break;
}
const char *IDStart = LastEmitted;
const char *IDEnd = IDStart;
while (*IDEnd >= '0' && *IDEnd <= '9') ++IDEnd;
unsigned Val;
if (StringRef(IDStart, IDEnd-IDStart).getAsInteger(10, Val))
report_fatal_error("Bad $ operand number in inline asm string: '" +
Twine(AsmStr) + "'");
LastEmitted = IDEnd;
if (Val >= NumOperands-1)
report_fatal_error("Invalid $ operand number in inline asm string: '" +
Twine(AsmStr) + "'");
// Okay, we finally have a value number. Ask the target to print this
// operand!
unsigned OpNo = InlineAsm::MIOp_FirstOperand;
bool Error = false;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
}
// We may have a location metadata attached to the end of the
// instruction, and at no point should see metadata at any
// other point while processing. It's an error if so.
if (OpNo >= MI->getNumOperands() ||
MI->getOperand(OpNo).isMetadata()) {
Error = true;
} else {
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (InlineAsm::isMemKind(OpFlags)) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, InlineAsmVariant,
2014-04-24 14:44:33 +08:00
/*Modifier*/ nullptr, OS);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, InlineAsmVariant,
2014-04-24 14:44:33 +08:00
/*Modifier*/ nullptr, OS);
}
}
if (Error) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "invalid operand in inline asm: '" << AsmStr << "'";
MMI->getModule()->getContext().emitError(LocCookie, Msg.str());
}
break;
}
}
}
OS << "\n\t.att_syntax\n" << (char)0; // null terminate string.
}
static void EmitGCCInlineAsmStr(const char *AsmStr, const MachineInstr *MI,
MachineModuleInfo *MMI, int InlineAsmVariant,
int AsmPrinterVariant, AsmPrinter *AP,
unsigned LocCookie, raw_ostream &OS) {
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
unsigned NumOperands = MI->getNumOperands();
OS << '\t';
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
OS.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
OS << '\n'; // Indent code with newline.
break;
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
OS << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1)
report_fatal_error("Nested variants found in inline asm string: '" +
Twine(AsmStr) + "'");
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1)
OS << '|'; // this is gcc's behavior for | outside a variant
else
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1)
OS << '}'; // this is gcc's behavior for } outside a variant
else
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
// If we have ${:foo}, then this is not a real operand reference, it is a
// "magic" string reference, just like in .td files. Arrange to call
// PrintSpecial.
if (HasCurlyBraces && *LastEmitted == ':') {
++LastEmitted;
const char *StrStart = LastEmitted;
const char *StrEnd = strchr(StrStart, '}');
2014-04-24 14:44:33 +08:00
if (!StrEnd)
report_fatal_error("Unterminated ${:foo} operand in inline asm"
" string: '" + Twine(AsmStr) + "'");
std::string Val(StrStart, StrEnd);
AP->PrintSpecial(MI, OS, Val.c_str());
LastEmitted = StrEnd+1;
break;
}
const char *IDStart = LastEmitted;
const char *IDEnd = IDStart;
while (*IDEnd >= '0' && *IDEnd <= '9') ++IDEnd;
unsigned Val;
if (StringRef(IDStart, IDEnd-IDStart).getAsInteger(10, Val))
report_fatal_error("Bad $ operand number in inline asm string: '" +
Twine(AsmStr) + "'");
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0)
report_fatal_error("Bad ${:} expression in inline asm string: '" +
Twine(AsmStr) + "'");
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}')
report_fatal_error("Bad ${} expression in inline asm string: '" +
Twine(AsmStr) + "'");
++LastEmitted; // Consume '}' character.
}
if (Val >= NumOperands-1)
report_fatal_error("Invalid $ operand number in inline asm string: '" +
Twine(AsmStr) + "'");
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = InlineAsm::MIOp_FirstOperand;
bool Error = false;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
}
// We may have a location metadata attached to the end of the
// instruction, and at no point should see metadata at any
// other point while processing. It's an error if so.
if (OpNo >= MI->getNumOperands() ||
MI->getOperand(OpNo).isMetadata()) {
Error = true;
} else {
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (Modifier[0] == 'l') { // Labels are target independent.
// FIXME: What if the operand isn't an MBB, report error?
const MCSymbol *Sym = MI->getOperand(OpNo).getMBB()->getSymbol();
Sym->print(OS, AP->MAI);
} else {
if (InlineAsm::isMemKind(OpFlags)) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, InlineAsmVariant,
2014-04-24 14:44:33 +08:00
Modifier[0] ? Modifier : nullptr,
OS);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, InlineAsmVariant,
2014-04-24 14:44:33 +08:00
Modifier[0] ? Modifier : nullptr, OS);
}
}
}
if (Error) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "invalid operand in inline asm: '" << AsmStr << "'";
MMI->getModule()->getContext().emitError(LocCookie, Msg.str());
}
}
break;
}
}
}
OS << '\n' << (char)0; // null terminate string.
}
/// EmitInlineAsm - This method formats and emits the specified machine
/// instruction that is an inline asm.
void AsmPrinter::EmitInlineAsm(const MachineInstr *MI) const {
assert(MI->isInlineAsm() && "printInlineAsm only works on inline asms");
// Count the number of register definitions to find the asm string.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
++NumDefs)
assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
OutStreamer->emitRawComment(MAI->getInlineAsmStart());
OutStreamer->emitRawComment(MAI->getInlineAsmEnd());
return;
}
// Emit the #APP start marker. This has to happen even if verbose-asm isn't
// enabled, so we use emitRawComment.
OutStreamer->emitRawComment(MAI->getInlineAsmStart());
// Get the !srcloc metadata node if we have it, and decode the loc cookie from
// it.
unsigned LocCookie = 0;
2014-04-24 14:44:33 +08:00
const MDNode *LocMD = nullptr;
for (unsigned i = MI->getNumOperands(); i != 0; --i) {
if (MI->getOperand(i-1).isMetadata() &&
(LocMD = MI->getOperand(i-1).getMetadata()) &&
LocMD->getNumOperands() != 0) {
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
LocCookie = CI->getZExtValue();
break;
}
}
}
// Emit the inline asm to a temporary string so we can emit it through
// EmitInlineAsm.
SmallString<256> StringData;
raw_svector_ostream OS(StringData);
// The variant of the current asmprinter.
int AsmPrinterVariant = MAI->getAssemblerDialect();
InlineAsm::AsmDialect InlineAsmVariant = MI->getInlineAsmDialect();
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if (InlineAsmVariant == InlineAsm::AD_ATT)
EmitGCCInlineAsmStr(AsmStr, MI, MMI, InlineAsmVariant, AsmPrinterVariant,
AP, LocCookie, OS);
else
EmitMSInlineAsmStr(AsmStr, MI, MMI, InlineAsmVariant, AP, LocCookie, OS);
// Reset SanitizeAddress based on the function's attribute.
MCTargetOptions MCOptions = TM.Options.MCOptions;
MCOptions.SanitizeAddress =
MF->getFunction().hasFnAttribute(Attribute::SanitizeAddress);
EmitInlineAsm(OS.str(), getSubtargetInfo(), MCOptions, LocMD,
MI->getInlineAsmDialect());
// Emit the #NOAPP end marker. This has to happen even if verbose-asm isn't
// enabled, so we use emitRawComment.
OutStreamer->emitRawComment(MAI->getInlineAsmEnd());
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, raw_ostream &OS,
const char *Code) const {
if (!strcmp(Code, "private")) {
const DataLayout &DL = MF->getDataLayout();
OS << DL.getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
OS << MAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
// If this is a new LastFn instruction, bump the counter.
if (LastMI != MI || LastFn != getFunctionNumber()) {
++Counter;
LastMI = MI;
LastFn = getFunctionNumber();
}
OS << Counter;
} else {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Unknown special formatter '" << Code
<< "' for machine instr: " << *MI;
report_fatal_error(Msg.str());
}
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
/// override this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
2012-09-08 04:23:29 +08:00
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNo);
switch (ExtraCode[0]) {
default:
return true; // Unknown modifier.
case 'c': // Substitute immediate value without immediate syntax
if (MO.getType() != MachineOperand::MO_Immediate)
return true;
O << MO.getImm();
return false;
case 'n': // Negate the immediate constant.
if (MO.getType() != MachineOperand::MO_Immediate)
return true;
O << -MO.getImm();
return false;
case 's': // The GCC deprecated s modifier
if (MO.getType() != MachineOperand::MO_Immediate)
return true;
O << ((32 - MO.getImm()) & 31);
return false;
}
}
return true;
}
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
// Target doesn't support this yet!
return true;
}
void AsmPrinter::emitInlineAsmStart() const {}
void AsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
const MCSubtargetInfo *EndInfo) const {}