llvm-project/llvm/lib/Object/XCOFFObjectFile.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1322 lines
45 KiB
C++
Raw Normal View History

//===--- XCOFFObjectFile.cpp - XCOFF object file implementation -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the XCOFFObjectFile class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/XCOFFObjectFile.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/DataExtractor.h"
#include <cstddef>
#include <cstring>
namespace llvm {
using namespace XCOFF;
namespace object {
static const uint8_t FunctionSym = 0x20;
static const uint16_t NoRelMask = 0x0001;
static const size_t SymbolAuxTypeOffset = 17;
// Checks that [Ptr, Ptr + Size) bytes fall inside the memory buffer
// 'M'. Returns a pointer to the underlying object on success.
template <typename T>
static Expected<const T *> getObject(MemoryBufferRef M, const void *Ptr,
const uint64_t Size = sizeof(T)) {
uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
if (Error E = Binary::checkOffset(M, Addr, Size))
return std::move(E);
return reinterpret_cast<const T *>(Addr);
}
static uintptr_t getWithOffset(uintptr_t Base, ptrdiff_t Offset) {
return reinterpret_cast<uintptr_t>(reinterpret_cast<const char *>(Base) +
Offset);
}
template <typename T> static const T *viewAs(uintptr_t in) {
return reinterpret_cast<const T *>(in);
}
static StringRef generateXCOFFFixedNameStringRef(const char *Name) {
auto NulCharPtr =
static_cast<const char *>(memchr(Name, '\0', XCOFF::NameSize));
return NulCharPtr ? StringRef(Name, NulCharPtr - Name)
: StringRef(Name, XCOFF::NameSize);
}
template <typename T> StringRef XCOFFSectionHeader<T>::getName() const {
const T &DerivedXCOFFSectionHeader = static_cast<const T &>(*this);
return generateXCOFFFixedNameStringRef(DerivedXCOFFSectionHeader.Name);
}
template <typename T> uint16_t XCOFFSectionHeader<T>::getSectionType() const {
const T &DerivedXCOFFSectionHeader = static_cast<const T &>(*this);
return DerivedXCOFFSectionHeader.Flags & SectionFlagsTypeMask;
}
template <typename T>
bool XCOFFSectionHeader<T>::isReservedSectionType() const {
return getSectionType() & SectionFlagsReservedMask;
}
template <typename AddressType>
bool XCOFFRelocation<AddressType>::isRelocationSigned() const {
return Info & XR_SIGN_INDICATOR_MASK;
}
template <typename AddressType>
bool XCOFFRelocation<AddressType>::isFixupIndicated() const {
return Info & XR_FIXUP_INDICATOR_MASK;
}
template <typename AddressType>
uint8_t XCOFFRelocation<AddressType>::getRelocatedLength() const {
// The relocation encodes the bit length being relocated minus 1. Add back
// the 1 to get the actual length being relocated.
return (Info & XR_BIASED_LENGTH_MASK) + 1;
}
uintptr_t
XCOFFObjectFile::getAdvancedSymbolEntryAddress(uintptr_t CurrentAddress,
uint32_t Distance) {
return getWithOffset(CurrentAddress, Distance * XCOFF::SymbolTableEntrySize);
}
const XCOFF::SymbolAuxType *
XCOFFObjectFile::getSymbolAuxType(uintptr_t AuxEntryAddress) const {
assert(is64Bit() && "64-bit interface called on a 32-bit object file.");
return viewAs<XCOFF::SymbolAuxType>(
getWithOffset(AuxEntryAddress, SymbolAuxTypeOffset));
}
void XCOFFObjectFile::checkSectionAddress(uintptr_t Addr,
uintptr_t TableAddress) const {
if (Addr < TableAddress)
report_fatal_error("Section header outside of section header table.");
uintptr_t Offset = Addr - TableAddress;
if (Offset >= getSectionHeaderSize() * getNumberOfSections())
report_fatal_error("Section header outside of section header table.");
if (Offset % getSectionHeaderSize() != 0)
report_fatal_error(
"Section header pointer does not point to a valid section header.");
}
const XCOFFSectionHeader32 *
XCOFFObjectFile::toSection32(DataRefImpl Ref) const {
assert(!is64Bit() && "32-bit interface called on 64-bit object file.");
#ifndef NDEBUG
checkSectionAddress(Ref.p, getSectionHeaderTableAddress());
#endif
return viewAs<XCOFFSectionHeader32>(Ref.p);
}
const XCOFFSectionHeader64 *
XCOFFObjectFile::toSection64(DataRefImpl Ref) const {
assert(is64Bit() && "64-bit interface called on a 32-bit object file.");
#ifndef NDEBUG
checkSectionAddress(Ref.p, getSectionHeaderTableAddress());
#endif
return viewAs<XCOFFSectionHeader64>(Ref.p);
}
XCOFFSymbolRef XCOFFObjectFile::toSymbolRef(DataRefImpl Ref) const {
assert(Ref.p != 0 && "Symbol table pointer can not be nullptr!");
#ifndef NDEBUG
checkSymbolEntryPointer(Ref.p);
#endif
return XCOFFSymbolRef(Ref, this);
}
const XCOFFFileHeader32 *XCOFFObjectFile::fileHeader32() const {
assert(!is64Bit() && "32-bit interface called on 64-bit object file.");
return static_cast<const XCOFFFileHeader32 *>(FileHeader);
}
const XCOFFFileHeader64 *XCOFFObjectFile::fileHeader64() const {
assert(is64Bit() && "64-bit interface called on a 32-bit object file.");
return static_cast<const XCOFFFileHeader64 *>(FileHeader);
}
template <typename T> const T *XCOFFObjectFile::sectionHeaderTable() const {
return static_cast<const T *>(SectionHeaderTable);
}
const XCOFFSectionHeader32 *
XCOFFObjectFile::sectionHeaderTable32() const {
assert(!is64Bit() && "32-bit interface called on 64-bit object file.");
return static_cast<const XCOFFSectionHeader32 *>(SectionHeaderTable);
}
const XCOFFSectionHeader64 *
XCOFFObjectFile::sectionHeaderTable64() const {
assert(is64Bit() && "64-bit interface called on a 32-bit object file.");
return static_cast<const XCOFFSectionHeader64 *>(SectionHeaderTable);
}
void XCOFFObjectFile::moveSymbolNext(DataRefImpl &Symb) const {
uintptr_t NextSymbolAddr = getAdvancedSymbolEntryAddress(
Symb.p, toSymbolRef(Symb).getNumberOfAuxEntries() + 1);
#ifndef NDEBUG
// This function is used by basic_symbol_iterator, which allows to
// point to the end-of-symbol-table address.
if (NextSymbolAddr != getEndOfSymbolTableAddress())
checkSymbolEntryPointer(NextSymbolAddr);
#endif
Symb.p = NextSymbolAddr;
}
Expected<StringRef>
XCOFFObjectFile::getStringTableEntry(uint32_t Offset) const {
// The byte offset is relative to the start of the string table.
// A byte offset value of 0 is a null or zero-length symbol
// name. A byte offset in the range 1 to 3 (inclusive) points into the length
// field; as a soft-error recovery mechanism, we treat such cases as having an
// offset of 0.
if (Offset < 4)
return StringRef(nullptr, 0);
if (StringTable.Data != nullptr && StringTable.Size > Offset)
return (StringTable.Data + Offset);
return make_error<GenericBinaryError>("Bad offset for string table entry",
object_error::parse_failed);
}
StringRef XCOFFObjectFile::getStringTable() const {
// If the size is less than or equal to 4, then the string table contains no
// string data.
return StringRef(StringTable.Data,
StringTable.Size <= 4 ? 0 : StringTable.Size);
}
Expected<StringRef>
XCOFFObjectFile::getCFileName(const XCOFFFileAuxEnt *CFileEntPtr) const {
if (CFileEntPtr->NameInStrTbl.Magic != XCOFFSymbolRef::NAME_IN_STR_TBL_MAGIC)
return generateXCOFFFixedNameStringRef(CFileEntPtr->Name);
return getStringTableEntry(CFileEntPtr->NameInStrTbl.Offset);
}
Expected<StringRef> XCOFFObjectFile::getSymbolName(DataRefImpl Symb) const {
return toSymbolRef(Symb).getName();
}
Expected<uint64_t> XCOFFObjectFile::getSymbolAddress(DataRefImpl Symb) const {
return toSymbolRef(Symb).getValue();
}
uint64_t XCOFFObjectFile::getSymbolValueImpl(DataRefImpl Symb) const {
return toSymbolRef(Symb).getValue();
}
uint64_t XCOFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Symb) const {
uint64_t Result = 0;
llvm_unreachable("Not yet implemented!");
return Result;
}
Expected<SymbolRef::Type>
XCOFFObjectFile::getSymbolType(DataRefImpl Symb) const {
// TODO: Return the correct symbol type.
return SymbolRef::ST_Other;
}
Expected<section_iterator>
XCOFFObjectFile::getSymbolSection(DataRefImpl Symb) const {
const int16_t SectNum = toSymbolRef(Symb).getSectionNumber();
if (isReservedSectionNumber(SectNum))
return section_end();
Expected<DataRefImpl> ExpSec = getSectionByNum(SectNum);
if (!ExpSec)
return ExpSec.takeError();
return section_iterator(SectionRef(ExpSec.get(), this));
}
void XCOFFObjectFile::moveSectionNext(DataRefImpl &Sec) const {
const char *Ptr = reinterpret_cast<const char *>(Sec.p);
Sec.p = reinterpret_cast<uintptr_t>(Ptr + getSectionHeaderSize());
}
Expected<StringRef> XCOFFObjectFile::getSectionName(DataRefImpl Sec) const {
return generateXCOFFFixedNameStringRef(getSectionNameInternal(Sec));
}
uint64_t XCOFFObjectFile::getSectionAddress(DataRefImpl Sec) const {
// Avoid ternary due to failure to convert the ubig32_t value to a unit64_t
// with MSVC.
if (is64Bit())
return toSection64(Sec)->VirtualAddress;
return toSection32(Sec)->VirtualAddress;
}
uint64_t XCOFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
// Section numbers in XCOFF are numbered beginning at 1. A section number of
// zero is used to indicate that a symbol is being imported or is undefined.
if (is64Bit())
return toSection64(Sec) - sectionHeaderTable64() + 1;
else
return toSection32(Sec) - sectionHeaderTable32() + 1;
}
uint64_t XCOFFObjectFile::getSectionSize(DataRefImpl Sec) const {
// Avoid ternary due to failure to convert the ubig32_t value to a unit64_t
// with MSVC.
if (is64Bit())
return toSection64(Sec)->SectionSize;
return toSection32(Sec)->SectionSize;
}
Expected<ArrayRef<uint8_t>>
XCOFFObjectFile::getSectionContents(DataRefImpl Sec) const {
if (isSectionVirtual(Sec))
return ArrayRef<uint8_t>();
uint64_t OffsetToRaw;
if (is64Bit())
OffsetToRaw = toSection64(Sec)->FileOffsetToRawData;
else
OffsetToRaw = toSection32(Sec)->FileOffsetToRawData;
const uint8_t * ContentStart = base() + OffsetToRaw;
uint64_t SectionSize = getSectionSize(Sec);
if (Error E = Binary::checkOffset(
Data, reinterpret_cast<uintptr_t>(ContentStart), SectionSize))
return std::move(E);
return makeArrayRef(ContentStart,SectionSize);
}
uint64_t XCOFFObjectFile::getSectionAlignment(DataRefImpl Sec) const {
uint64_t Result = 0;
llvm_unreachable("Not yet implemented!");
return Result;
}
Expected<uintptr_t> XCOFFObjectFile::getLoaderSectionAddress() const {
uint64_t OffsetToLoaderSection = 0;
uint64_t SizeOfLoaderSection = 0;
if (is64Bit()) {
for (const auto &Sec64 : sections64())
if (Sec64.getSectionType() == XCOFF::STYP_LOADER) {
OffsetToLoaderSection = Sec64.FileOffsetToRawData;
SizeOfLoaderSection = Sec64.SectionSize;
break;
}
} else {
for (const auto &Sec32 : sections32())
if (Sec32.getSectionType() == XCOFF::STYP_LOADER) {
OffsetToLoaderSection = Sec32.FileOffsetToRawData;
SizeOfLoaderSection = Sec32.SectionSize;
break;
}
}
// No loader section is not an error.
if (!SizeOfLoaderSection)
return 0;
uintptr_t LoderSectionStart =
reinterpret_cast<uintptr_t>(base() + OffsetToLoaderSection);
if (Error E =
Binary::checkOffset(Data, LoderSectionStart, SizeOfLoaderSection))
return std::move(E);
return LoderSectionStart;
}
bool XCOFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
return false;
}
bool XCOFFObjectFile::isSectionText(DataRefImpl Sec) const {
return getSectionFlags(Sec) & XCOFF::STYP_TEXT;
}
bool XCOFFObjectFile::isSectionData(DataRefImpl Sec) const {
uint32_t Flags = getSectionFlags(Sec);
return Flags & (XCOFF::STYP_DATA | XCOFF::STYP_TDATA);
}
bool XCOFFObjectFile::isSectionBSS(DataRefImpl Sec) const {
uint32_t Flags = getSectionFlags(Sec);
return Flags & (XCOFF::STYP_BSS | XCOFF::STYP_TBSS);
}
bool XCOFFObjectFile::isDebugSection(DataRefImpl Sec) const {
uint32_t Flags = getSectionFlags(Sec);
return Flags & (XCOFF::STYP_DEBUG | XCOFF::STYP_DWARF);
}
bool XCOFFObjectFile::isSectionVirtual(DataRefImpl Sec) const {
return is64Bit() ? toSection64(Sec)->FileOffsetToRawData == 0
: toSection32(Sec)->FileOffsetToRawData == 0;
}
relocation_iterator XCOFFObjectFile::section_rel_begin(DataRefImpl Sec) const {
DataRefImpl Ret;
if (is64Bit()) {
const XCOFFSectionHeader64 *SectionEntPtr = toSection64(Sec);
auto RelocationsOrErr =
relocations<XCOFFSectionHeader64, XCOFFRelocation64>(*SectionEntPtr);
if (Error E = RelocationsOrErr.takeError()) {
// TODO: report the error up the stack.
consumeError(std::move(E));
return relocation_iterator(RelocationRef());
}
Ret.p = reinterpret_cast<uintptr_t>(&*RelocationsOrErr.get().begin());
} else {
const XCOFFSectionHeader32 *SectionEntPtr = toSection32(Sec);
auto RelocationsOrErr =
relocations<XCOFFSectionHeader32, XCOFFRelocation32>(*SectionEntPtr);
if (Error E = RelocationsOrErr.takeError()) {
// TODO: report the error up the stack.
consumeError(std::move(E));
return relocation_iterator(RelocationRef());
}
Ret.p = reinterpret_cast<uintptr_t>(&*RelocationsOrErr.get().begin());
}
return relocation_iterator(RelocationRef(Ret, this));
}
relocation_iterator XCOFFObjectFile::section_rel_end(DataRefImpl Sec) const {
DataRefImpl Ret;
if (is64Bit()) {
const XCOFFSectionHeader64 *SectionEntPtr = toSection64(Sec);
auto RelocationsOrErr =
relocations<XCOFFSectionHeader64, XCOFFRelocation64>(*SectionEntPtr);
if (Error E = RelocationsOrErr.takeError()) {
// TODO: report the error up the stack.
consumeError(std::move(E));
return relocation_iterator(RelocationRef());
}
Ret.p = reinterpret_cast<uintptr_t>(&*RelocationsOrErr.get().end());
} else {
const XCOFFSectionHeader32 *SectionEntPtr = toSection32(Sec);
auto RelocationsOrErr =
relocations<XCOFFSectionHeader32, XCOFFRelocation32>(*SectionEntPtr);
if (Error E = RelocationsOrErr.takeError()) {
// TODO: report the error up the stack.
consumeError(std::move(E));
return relocation_iterator(RelocationRef());
}
Ret.p = reinterpret_cast<uintptr_t>(&*RelocationsOrErr.get().end());
}
return relocation_iterator(RelocationRef(Ret, this));
}
void XCOFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
if (is64Bit())
Rel.p = reinterpret_cast<uintptr_t>(viewAs<XCOFFRelocation64>(Rel.p) + 1);
else
Rel.p = reinterpret_cast<uintptr_t>(viewAs<XCOFFRelocation32>(Rel.p) + 1);
}
uint64_t XCOFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
if (is64Bit()) {
const XCOFFRelocation64 *Reloc = viewAs<XCOFFRelocation64>(Rel.p);
const XCOFFSectionHeader64 *Sec64 = sectionHeaderTable64();
const uint64_t RelocAddress = Reloc->VirtualAddress;
const uint16_t NumberOfSections = getNumberOfSections();
for (uint16_t I = 0; I < NumberOfSections; ++I) {
// Find which section this relocation belongs to, and get the
// relocation offset relative to the start of the section.
if (Sec64->VirtualAddress <= RelocAddress &&
RelocAddress < Sec64->VirtualAddress + Sec64->SectionSize) {
return RelocAddress - Sec64->VirtualAddress;
}
++Sec64;
}
} else {
const XCOFFRelocation32 *Reloc = viewAs<XCOFFRelocation32>(Rel.p);
const XCOFFSectionHeader32 *Sec32 = sectionHeaderTable32();
const uint32_t RelocAddress = Reloc->VirtualAddress;
const uint16_t NumberOfSections = getNumberOfSections();
for (uint16_t I = 0; I < NumberOfSections; ++I) {
// Find which section this relocation belongs to, and get the
// relocation offset relative to the start of the section.
if (Sec32->VirtualAddress <= RelocAddress &&
RelocAddress < Sec32->VirtualAddress + Sec32->SectionSize) {
return RelocAddress - Sec32->VirtualAddress;
}
++Sec32;
}
}
return InvalidRelocOffset;
}
symbol_iterator XCOFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
uint32_t Index;
if (is64Bit()) {
const XCOFFRelocation64 *Reloc = viewAs<XCOFFRelocation64>(Rel.p);
Index = Reloc->SymbolIndex;
if (Index >= getNumberOfSymbolTableEntries64())
return symbol_end();
} else {
const XCOFFRelocation32 *Reloc = viewAs<XCOFFRelocation32>(Rel.p);
Index = Reloc->SymbolIndex;
if (Index >= getLogicalNumberOfSymbolTableEntries32())
return symbol_end();
}
DataRefImpl SymDRI;
SymDRI.p = getSymbolEntryAddressByIndex(Index);
return symbol_iterator(SymbolRef(SymDRI, this));
}
uint64_t XCOFFObjectFile::getRelocationType(DataRefImpl Rel) const {
if (is64Bit())
return viewAs<XCOFFRelocation64>(Rel.p)->Type;
return viewAs<XCOFFRelocation32>(Rel.p)->Type;
}
void XCOFFObjectFile::getRelocationTypeName(
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
StringRef Res;
if (is64Bit()) {
const XCOFFRelocation64 *Reloc = viewAs<XCOFFRelocation64>(Rel.p);
Res = XCOFF::getRelocationTypeString(Reloc->Type);
} else {
const XCOFFRelocation32 *Reloc = viewAs<XCOFFRelocation32>(Rel.p);
Res = XCOFF::getRelocationTypeString(Reloc->Type);
}
Result.append(Res.begin(), Res.end());
}
Expected<uint32_t> XCOFFObjectFile::getSymbolFlags(DataRefImpl Symb) const {
uint32_t Result = 0;
// TODO: Return correct symbol flags.
return Result;
}
basic_symbol_iterator XCOFFObjectFile::symbol_begin() const {
DataRefImpl SymDRI;
SymDRI.p = reinterpret_cast<uintptr_t>(SymbolTblPtr);
return basic_symbol_iterator(SymbolRef(SymDRI, this));
}
basic_symbol_iterator XCOFFObjectFile::symbol_end() const {
DataRefImpl SymDRI;
const uint32_t NumberOfSymbolTableEntries = getNumberOfSymbolTableEntries();
SymDRI.p = getSymbolEntryAddressByIndex(NumberOfSymbolTableEntries);
return basic_symbol_iterator(SymbolRef(SymDRI, this));
}
section_iterator XCOFFObjectFile::section_begin() const {
DataRefImpl DRI;
DRI.p = getSectionHeaderTableAddress();
return section_iterator(SectionRef(DRI, this));
}
section_iterator XCOFFObjectFile::section_end() const {
DataRefImpl DRI;
DRI.p = getWithOffset(getSectionHeaderTableAddress(),
getNumberOfSections() * getSectionHeaderSize());
return section_iterator(SectionRef(DRI, this));
}
uint8_t XCOFFObjectFile::getBytesInAddress() const { return is64Bit() ? 8 : 4; }
StringRef XCOFFObjectFile::getFileFormatName() const {
return is64Bit() ? "aix5coff64-rs6000" : "aixcoff-rs6000";
}
Triple::ArchType XCOFFObjectFile::getArch() const {
return is64Bit() ? Triple::ppc64 : Triple::ppc;
}
SubtargetFeatures XCOFFObjectFile::getFeatures() const {
return SubtargetFeatures();
}
bool XCOFFObjectFile::isRelocatableObject() const {
if (is64Bit())
return !(fileHeader64()->Flags & NoRelMask);
return !(fileHeader32()->Flags & NoRelMask);
}
Expected<uint64_t> XCOFFObjectFile::getStartAddress() const {
// TODO FIXME Should get from auxiliary_header->o_entry when support for the
// auxiliary_header is added.
return 0;
}
StringRef XCOFFObjectFile::mapDebugSectionName(StringRef Name) const {
return StringSwitch<StringRef>(Name)
.Case("dwinfo", "debug_info")
.Case("dwline", "debug_line")
.Case("dwpbnms", "debug_pubnames")
.Case("dwpbtyp", "debug_pubtypes")
.Case("dwarnge", "debug_aranges")
.Case("dwabrev", "debug_abbrev")
.Case("dwstr", "debug_str")
.Case("dwrnges", "debug_ranges")
.Case("dwloc", "debug_loc")
.Case("dwframe", "debug_frame")
.Case("dwmac", "debug_macinfo")
.Default(Name);
}
size_t XCOFFObjectFile::getFileHeaderSize() const {
return is64Bit() ? sizeof(XCOFFFileHeader64) : sizeof(XCOFFFileHeader32);
}
size_t XCOFFObjectFile::getSectionHeaderSize() const {
return is64Bit() ? sizeof(XCOFFSectionHeader64) :
sizeof(XCOFFSectionHeader32);
}
bool XCOFFObjectFile::is64Bit() const {
return Binary::ID_XCOFF64 == getType();
}
uint16_t XCOFFObjectFile::getMagic() const {
return is64Bit() ? fileHeader64()->Magic : fileHeader32()->Magic;
}
Expected<DataRefImpl> XCOFFObjectFile::getSectionByNum(int16_t Num) const {
if (Num <= 0 || Num > getNumberOfSections())
return createStringError(object_error::invalid_section_index,
"the section index (" + Twine(Num) +
") is invalid");
DataRefImpl DRI;
DRI.p = getWithOffset(getSectionHeaderTableAddress(),
getSectionHeaderSize() * (Num - 1));
return DRI;
}
Expected<StringRef>
XCOFFObjectFile::getSymbolSectionName(XCOFFSymbolRef SymEntPtr) const {
const int16_t SectionNum = SymEntPtr.getSectionNumber();
switch (SectionNum) {
case XCOFF::N_DEBUG:
return "N_DEBUG";
case XCOFF::N_ABS:
return "N_ABS";
case XCOFF::N_UNDEF:
return "N_UNDEF";
default:
Expected<DataRefImpl> SecRef = getSectionByNum(SectionNum);
if (SecRef)
return generateXCOFFFixedNameStringRef(
getSectionNameInternal(SecRef.get()));
return SecRef.takeError();
}
}
unsigned XCOFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
XCOFFSymbolRef XCOFFSymRef(Sym.getRawDataRefImpl(), this);
return XCOFFSymRef.getSectionNumber();
}
bool XCOFFObjectFile::isReservedSectionNumber(int16_t SectionNumber) {
return (SectionNumber <= 0 && SectionNumber >= -2);
}
uint16_t XCOFFObjectFile::getNumberOfSections() const {
return is64Bit() ? fileHeader64()->NumberOfSections
: fileHeader32()->NumberOfSections;
}
int32_t XCOFFObjectFile::getTimeStamp() const {
return is64Bit() ? fileHeader64()->TimeStamp : fileHeader32()->TimeStamp;
}
uint16_t XCOFFObjectFile::getOptionalHeaderSize() const {
return is64Bit() ? fileHeader64()->AuxHeaderSize
: fileHeader32()->AuxHeaderSize;
}
uint32_t XCOFFObjectFile::getSymbolTableOffset32() const {
return fileHeader32()->SymbolTableOffset;
}
int32_t XCOFFObjectFile::getRawNumberOfSymbolTableEntries32() const {
// As far as symbol table size is concerned, if this field is negative it is
// to be treated as a 0. However since this field is also used for printing we
// don't want to truncate any negative values.
return fileHeader32()->NumberOfSymTableEntries;
}
uint32_t XCOFFObjectFile::getLogicalNumberOfSymbolTableEntries32() const {
return (fileHeader32()->NumberOfSymTableEntries >= 0
? fileHeader32()->NumberOfSymTableEntries
: 0);
}
uint64_t XCOFFObjectFile::getSymbolTableOffset64() const {
return fileHeader64()->SymbolTableOffset;
}
uint32_t XCOFFObjectFile::getNumberOfSymbolTableEntries64() const {
return fileHeader64()->NumberOfSymTableEntries;
}
uint32_t XCOFFObjectFile::getNumberOfSymbolTableEntries() const {
return is64Bit() ? getNumberOfSymbolTableEntries64()
: getLogicalNumberOfSymbolTableEntries32();
}
uintptr_t XCOFFObjectFile::getEndOfSymbolTableAddress() const {
const uint32_t NumberOfSymTableEntries = getNumberOfSymbolTableEntries();
return getWithOffset(reinterpret_cast<uintptr_t>(SymbolTblPtr),
XCOFF::SymbolTableEntrySize * NumberOfSymTableEntries);
}
void XCOFFObjectFile::checkSymbolEntryPointer(uintptr_t SymbolEntPtr) const {
if (SymbolEntPtr < reinterpret_cast<uintptr_t>(SymbolTblPtr))
report_fatal_error("Symbol table entry is outside of symbol table.");
if (SymbolEntPtr >= getEndOfSymbolTableAddress())
report_fatal_error("Symbol table entry is outside of symbol table.");
ptrdiff_t Offset = reinterpret_cast<const char *>(SymbolEntPtr) -
reinterpret_cast<const char *>(SymbolTblPtr);
if (Offset % XCOFF::SymbolTableEntrySize != 0)
report_fatal_error(
"Symbol table entry position is not valid inside of symbol table.");
}
uint32_t XCOFFObjectFile::getSymbolIndex(uintptr_t SymbolEntPtr) const {
return (reinterpret_cast<const char *>(SymbolEntPtr) -
reinterpret_cast<const char *>(SymbolTblPtr)) /
XCOFF::SymbolTableEntrySize;
}
uintptr_t XCOFFObjectFile::getSymbolEntryAddressByIndex(uint32_t Index) const {
return getAdvancedSymbolEntryAddress(
reinterpret_cast<uintptr_t>(getPointerToSymbolTable()), Index);
}
Expected<StringRef>
XCOFFObjectFile::getSymbolNameByIndex(uint32_t Index) const {
const uint32_t NumberOfSymTableEntries = getNumberOfSymbolTableEntries();
if (Index >= NumberOfSymTableEntries)
return errorCodeToError(object_error::invalid_symbol_index);
DataRefImpl SymDRI;
SymDRI.p = getSymbolEntryAddressByIndex(Index);
return getSymbolName(SymDRI);
}
uint16_t XCOFFObjectFile::getFlags() const {
return is64Bit() ? fileHeader64()->Flags : fileHeader32()->Flags;
}
const char *XCOFFObjectFile::getSectionNameInternal(DataRefImpl Sec) const {
return is64Bit() ? toSection64(Sec)->Name : toSection32(Sec)->Name;
}
uintptr_t XCOFFObjectFile::getSectionHeaderTableAddress() const {
return reinterpret_cast<uintptr_t>(SectionHeaderTable);
}
int32_t XCOFFObjectFile::getSectionFlags(DataRefImpl Sec) const {
return is64Bit() ? toSection64(Sec)->Flags : toSection32(Sec)->Flags;
}
XCOFFObjectFile::XCOFFObjectFile(unsigned int Type, MemoryBufferRef Object)
: ObjectFile(Type, Object) {
assert(Type == Binary::ID_XCOFF32 || Type == Binary::ID_XCOFF64);
}
ArrayRef<XCOFFSectionHeader64> XCOFFObjectFile::sections64() const {
assert(is64Bit() && "64-bit interface called for non 64-bit file.");
const XCOFFSectionHeader64 *TablePtr = sectionHeaderTable64();
return ArrayRef<XCOFFSectionHeader64>(TablePtr,
TablePtr + getNumberOfSections());
}
ArrayRef<XCOFFSectionHeader32> XCOFFObjectFile::sections32() const {
assert(!is64Bit() && "32-bit interface called for non 32-bit file.");
const XCOFFSectionHeader32 *TablePtr = sectionHeaderTable32();
return ArrayRef<XCOFFSectionHeader32>(TablePtr,
TablePtr + getNumberOfSections());
}
// In an XCOFF32 file, when the field value is 65535, then an STYP_OVRFLO
// section header contains the actual count of relocation entries in the s_paddr
// field. STYP_OVRFLO headers contain the section index of their corresponding
// sections as their raw "NumberOfRelocations" field value.
template <typename T>
Expected<uint32_t> XCOFFObjectFile::getNumberOfRelocationEntries(
const XCOFFSectionHeader<T> &Sec) const {
const T &Section = static_cast<const T &>(Sec);
if (is64Bit())
return Section.NumberOfRelocations;
uint16_t SectionIndex = &Section - sectionHeaderTable<T>() + 1;
if (Section.NumberOfRelocations < XCOFF::RelocOverflow)
return Section.NumberOfRelocations;
for (const auto &Sec : sections32()) {
if (Sec.Flags == XCOFF::STYP_OVRFLO &&
Sec.NumberOfRelocations == SectionIndex)
return Sec.PhysicalAddress;
}
return errorCodeToError(object_error::parse_failed);
}
template <typename Shdr, typename Reloc>
Expected<ArrayRef<Reloc>> XCOFFObjectFile::relocations(const Shdr &Sec) const {
uintptr_t RelocAddr = getWithOffset(reinterpret_cast<uintptr_t>(FileHeader),
Sec.FileOffsetToRelocationInfo);
auto NumRelocEntriesOrErr = getNumberOfRelocationEntries(Sec);
if (Error E = NumRelocEntriesOrErr.takeError())
return std::move(E);
uint32_t NumRelocEntries = NumRelocEntriesOrErr.get();
static_assert((sizeof(Reloc) == XCOFF::RelocationSerializationSize64 ||
sizeof(Reloc) == XCOFF::RelocationSerializationSize32),
"Relocation structure is incorrect");
auto RelocationOrErr =
getObject<Reloc>(Data, reinterpret_cast<void *>(RelocAddr),
NumRelocEntries * sizeof(Reloc));
if (Error E = RelocationOrErr.takeError())
return std::move(E);
const Reloc *StartReloc = RelocationOrErr.get();
return ArrayRef<Reloc>(StartReloc, StartReloc + NumRelocEntries);
}
Expected<XCOFFStringTable>
XCOFFObjectFile::parseStringTable(const XCOFFObjectFile *Obj, uint64_t Offset) {
// If there is a string table, then the buffer must contain at least 4 bytes
// for the string table's size. Not having a string table is not an error.
if (Error E = Binary::checkOffset(
Obj->Data, reinterpret_cast<uintptr_t>(Obj->base() + Offset), 4)) {
consumeError(std::move(E));
return XCOFFStringTable{0, nullptr};
}
// Read the size out of the buffer.
uint32_t Size = support::endian::read32be(Obj->base() + Offset);
// If the size is less then 4, then the string table is just a size and no
// string data.
if (Size <= 4)
return XCOFFStringTable{4, nullptr};
auto StringTableOrErr =
getObject<char>(Obj->Data, Obj->base() + Offset, Size);
if (Error E = StringTableOrErr.takeError())
return std::move(E);
const char *StringTablePtr = StringTableOrErr.get();
if (StringTablePtr[Size - 1] != '\0')
return errorCodeToError(object_error::string_table_non_null_end);
return XCOFFStringTable{Size, StringTablePtr};
}
// This function returns the import file table. Each entry in the import file
// table consists of: "path_name\0base_name\0archive_member_name\0".
Expected<StringRef> XCOFFObjectFile::getImportFileTable() const {
Expected<uintptr_t> LoaderSectionAddrOrError = getLoaderSectionAddress();
if (!LoaderSectionAddrOrError)
return LoaderSectionAddrOrError.takeError();
uintptr_t LoaderSectionAddr = LoaderSectionAddrOrError.get();
if (!LoaderSectionAddr)
return StringRef();
uint64_t OffsetToImportFileTable = 0;
uint64_t LengthOfImportFileTable = 0;
if (is64Bit()) {
const LoaderSectionHeader64 *LoaderSec64 =
viewAs<LoaderSectionHeader64>(LoaderSectionAddr);
OffsetToImportFileTable = LoaderSec64->OffsetToImpid;
LengthOfImportFileTable = LoaderSec64->LengthOfImpidStrTbl;
} else {
const LoaderSectionHeader32 *LoaderSec32 =
viewAs<LoaderSectionHeader32>(LoaderSectionAddr);
OffsetToImportFileTable = LoaderSec32->OffsetToImpid;
LengthOfImportFileTable = LoaderSec32->LengthOfImpidStrTbl;
}
auto ImportTableOrErr = getObject<char>(
Data,
reinterpret_cast<void *>(LoaderSectionAddr + OffsetToImportFileTable),
LengthOfImportFileTable);
if (Error E = ImportTableOrErr.takeError())
return std::move(E);
const char *ImportTablePtr = ImportTableOrErr.get();
if (ImportTablePtr[LengthOfImportFileTable - 1] != '\0')
return createStringError(
object_error::parse_failed,
"the import file table must end with a null terminator");
return StringRef(ImportTablePtr, LengthOfImportFileTable);
}
Expected<std::unique_ptr<XCOFFObjectFile>>
XCOFFObjectFile::create(unsigned Type, MemoryBufferRef MBR) {
// Can't use std::make_unique because of the private constructor.
std::unique_ptr<XCOFFObjectFile> Obj;
Obj.reset(new XCOFFObjectFile(Type, MBR));
uint64_t CurOffset = 0;
const auto *Base = Obj->base();
MemoryBufferRef Data = Obj->Data;
// Parse file header.
auto FileHeaderOrErr =
getObject<void>(Data, Base + CurOffset, Obj->getFileHeaderSize());
if (Error E = FileHeaderOrErr.takeError())
return std::move(E);
Obj->FileHeader = FileHeaderOrErr.get();
CurOffset += Obj->getFileHeaderSize();
// TODO FIXME we don't have support for an optional header yet, so just skip
// past it.
CurOffset += Obj->getOptionalHeaderSize();
// Parse the section header table if it is present.
if (Obj->getNumberOfSections()) {
auto SecHeadersOrErr = getObject<void>(Data, Base + CurOffset,
Obj->getNumberOfSections() *
Obj->getSectionHeaderSize());
if (Error E = SecHeadersOrErr.takeError())
return std::move(E);
Obj->SectionHeaderTable = SecHeadersOrErr.get();
}
const uint32_t NumberOfSymbolTableEntries =
Obj->getNumberOfSymbolTableEntries();
// If there is no symbol table we are done parsing the memory buffer.
if (NumberOfSymbolTableEntries == 0)
return std::move(Obj);
// Parse symbol table.
CurOffset = Obj->is64Bit() ? Obj->getSymbolTableOffset64()
: Obj->getSymbolTableOffset32();
const uint64_t SymbolTableSize =
static_cast<uint64_t>(XCOFF::SymbolTableEntrySize) *
NumberOfSymbolTableEntries;
auto SymTableOrErr =
getObject<void *>(Data, Base + CurOffset, SymbolTableSize);
if (Error E = SymTableOrErr.takeError())
return std::move(E);
Obj->SymbolTblPtr = SymTableOrErr.get();
CurOffset += SymbolTableSize;
// Parse String table.
Expected<XCOFFStringTable> StringTableOrErr =
parseStringTable(Obj.get(), CurOffset);
if (Error E = StringTableOrErr.takeError())
return std::move(E);
Obj->StringTable = StringTableOrErr.get();
return std::move(Obj);
}
Expected<std::unique_ptr<ObjectFile>>
ObjectFile::createXCOFFObjectFile(MemoryBufferRef MemBufRef,
unsigned FileType) {
return XCOFFObjectFile::create(FileType, MemBufRef);
}
bool XCOFFSymbolRef::isFunction() const {
if (!isCsectSymbol())
return false;
if (getSymbolType() & FunctionSym)
return true;
Expected<XCOFFCsectAuxRef> ExpCsectAuxEnt = getXCOFFCsectAuxRef();
if (!ExpCsectAuxEnt)
return false;
const XCOFFCsectAuxRef CsectAuxRef = ExpCsectAuxEnt.get();
// A function definition should be a label definition.
// FIXME: This is not necessarily the case when -ffunction-sections is
// enabled.
if (!CsectAuxRef.isLabel())
return false;
if (CsectAuxRef.getStorageMappingClass() != XCOFF::XMC_PR)
return false;
const int16_t SectNum = getSectionNumber();
Expected<DataRefImpl> SI = OwningObjectPtr->getSectionByNum(SectNum);
if (!SI) {
// If we could not get the section, then this symbol should not be
// a function. So consume the error and return `false` to move on.
consumeError(SI.takeError());
return false;
}
return (OwningObjectPtr->getSectionFlags(SI.get()) & XCOFF::STYP_TEXT);
}
bool XCOFFSymbolRef::isCsectSymbol() const {
XCOFF::StorageClass SC = getStorageClass();
return (SC == XCOFF::C_EXT || SC == XCOFF::C_WEAKEXT ||
SC == XCOFF::C_HIDEXT);
}
Expected<XCOFFCsectAuxRef> XCOFFSymbolRef::getXCOFFCsectAuxRef() const {
assert(isCsectSymbol() &&
"Calling csect symbol interface with a non-csect symbol.");
uint8_t NumberOfAuxEntries = getNumberOfAuxEntries();
Expected<StringRef> NameOrErr = getName();
if (auto Err = NameOrErr.takeError())
return std::move(Err);
if (!NumberOfAuxEntries) {
return createStringError(object_error::parse_failed,
"csect symbol \"" + *NameOrErr +
"\" contains no auxiliary entry");
}
if (!OwningObjectPtr->is64Bit()) {
// In XCOFF32, the csect auxilliary entry is always the last auxiliary
// entry for the symbol.
uintptr_t AuxAddr = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
getEntryAddress(), NumberOfAuxEntries);
return XCOFFCsectAuxRef(viewAs<XCOFFCsectAuxEnt32>(AuxAddr));
}
// XCOFF64 uses SymbolAuxType to identify the auxiliary entry type.
// We need to iterate through all the auxiliary entries to find it.
for (uint8_t Index = NumberOfAuxEntries; Index > 0; --Index) {
uintptr_t AuxAddr = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
getEntryAddress(), Index);
if (*OwningObjectPtr->getSymbolAuxType(AuxAddr) ==
XCOFF::SymbolAuxType::AUX_CSECT) {
#ifndef NDEBUG
OwningObjectPtr->checkSymbolEntryPointer(AuxAddr);
#endif
return XCOFFCsectAuxRef(viewAs<XCOFFCsectAuxEnt64>(AuxAddr));
}
}
return createStringError(
object_error::parse_failed,
"a csect auxiliary entry is not found for symbol \"" + *NameOrErr + "\"");
}
Expected<StringRef> XCOFFSymbolRef::getName() const {
// A storage class value with the high-order bit on indicates that the name is
// a symbolic debugger stabstring.
if (getStorageClass() & 0x80)
return StringRef("Unimplemented Debug Name");
if (Entry32) {
if (Entry32->NameInStrTbl.Magic != XCOFFSymbolRef::NAME_IN_STR_TBL_MAGIC)
return generateXCOFFFixedNameStringRef(Entry32->SymbolName);
return OwningObjectPtr->getStringTableEntry(Entry32->NameInStrTbl.Offset);
}
return OwningObjectPtr->getStringTableEntry(Entry64->Offset);
}
// Explictly instantiate template classes.
template struct XCOFFSectionHeader<XCOFFSectionHeader32>;
template struct XCOFFSectionHeader<XCOFFSectionHeader64>;
template struct XCOFFRelocation<llvm::support::ubig32_t>;
template struct XCOFFRelocation<llvm::support::ubig64_t>;
template llvm::Expected<llvm::ArrayRef<llvm::object::XCOFFRelocation64>>
llvm::object::XCOFFObjectFile::relocations<llvm::object::XCOFFSectionHeader64,
llvm::object::XCOFFRelocation64>(
llvm::object::XCOFFSectionHeader64 const &) const;
template llvm::Expected<llvm::ArrayRef<llvm::object::XCOFFRelocation32>>
llvm::object::XCOFFObjectFile::relocations<llvm::object::XCOFFSectionHeader32,
llvm::object::XCOFFRelocation32>(
llvm::object::XCOFFSectionHeader32 const &) const;
bool doesXCOFFTracebackTableBegin(ArrayRef<uint8_t> Bytes) {
if (Bytes.size() < 4)
return false;
return support::endian::read32be(Bytes.data()) == 0;
}
#define GETVALUEWITHMASK(X) (Data & (TracebackTable::X))
#define GETVALUEWITHMASKSHIFT(X, S) \
((Data & (TracebackTable::X)) >> (TracebackTable::S))
Expected<TBVectorExt> TBVectorExt::create(StringRef TBvectorStrRef) {
Error Err = Error::success();
TBVectorExt TBTVecExt(TBvectorStrRef, Err);
if (Err)
return std::move(Err);
return TBTVecExt;
}
TBVectorExt::TBVectorExt(StringRef TBvectorStrRef, Error &Err) {
const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(TBvectorStrRef.data());
Data = support::endian::read16be(Ptr);
uint32_t VecParmsTypeValue = support::endian::read32be(Ptr + 2);
unsigned ParmsNum =
GETVALUEWITHMASKSHIFT(NumberOfVectorParmsMask, NumberOfVectorParmsShift);
ErrorAsOutParameter EAO(&Err);
Expected<SmallString<32>> VecParmsTypeOrError =
parseVectorParmsType(VecParmsTypeValue, ParmsNum);
if (!VecParmsTypeOrError)
Err = VecParmsTypeOrError.takeError();
else
VecParmsInfo = VecParmsTypeOrError.get();
}
uint8_t TBVectorExt::getNumberOfVRSaved() const {
return GETVALUEWITHMASKSHIFT(NumberOfVRSavedMask, NumberOfVRSavedShift);
}
bool TBVectorExt::isVRSavedOnStack() const {
return GETVALUEWITHMASK(IsVRSavedOnStackMask);
}
bool TBVectorExt::hasVarArgs() const {
return GETVALUEWITHMASK(HasVarArgsMask);
}
uint8_t TBVectorExt::getNumberOfVectorParms() const {
return GETVALUEWITHMASKSHIFT(NumberOfVectorParmsMask,
NumberOfVectorParmsShift);
}
bool TBVectorExt::hasVMXInstruction() const {
return GETVALUEWITHMASK(HasVMXInstructionMask);
}
#undef GETVALUEWITHMASK
#undef GETVALUEWITHMASKSHIFT
Expected<XCOFFTracebackTable> XCOFFTracebackTable::create(const uint8_t *Ptr,
uint64_t &Size) {
Error Err = Error::success();
XCOFFTracebackTable TBT(Ptr, Size, Err);
if (Err)
return std::move(Err);
return TBT;
}
XCOFFTracebackTable::XCOFFTracebackTable(const uint8_t *Ptr, uint64_t &Size,
Error &Err)
: TBPtr(Ptr) {
ErrorAsOutParameter EAO(&Err);
DataExtractor DE(ArrayRef<uint8_t>(Ptr, Size), /*IsLittleEndian=*/false,
/*AddressSize=*/0);
DataExtractor::Cursor Cur(/*Offset=*/0);
// Skip 8 bytes of mandatory fields.
DE.getU64(Cur);
unsigned FixedParmsNum = getNumberOfFixedParms();
unsigned FloatingParmsNum = getNumberOfFPParms();
uint32_t ParamsTypeValue = 0;
// Begin to parse optional fields.
if (Cur && (FixedParmsNum + FloatingParmsNum) > 0)
ParamsTypeValue = DE.getU32(Cur);
if (Cur && hasTraceBackTableOffset())
TraceBackTableOffset = DE.getU32(Cur);
if (Cur && isInterruptHandler())
HandlerMask = DE.getU32(Cur);
if (Cur && hasControlledStorage()) {
NumOfCtlAnchors = DE.getU32(Cur);
if (Cur && NumOfCtlAnchors) {
SmallVector<uint32_t, 8> Disp;
Disp.reserve(NumOfCtlAnchors.getValue());
for (uint32_t I = 0; I < NumOfCtlAnchors && Cur; ++I)
Disp.push_back(DE.getU32(Cur));
if (Cur)
ControlledStorageInfoDisp = std::move(Disp);
}
}
if (Cur && isFuncNamePresent()) {
uint16_t FunctionNameLen = DE.getU16(Cur);
if (Cur)
FunctionName = DE.getBytes(Cur, FunctionNameLen);
}
if (Cur && isAllocaUsed())
AllocaRegister = DE.getU8(Cur);
unsigned VectorParmsNum = 0;
if (Cur && hasVectorInfo()) {
StringRef VectorExtRef = DE.getBytes(Cur, 6);
if (Cur) {
Expected<TBVectorExt> TBVecExtOrErr = TBVectorExt::create(VectorExtRef);
if (!TBVecExtOrErr) {
Err = TBVecExtOrErr.takeError();
return;
}
VecExt = TBVecExtOrErr.get();
VectorParmsNum = VecExt.getValue().getNumberOfVectorParms();
}
}
// As long as there is no fixed-point or floating-point parameter, this
// field remains not present even when hasVectorInfo gives true and
// indicates the presence of vector parameters.
if (Cur && (FixedParmsNum + FloatingParmsNum) > 0) {
Expected<SmallString<32>> ParmsTypeOrError =
hasVectorInfo()
? parseParmsTypeWithVecInfo(ParamsTypeValue, FixedParmsNum,
FloatingParmsNum, VectorParmsNum)
: parseParmsType(ParamsTypeValue, FixedParmsNum, FloatingParmsNum);
if (!ParmsTypeOrError) {
Err = ParmsTypeOrError.takeError();
return;
}
ParmsType = ParmsTypeOrError.get();
}
if (Cur && hasExtensionTable())
ExtensionTable = DE.getU8(Cur);
if (!Cur)
Err = Cur.takeError();
Size = Cur.tell();
}
#define GETBITWITHMASK(P, X) \
(support::endian::read32be(TBPtr + (P)) & (TracebackTable::X))
#define GETBITWITHMASKSHIFT(P, X, S) \
((support::endian::read32be(TBPtr + (P)) & (TracebackTable::X)) >> \
(TracebackTable::S))
uint8_t XCOFFTracebackTable::getVersion() const {
return GETBITWITHMASKSHIFT(0, VersionMask, VersionShift);
}
uint8_t XCOFFTracebackTable::getLanguageID() const {
return GETBITWITHMASKSHIFT(0, LanguageIdMask, LanguageIdShift);
}
bool XCOFFTracebackTable::isGlobalLinkage() const {
return GETBITWITHMASK(0, IsGlobaLinkageMask);
}
bool XCOFFTracebackTable::isOutOfLineEpilogOrPrologue() const {
return GETBITWITHMASK(0, IsOutOfLineEpilogOrPrologueMask);
}
bool XCOFFTracebackTable::hasTraceBackTableOffset() const {
return GETBITWITHMASK(0, HasTraceBackTableOffsetMask);
}
bool XCOFFTracebackTable::isInternalProcedure() const {
return GETBITWITHMASK(0, IsInternalProcedureMask);
}
bool XCOFFTracebackTable::hasControlledStorage() const {
return GETBITWITHMASK(0, HasControlledStorageMask);
}
bool XCOFFTracebackTable::isTOCless() const {
return GETBITWITHMASK(0, IsTOClessMask);
}
bool XCOFFTracebackTable::isFloatingPointPresent() const {
return GETBITWITHMASK(0, IsFloatingPointPresentMask);
}
bool XCOFFTracebackTable::isFloatingPointOperationLogOrAbortEnabled() const {
return GETBITWITHMASK(0, IsFloatingPointOperationLogOrAbortEnabledMask);
}
bool XCOFFTracebackTable::isInterruptHandler() const {
return GETBITWITHMASK(0, IsInterruptHandlerMask);
}
bool XCOFFTracebackTable::isFuncNamePresent() const {
return GETBITWITHMASK(0, IsFunctionNamePresentMask);
}
bool XCOFFTracebackTable::isAllocaUsed() const {
return GETBITWITHMASK(0, IsAllocaUsedMask);
}
uint8_t XCOFFTracebackTable::getOnConditionDirective() const {
return GETBITWITHMASKSHIFT(0, OnConditionDirectiveMask,
OnConditionDirectiveShift);
}
bool XCOFFTracebackTable::isCRSaved() const {
return GETBITWITHMASK(0, IsCRSavedMask);
}
bool XCOFFTracebackTable::isLRSaved() const {
return GETBITWITHMASK(0, IsLRSavedMask);
}
bool XCOFFTracebackTable::isBackChainStored() const {
return GETBITWITHMASK(4, IsBackChainStoredMask);
}
bool XCOFFTracebackTable::isFixup() const {
return GETBITWITHMASK(4, IsFixupMask);
}
uint8_t XCOFFTracebackTable::getNumOfFPRsSaved() const {
return GETBITWITHMASKSHIFT(4, FPRSavedMask, FPRSavedShift);
}
bool XCOFFTracebackTable::hasExtensionTable() const {
return GETBITWITHMASK(4, HasExtensionTableMask);
}
bool XCOFFTracebackTable::hasVectorInfo() const {
return GETBITWITHMASK(4, HasVectorInfoMask);
}
uint8_t XCOFFTracebackTable::getNumOfGPRsSaved() const {
return GETBITWITHMASKSHIFT(4, GPRSavedMask, GPRSavedShift);
}
uint8_t XCOFFTracebackTable::getNumberOfFixedParms() const {
return GETBITWITHMASKSHIFT(4, NumberOfFixedParmsMask,
NumberOfFixedParmsShift);
}
uint8_t XCOFFTracebackTable::getNumberOfFPParms() const {
return GETBITWITHMASKSHIFT(4, NumberOfFloatingPointParmsMask,
NumberOfFloatingPointParmsShift);
}
bool XCOFFTracebackTable::hasParmsOnStack() const {
return GETBITWITHMASK(4, HasParmsOnStackMask);
}
#undef GETBITWITHMASK
#undef GETBITWITHMASKSHIFT
} // namespace object
} // namespace llvm