llvm-project/lldb/source/Expression/IRForTarget.cpp

2969 lines
97 KiB
C++
Raw Normal View History

This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
//===-- IRForTarget.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/IRForTarget.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "clang/AST/ASTContext.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Host/Endian.h"
#include "lldb/Symbol/ClangASTContext.h"
#include <map>
using namespace llvm;
static char ID;
IRForTarget::StaticDataAllocator::StaticDataAllocator()
{
}
IRForTarget::StaticDataAllocator::~StaticDataAllocator()
{
}
IRForTarget::IRForTarget (lldb_private::ClangExpressionDeclMap *decl_map,
bool resolve_vars,
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
lldb_private::ExecutionPolicy execution_policy,
lldb::ClangExpressionVariableSP &const_result,
StaticDataAllocator *data_allocator,
lldb_private::Stream *error_stream,
const char *func_name) :
ModulePass(ID),
m_resolve_vars(resolve_vars),
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
m_execution_policy(execution_policy),
m_interpret_success(false),
m_func_name(func_name),
m_module(NULL),
m_decl_map(decl_map),
m_data_allocator(data_allocator),
m_CFStringCreateWithBytes(NULL),
This is a major refactoring of the expression parser. The goal is to separate the parser's data from the data belonging to the parser's clients. This allows clients to use the parser to obtain (for example) a JIT compiled function or some DWARF code, and then discard the parser state. Previously, parser state was held in ClangExpression and used liberally by ClangFunction, which inherited from ClangExpression. The main effects of this refactoring are: - reducing ClangExpression to an abstract class that declares methods that any client must expose to the expression parser, - moving the code specific to implementing the "expr" command from ClangExpression and CommandObjectExpression into ClangUserExpression, a new class, - moving the common parser interaction code from ClangExpression into ClangExpressionParser, a new class, and - making ClangFunction rely only on ClangExpressionParser and not depend on the internal implementation of ClangExpression. Side effects include: - the compiler interaction code has been factored out of ClangFunction and is now in an AST pass (ASTStructExtractor), - the header file for ClangFunction is now fully documented, - several bugs that only popped up when Clang was deallocated (which never happened, since the lifetime of the compiler was essentially infinite) are now fixed, and - the developer-only "call" command has been disabled. I have tested the expr command and the Objective-C step-into code, which use ClangUserExpression and ClangFunction, respectively, and verified that they work. Please let me know if you encounter bugs or poor documentation. llvm-svn: 112249
2010-08-27 09:01:44 +08:00
m_sel_registerName(NULL),
m_const_result(const_result),
m_error_stream(error_stream),
m_has_side_effects(false),
m_result_store(NULL),
m_result_is_pointer(false),
m_reloc_placeholder(NULL)
{
}
/* Handy utility functions used at several places in the code */
static std::string
PrintValue(const Value *value, bool truncate = false)
{
std::string s;
if (value)
{
raw_string_ostream rso(s);
value->print(rso);
rso.flush();
if (truncate)
s.resize(s.length() - 1);
}
return s;
}
static std::string
PrintType(const Type *type, bool truncate = false)
{
std::string s;
raw_string_ostream rso(s);
type->print(rso);
rso.flush();
if (truncate)
s.resize(s.length() - 1);
return s;
}
IRForTarget::~IRForTarget()
{
}
bool
IRForTarget::FixFunctionLinkage(llvm::Function &llvm_function)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
llvm_function.setLinkage(GlobalValue::ExternalLinkage);
std::string name = llvm_function.getName().str();
return true;
}
bool
IRForTarget::HasSideEffects (llvm::Function &llvm_function)
{
llvm::Function::iterator bbi;
BasicBlock::iterator ii;
for (bbi = llvm_function.begin();
bbi != llvm_function.end();
++bbi)
{
BasicBlock &basic_block = *bbi;
for (ii = basic_block.begin();
ii != basic_block.end();
++ii)
{
switch (ii->getOpcode())
{
default:
return true;
case Instruction::Store:
{
StoreInst *store_inst = dyn_cast<StoreInst>(ii);
Value *store_ptr = store_inst->getPointerOperand();
std::string ptr_name;
if (store_ptr->hasName())
ptr_name = store_ptr->getName().str();
if (isa <AllocaInst> (store_ptr))
break;
if (ptr_name.find("$__lldb_expr_result") != std::string::npos)
{
if (ptr_name.find("GV") == std::string::npos)
m_result_store = store_inst;
}
else
{
return true;
}
break;
}
case Instruction::Load:
case Instruction::Alloca:
case Instruction::GetElementPtr:
case Instruction::BitCast:
case Instruction::Ret:
case Instruction::ICmp:
case Instruction::Br:
break;
}
}
}
return false;
}
bool
IRForTarget::GetFunctionAddress (llvm::Function *fun,
uint64_t &fun_addr,
lldb_private::ConstString &name,
Constant **&value_ptr)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
fun_addr = LLDB_INVALID_ADDRESS;
name.Clear();
value_ptr = NULL;
if (fun->isIntrinsic())
{
Intrinsic::ID intrinsic_id = (Intrinsic::ID)fun->getIntrinsicID();
switch (intrinsic_id)
{
default:
if (log)
log->Printf("Unresolved intrinsic \"%s\"", Intrinsic::getName(intrinsic_id).c_str());
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Call to unhandled compiler intrinsic '%s'\n", Intrinsic::getName(intrinsic_id).c_str());
return false;
case Intrinsic::memcpy:
{
static lldb_private::ConstString g_memcpy_str ("memcpy");
name = g_memcpy_str;
}
break;
case Intrinsic::memset:
{
static lldb_private::ConstString g_memset_str ("memset");
name = g_memset_str;
}
break;
}
if (log && name)
log->Printf("Resolved intrinsic name \"%s\"", name.GetCString());
}
else
{
name.SetCStringWithLength (fun->getName().data(), fun->getName().size());
}
// Find the address of the function.
clang::NamedDecl *fun_decl = DeclForGlobal (fun);
if (fun_decl)
{
if (!m_decl_map->GetFunctionInfo (fun_decl, fun_addr))
{
lldb_private::ConstString altnernate_name;
bool found_it = m_decl_map->GetFunctionAddress (name, fun_addr);
if (!found_it)
{
// Check for an alternate mangling for "std::basic_string<char>"
// that is part of the itanium C++ name mangling scheme
const char *name_cstr = name.GetCString();
if (name_cstr && strncmp(name_cstr, "_ZNKSbIcE", strlen("_ZNKSbIcE")) == 0)
{
std::string alternate_mangling("_ZNKSs");
alternate_mangling.append (name_cstr + strlen("_ZNKSbIcE"));
altnernate_name.SetCString(alternate_mangling.c_str());
found_it = m_decl_map->GetFunctionAddress (altnernate_name, fun_addr);
}
}
if (!found_it)
{
lldb_private::Mangled mangled_name(name);
lldb_private::Mangled alt_mangled_name(altnernate_name);
if (log)
{
if (alt_mangled_name)
log->Printf("Function \"%s\" (alternate name \"%s\") has no address",
mangled_name.GetName().GetCString(),
alt_mangled_name.GetName().GetCString());
else
log->Printf("Function \"%s\" had no address",
mangled_name.GetName().GetCString());
}
if (m_error_stream)
{
if (alt_mangled_name)
m_error_stream->Printf("error: call to a function '%s' (alternate name '%s') that is not present in the target\n",
mangled_name.GetName().GetCString(),
alt_mangled_name.GetName().GetCString());
else
m_error_stream->Printf("error: call to a function '%s' that is not present in the target\n",
mangled_name.GetName().GetCString());
}
return false;
}
}
}
else
{
if (!m_decl_map->GetFunctionAddress (name, fun_addr))
{
if (log)
log->Printf ("Metadataless function \"%s\" had no address", name.GetCString());
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Call to a symbol-only function '%s' that is not present in the target\n", name.GetCString());
return false;
}
}
if (log)
log->Printf("Found \"%s\" at 0x%" PRIx64, name.GetCString(), fun_addr);
return true;
}
llvm::Constant *
IRForTarget::BuildFunctionPointer (llvm::Type *type,
uint64_t ptr)
{
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize() == Module::Pointer64) ? 64 : 32);
PointerType *fun_ptr_ty = PointerType::getUnqual(type);
Constant *fun_addr_int = ConstantInt::get(intptr_ty, ptr, false);
return ConstantExpr::getIntToPtr(fun_addr_int, fun_ptr_ty);
}
void
IRForTarget::RegisterFunctionMetadata(LLVMContext &context,
llvm::Value *function_ptr,
const char *name)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
for (Value::use_iterator i = function_ptr->use_begin(), e = function_ptr->use_end();
i != e;
++i)
{
Value *user = *i;
if (Instruction *user_inst = dyn_cast<Instruction>(user))
{
Constant *name_array = ConstantDataArray::getString(context, StringRef(name));
ArrayRef<Value *> md_values(name_array);
MDNode *metadata = MDNode::get(context, md_values);
user_inst->setMetadata("lldb.call.realName", metadata);
}
else
{
RegisterFunctionMetadata (context, user, name);
}
}
}
bool
IRForTarget::ResolveFunctionPointers(llvm::Module &llvm_module,
llvm::Function &llvm_function)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
for (llvm::Module::iterator fi = llvm_module.begin();
fi != llvm_module.end();
++fi)
{
Function *fun = fi;
bool is_decl = fun->isDeclaration();
if (log)
log->Printf("Examining %s function %s", (is_decl ? "declaration" : "non-declaration"), fun->getName().str().c_str());
if (!is_decl)
continue;
if (fun->hasNUses(0))
continue; // ignore
uint64_t addr = LLDB_INVALID_ADDRESS;
lldb_private::ConstString name;
Constant **value_ptr = NULL;
if (!GetFunctionAddress(fun,
addr,
name,
value_ptr))
return false; // GetFunctionAddress reports its own errors
Constant *value = BuildFunctionPointer(fun->getFunctionType(), addr);
RegisterFunctionMetadata (llvm_module.getContext(), fun, name.AsCString());
if (value_ptr)
*value_ptr = value;
fun->replaceAllUsesWith(value);
}
return true;
}
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
clang::NamedDecl *
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
IRForTarget::DeclForGlobal (const GlobalValue *global_val, Module *module)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
NamedMDNode *named_metadata = module->getNamedMetadata("clang.global.decl.ptrs");
if (!named_metadata)
return NULL;
unsigned num_nodes = named_metadata->getNumOperands();
unsigned node_index;
for (node_index = 0;
node_index < num_nodes;
++node_index)
{
MDNode *metadata_node = named_metadata->getOperand(node_index);
if (!metadata_node)
return NULL;
if (metadata_node->getNumOperands() != 2)
continue;
if (metadata_node->getOperand(0) != global_val)
continue;
ConstantInt *constant_int = dyn_cast<ConstantInt>(metadata_node->getOperand(1));
if (!constant_int)
return NULL;
uintptr_t ptr = constant_int->getZExtValue();
return reinterpret_cast<clang::NamedDecl *>(ptr);
}
return NULL;
}
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
clang::NamedDecl *
IRForTarget::DeclForGlobal (GlobalValue *global_val)
{
return DeclForGlobal(global_val, m_module);
}
void
IRForTarget::MaybeSetConstantResult (llvm::Constant *initializer,
const lldb_private::ConstString &name,
lldb_private::TypeFromParser type)
{
if (llvm::ConstantExpr *init_expr = dyn_cast<llvm::ConstantExpr>(initializer))
{
switch (init_expr->getOpcode())
{
default:
return;
case Instruction::IntToPtr:
MaybeSetConstantResult (init_expr->getOperand(0), name, type);
return;
}
}
else if (llvm::ConstantInt *init_int = dyn_cast<llvm::ConstantInt>(initializer))
{
m_const_result = m_decl_map->BuildIntegerVariable(name, type, init_int->getValue());
}
}
void
IRForTarget::MaybeSetCastResult (lldb_private::TypeFromParser type)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (!m_result_store)
return;
LoadInst *original_load = NULL;
for (llvm::Value *current_value = m_result_store->getValueOperand(), *next_value;
current_value != NULL;
current_value = next_value)
{
CastInst *cast_inst = dyn_cast<CastInst>(current_value);
LoadInst *load_inst = dyn_cast<LoadInst>(current_value);
if (cast_inst)
{
next_value = cast_inst->getOperand(0);
}
else if (load_inst)
{
if (isa<LoadInst>(load_inst->getPointerOperand()))
{
next_value = load_inst->getPointerOperand();
}
else
{
original_load = load_inst;
break;
}
}
else
{
return;
}
}
if (!original_load)
return;
Value *loaded_value = original_load->getPointerOperand();
GlobalVariable *loaded_global = dyn_cast<GlobalVariable>(loaded_value);
if (!loaded_global)
return;
clang::NamedDecl *loaded_decl = DeclForGlobal(loaded_global);
if (!loaded_decl)
return;
clang::VarDecl *loaded_var = dyn_cast<clang::VarDecl>(loaded_decl);
if (!loaded_var)
return;
if (log)
{
lldb_private::StreamString type_desc_stream;
type.DumpTypeDescription(&type_desc_stream);
log->Printf("Type to cast variable to: \"%s\"", type_desc_stream.GetString().c_str());
}
m_const_result = m_decl_map->BuildCastVariable(m_result_name, loaded_var, type);
}
bool
IRForTarget::CreateResultVariable (llvm::Function &llvm_function)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (!m_resolve_vars)
return true;
// Find the result variable. If it doesn't exist, we can give up right here.
ValueSymbolTable& value_symbol_table = m_module->getValueSymbolTable();
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
std::string result_name_str;
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
const char *result_name = NULL;
for (ValueSymbolTable::iterator vi = value_symbol_table.begin(), ve = value_symbol_table.end();
vi != ve;
++vi)
{
result_name_str = vi->first().str();
const char *value_name = result_name_str.c_str();
if (strstr(value_name, "$__lldb_expr_result_ptr") &&
strncmp(value_name, "_ZGV", 4))
{
result_name = value_name;
m_result_is_pointer = true;
break;
}
if (strstr(value_name, "$__lldb_expr_result") &&
strncmp(value_name, "_ZGV", 4))
{
result_name = value_name;
m_result_is_pointer = false;
break;
}
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
}
if (!result_name)
{
if (log)
log->PutCString("Couldn't find result variable");
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
return true;
}
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
if (log)
log->Printf("Result name: \"%s\"", result_name);
Value *result_value = m_module->getNamedValue(result_name);
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
if (!result_value)
{
if (log)
log->PutCString("Result variable had no data");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Result variable's name (%s) exists, but not its definition\n", result_name);
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
return false;
}
if (log)
log->Printf("Found result in the IR: \"%s\"", PrintValue(result_value, false).c_str());
GlobalVariable *result_global = dyn_cast<GlobalVariable>(result_value);
if (!result_global)
{
if (log)
log->PutCString("Result variable isn't a GlobalVariable");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Result variable (%s) is defined, but is not a global variable\n", result_name);
return false;
}
clang::NamedDecl *result_decl = DeclForGlobal (result_global);
if (!result_decl)
{
if (log)
log->PutCString("Result variable doesn't have a corresponding Decl");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Result variable (%s) does not have a corresponding Clang entity\n", result_name);
return false;
}
if (log)
{
std::string decl_desc_str;
raw_string_ostream decl_desc_stream(decl_desc_str);
result_decl->print(decl_desc_stream);
decl_desc_stream.flush();
log->Printf("Found result decl: \"%s\"", decl_desc_str.c_str());
}
clang::VarDecl *result_var = dyn_cast<clang::VarDecl>(result_decl);
if (!result_var)
{
if (log)
log->PutCString("Result variable Decl isn't a VarDecl");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Result variable (%s)'s corresponding Clang entity isn't a variable\n", result_name);
return false;
}
// Get the next available result name from m_decl_map and create the persistent
// variable for it
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
// If the result is an Lvalue, it is emitted as a pointer; see
// ASTResultSynthesizer::SynthesizeBodyResult.
if (m_result_is_pointer)
{
clang::QualType pointer_qual_type = result_var->getType();
const clang::Type *pointer_type = pointer_qual_type.getTypePtr();
const clang::PointerType *pointer_pointertype = pointer_type->getAs<clang::PointerType>();
const clang::ObjCObjectPointerType *pointer_objcobjpointertype = pointer_type->getAs<clang::ObjCObjectPointerType>();
if (pointer_pointertype)
{
clang::QualType element_qual_type = pointer_pointertype->getPointeeType();
m_result_type = lldb_private::TypeFromParser(element_qual_type.getAsOpaquePtr(),
&result_decl->getASTContext());
}
else if (pointer_objcobjpointertype)
{
clang::QualType element_qual_type = clang::QualType(pointer_objcobjpointertype->getObjectType(), 0);
m_result_type = lldb_private::TypeFromParser(element_qual_type.getAsOpaquePtr(),
&result_decl->getASTContext());
}
else
{
if (log)
log->PutCString("Expected result to have pointer type, but it did not");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Lvalue result (%s) is not a pointer variable\n", result_name);
return false;
}
}
else
{
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
m_result_type = lldb_private::TypeFromParser(result_var->getType().getAsOpaquePtr(),
&result_decl->getASTContext());
}
if (m_result_type.GetClangTypeBitWidth() == 0)
{
lldb_private::StreamString type_desc_stream;
m_result_type.DumpTypeDescription(&type_desc_stream);
if (log)
log->Printf("Result type has size 0");
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Size of result type '%s' couldn't be determined\n",
type_desc_stream.GetData());
return false;
}
if (log)
{
lldb_private::StreamString type_desc_stream;
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
m_result_type.DumpTypeDescription(&type_desc_stream);
log->Printf("Result decl type: \"%s\"", type_desc_stream.GetData());
}
m_result_name = m_decl_map->GetPersistentResultName();
if (log)
log->Printf("Creating a new result global: \"%s\" with size 0x%x",
m_result_name.GetCString(),
m_result_type.GetClangTypeBitWidth() / 8);
// Construct a new result global and set up its metadata
GlobalVariable *new_result_global = new GlobalVariable((*m_module),
result_global->getType()->getElementType(),
false, /* not constant */
GlobalValue::ExternalLinkage,
NULL, /* no initializer */
m_result_name.GetCString ());
// It's too late in compilation to create a new VarDecl for this, but we don't
// need to. We point the metadata at the old VarDecl. This creates an odd
// anomaly: a variable with a Value whose name is something like $0 and a
// Decl whose name is $__lldb_expr_result. This condition is handled in
// ClangExpressionDeclMap::DoMaterialize, and the name of the variable is
// fixed up.
ConstantInt *new_constant_int = ConstantInt::get(llvm::Type::getInt64Ty(m_module->getContext()),
reinterpret_cast<uint64_t>(result_decl),
false);
llvm::Value* values[2];
values[0] = new_result_global;
values[1] = new_constant_int;
ArrayRef<Value*> value_ref(values, 2);
MDNode *persistent_global_md = MDNode::get(m_module->getContext(), value_ref);
NamedMDNode *named_metadata = m_module->getNamedMetadata("clang.global.decl.ptrs");
named_metadata->addOperand(persistent_global_md);
if (log)
log->Printf("Replacing \"%s\" with \"%s\"",
PrintValue(result_global).c_str(),
PrintValue(new_result_global).c_str());
if (result_global->hasNUses(0))
{
// We need to synthesize a store for this variable, because otherwise
// there's nothing to put into its equivalent persistent variable.
BasicBlock &entry_block(llvm_function.getEntryBlock());
Instruction *first_entry_instruction(entry_block.getFirstNonPHIOrDbg());
if (!first_entry_instruction)
return false;
if (!result_global->hasInitializer())
{
if (log)
log->Printf("Couldn't find initializer for unused variable");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Result variable (%s) has no writes and no initializer\n", result_name);
return false;
}
Constant *initializer = result_global->getInitializer();
// Here we write the initializer into a result variable assuming it
// can be computed statically.
if (!m_has_side_effects)
{
//MaybeSetConstantResult (initializer,
// m_result_name,
// m_result_type);
}
StoreInst *synthesized_store = new StoreInst(initializer,
new_result_global,
first_entry_instruction);
if (log)
log->Printf("Synthesized result store \"%s\"\n", PrintValue(synthesized_store).c_str());
}
else
{
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
if (!m_has_side_effects && lldb_private::ClangASTContext::IsPointerType (m_result_type.GetOpaqueQualType()))
{
//MaybeSetCastResult (m_result_type);
}
result_global->replaceAllUsesWith(new_result_global);
}
if (!m_const_result)
if (!m_decl_map->AddPersistentVariable(result_decl,
m_result_name,
m_result_type,
true,
m_result_is_pointer))
return false;
result_global->eraseFromParent();
return true;
}
#if 0
static void DebugUsers(lldb::LogSP &log, Value *value, uint8_t depth)
{
if (!depth)
return;
depth--;
if (log)
log->Printf(" <Begin %d users>", value->getNumUses());
for (Value::use_iterator ui = value->use_begin(), ue = value->use_end();
ui != ue;
++ui)
{
if (log)
log->Printf(" <Use %p> %s", *ui, PrintValue(*ui).c_str());
DebugUsers(log, *ui, depth);
}
if (log)
log->Printf(" <End uses>");
}
#endif
bool
IRForTarget::RewriteObjCConstString (llvm::GlobalVariable *ns_str,
llvm::GlobalVariable *cstr,
Instruction *FirstEntryInstruction)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
Type *ns_str_ty = ns_str->getType();
Type *i8_ptr_ty = Type::getInt8PtrTy(m_module->getContext());
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize()
== Module::Pointer64) ? 64 : 32);
Type *i32_ty = Type::getInt32Ty(m_module->getContext());
Type *i8_ty = Type::getInt8Ty(m_module->getContext());
if (!m_CFStringCreateWithBytes)
{
lldb::addr_t CFStringCreateWithBytes_addr;
static lldb_private::ConstString g_CFStringCreateWithBytes_str ("CFStringCreateWithBytes");
if (!m_decl_map->GetFunctionAddress (g_CFStringCreateWithBytes_str, CFStringCreateWithBytes_addr))
{
if (log)
log->PutCString("Couldn't find CFStringCreateWithBytes in the target");
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Rewriting an Objective-C constant string requires CFStringCreateWithBytes\n");
return false;
}
if (log)
log->Printf("Found CFStringCreateWithBytes at 0x%" PRIx64, CFStringCreateWithBytes_addr);
// Build the function type:
//
// CFStringRef CFStringCreateWithBytes (
// CFAllocatorRef alloc,
// const UInt8 *bytes,
// CFIndex numBytes,
// CFStringEncoding encoding,
// Boolean isExternalRepresentation
// );
//
// We make the following substitutions:
//
// CFStringRef -> i8*
// CFAllocatorRef -> i8*
// UInt8 * -> i8*
// CFIndex -> long (i32 or i64, as appropriate; we ask the module for its pointer size for now)
// CFStringEncoding -> i32
// Boolean -> i8
Type *arg_type_array[5];
arg_type_array[0] = i8_ptr_ty;
arg_type_array[1] = i8_ptr_ty;
arg_type_array[2] = intptr_ty;
arg_type_array[3] = i32_ty;
arg_type_array[4] = i8_ty;
ArrayRef<Type *> CFSCWB_arg_types(arg_type_array, 5);
llvm::Type *CFSCWB_ty = FunctionType::get(ns_str_ty, CFSCWB_arg_types, false);
// Build the constant containing the pointer to the function
PointerType *CFSCWB_ptr_ty = PointerType::getUnqual(CFSCWB_ty);
Constant *CFSCWB_addr_int = ConstantInt::get(intptr_ty, CFStringCreateWithBytes_addr, false);
m_CFStringCreateWithBytes = ConstantExpr::getIntToPtr(CFSCWB_addr_int, CFSCWB_ptr_ty);
}
ConstantDataSequential *string_array = NULL;
if (cstr)
string_array = dyn_cast<ConstantDataSequential>(cstr->getInitializer());
Constant *alloc_arg = Constant::getNullValue(i8_ptr_ty);
Constant *bytes_arg = cstr ? ConstantExpr::getBitCast(cstr, i8_ptr_ty) : Constant::getNullValue(i8_ptr_ty);
Constant *numBytes_arg = ConstantInt::get(intptr_ty, cstr ? string_array->getNumElements() - 1 : 0, false);
Constant *encoding_arg = ConstantInt::get(i32_ty, 0x0600, false); /* 0x0600 is kCFStringEncodingASCII */
Constant *isExternal_arg = ConstantInt::get(i8_ty, 0x0, false); /* 0x0 is false */
Value *argument_array[5];
argument_array[0] = alloc_arg;
argument_array[1] = bytes_arg;
argument_array[2] = numBytes_arg;
argument_array[3] = encoding_arg;
argument_array[4] = isExternal_arg;
ArrayRef <Value *> CFSCWB_arguments(argument_array, 5);
CallInst *CFSCWB_call = CallInst::Create(m_CFStringCreateWithBytes,
CFSCWB_arguments,
"CFStringCreateWithBytes",
FirstEntryInstruction);
if (!UnfoldConstant(ns_str, CFSCWB_call, FirstEntryInstruction))
{
if (log)
log->PutCString("Couldn't replace the NSString with the result of the call");
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Couldn't replace an Objective-C constant string with a dynamic string\n");
return false;
}
ns_str->eraseFromParent();
return true;
}
bool
IRForTarget::RewriteObjCConstStrings(Function &llvm_function)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
ValueSymbolTable& value_symbol_table = m_module->getValueSymbolTable();
BasicBlock &entry_block(llvm_function.getEntryBlock());
Instruction *FirstEntryInstruction(entry_block.getFirstNonPHIOrDbg());
if (!FirstEntryInstruction)
{
if (log)
log->PutCString("Couldn't find first instruction for rewritten Objective-C strings");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't find the location for calls to CFStringCreateWithBytes\n");
return false;
}
for (ValueSymbolTable::iterator vi = value_symbol_table.begin(), ve = value_symbol_table.end();
vi != ve;
++vi)
{
std::string value_name = vi->first().str();
const char *value_name_cstr = value_name.c_str();
if (strstr(value_name_cstr, "_unnamed_cfstring_"))
{
Value *nsstring_value = vi->second;
GlobalVariable *nsstring_global = dyn_cast<GlobalVariable>(nsstring_value);
if (!nsstring_global)
{
if (log)
log->PutCString("NSString variable is not a GlobalVariable");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string is not a global variable\n");
return false;
}
if (!nsstring_global->hasInitializer())
{
if (log)
log->PutCString("NSString variable does not have an initializer");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string does not have an initializer\n");
return false;
}
ConstantStruct *nsstring_struct = dyn_cast<ConstantStruct>(nsstring_global->getInitializer());
if (!nsstring_struct)
{
if (log)
log->PutCString("NSString variable's initializer is not a ConstantStruct");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string is not a structure constant\n");
return false;
}
// We expect the following structure:
//
// struct {
// int *isa;
// int flags;
// char *str;
// long length;
// };
if (nsstring_struct->getNumOperands() != 4)
{
if (log)
log->Printf("NSString variable's initializer structure has an unexpected number of members. Should be 4, is %d", nsstring_struct->getNumOperands());
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: The struct for an Objective-C constant string is not as expected\n");
return false;
}
Constant *nsstring_member = nsstring_struct->getOperand(2);
if (!nsstring_member)
{
if (log)
log->PutCString("NSString initializer's str element was empty");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string does not have a string initializer\n");
return false;
}
ConstantExpr *nsstring_expr = dyn_cast<ConstantExpr>(nsstring_member);
if (!nsstring_expr)
{
if (log)
log->PutCString("NSString initializer's str element is not a ConstantExpr");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string's string initializer is not constant\n");
return false;
}
if (nsstring_expr->getOpcode() != Instruction::GetElementPtr)
{
if (log)
log->Printf("NSString initializer's str element is not a GetElementPtr expression, it's a %s", nsstring_expr->getOpcodeName());
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string's string initializer is not an array\n");
return false;
}
Constant *nsstring_cstr = nsstring_expr->getOperand(0);
GlobalVariable *cstr_global = dyn_cast<GlobalVariable>(nsstring_cstr);
if (!cstr_global)
{
if (log)
log->PutCString("NSString initializer's str element is not a GlobalVariable");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string's string initializer doesn't point to a global\n");
return false;
}
if (!cstr_global->hasInitializer())
{
if (log)
log->PutCString("NSString initializer's str element does not have an initializer");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string's string initializer doesn't point to initialized data\n");
return false;
}
/*
if (!cstr_array)
{
if (log)
log->PutCString("NSString initializer's str element is not a ConstantArray");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string's string initializer doesn't point to an array\n");
return false;
}
if (!cstr_array->isCString())
{
if (log)
log->PutCString("NSString initializer's str element is not a C string array");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: An Objective-C constant string's string initializer doesn't point to a C string\n");
return false;
}
*/
ConstantDataArray *cstr_array = dyn_cast<ConstantDataArray>(cstr_global->getInitializer());
if (log)
{
if (cstr_array)
log->Printf("Found NSString constant %s, which contains \"%s\"", value_name_cstr, cstr_array->getAsString().str().c_str());
else
log->Printf("Found NSString constant %s, which contains \"\"", value_name_cstr);
}
if (!cstr_array)
cstr_global = NULL;
if (!RewriteObjCConstString(nsstring_global, cstr_global, FirstEntryInstruction))
{
if (log)
log->PutCString("Error rewriting the constant string");
// We don't print an error message here because RewriteObjCConstString has done so for us.
return false;
}
}
}
for (ValueSymbolTable::iterator vi = value_symbol_table.begin(), ve = value_symbol_table.end();
vi != ve;
++vi)
{
std::string value_name = vi->first().str();
const char *value_name_cstr = value_name.c_str();
if (!strcmp(value_name_cstr, "__CFConstantStringClassReference"))
{
GlobalVariable *gv = dyn_cast<GlobalVariable>(vi->second);
if (!gv)
{
if (log)
log->PutCString("__CFConstantStringClassReference is not a global variable");
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Found a CFConstantStringClassReference, but it is not a global object\n");
return false;
}
gv->eraseFromParent();
break;
}
}
return true;
}
static bool IsObjCSelectorRef (Value *value)
{
GlobalVariable *global_variable = dyn_cast<GlobalVariable>(value);
if (!global_variable || !global_variable->hasName() || !global_variable->getName().startswith("\01L_OBJC_SELECTOR_REFERENCES_"))
return false;
return true;
}
// This function does not report errors; its callers are responsible.
bool
IRForTarget::RewriteObjCSelector (Instruction* selector_load)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
LoadInst *load = dyn_cast<LoadInst>(selector_load);
if (!load)
return false;
// Unpack the message name from the selector. In LLVM IR, an objc_msgSend gets represented as
//
// %tmp = load i8** @"\01L_OBJC_SELECTOR_REFERENCES_" ; <i8*>
// %call = call i8* (i8*, i8*, ...)* @objc_msgSend(i8* %obj, i8* %tmp, ...) ; <i8*>
//
// where %obj is the object pointer and %tmp is the selector.
//
// @"\01L_OBJC_SELECTOR_REFERENCES_" is a pointer to a character array called @"\01L_OBJC_llvm_moduleETH_VAR_NAllvm_moduleE_".
// @"\01L_OBJC_llvm_moduleETH_VAR_NAllvm_moduleE_" contains the string.
// Find the pointer's initializer (a ConstantExpr with opcode GetElementPtr) and get the string from its target
GlobalVariable *_objc_selector_references_ = dyn_cast<GlobalVariable>(load->getPointerOperand());
if (!_objc_selector_references_ || !_objc_selector_references_->hasInitializer())
return false;
Constant *osr_initializer = _objc_selector_references_->getInitializer();
ConstantExpr *osr_initializer_expr = dyn_cast<ConstantExpr>(osr_initializer);
if (!osr_initializer_expr || osr_initializer_expr->getOpcode() != Instruction::GetElementPtr)
return false;
Value *osr_initializer_base = osr_initializer_expr->getOperand(0);
if (!osr_initializer_base)
return false;
// Find the string's initializer (a ConstantArray) and get the string from it
GlobalVariable *_objc_meth_var_name_ = dyn_cast<GlobalVariable>(osr_initializer_base);
if (!_objc_meth_var_name_ || !_objc_meth_var_name_->hasInitializer())
return false;
Constant *omvn_initializer = _objc_meth_var_name_->getInitializer();
ConstantDataArray *omvn_initializer_array = dyn_cast<ConstantDataArray>(omvn_initializer);
if (!omvn_initializer_array->isString())
return false;
std::string omvn_initializer_string = omvn_initializer_array->getAsString();
if (log)
log->Printf("Found Objective-C selector reference \"%s\"", omvn_initializer_string.c_str());
// Construct a call to sel_registerName
if (!m_sel_registerName)
{
lldb::addr_t sel_registerName_addr;
static lldb_private::ConstString g_sel_registerName_str ("sel_registerName");
if (!m_decl_map->GetFunctionAddress (g_sel_registerName_str, sel_registerName_addr))
return false;
if (log)
log->Printf("Found sel_registerName at 0x%" PRIx64, sel_registerName_addr);
// Build the function type: struct objc_selector *sel_registerName(uint8_t*)
// The below code would be "more correct," but in actuality what's required is uint8_t*
//Type *sel_type = StructType::get(m_module->getContext());
//Type *sel_ptr_type = PointerType::getUnqual(sel_type);
Type *sel_ptr_type = Type::getInt8PtrTy(m_module->getContext());
Type *type_array[1];
type_array[0] = llvm::Type::getInt8PtrTy(m_module->getContext());
ArrayRef<Type *> srN_arg_types(type_array, 1);
llvm::Type *srN_type = FunctionType::get(sel_ptr_type, srN_arg_types, false);
// Build the constant containing the pointer to the function
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize() == Module::Pointer64) ? 64 : 32);
PointerType *srN_ptr_ty = PointerType::getUnqual(srN_type);
Constant *srN_addr_int = ConstantInt::get(intptr_ty, sel_registerName_addr, false);
m_sel_registerName = ConstantExpr::getIntToPtr(srN_addr_int, srN_ptr_ty);
}
Value *argument_array[1];
Constant *omvn_pointer = ConstantExpr::getBitCast(_objc_meth_var_name_, Type::getInt8PtrTy(m_module->getContext()));
argument_array[0] = omvn_pointer;
ArrayRef<Value *> srN_arguments(argument_array, 1);
CallInst *srN_call = CallInst::Create(m_sel_registerName,
srN_arguments,
"sel_registerName",
selector_load);
// Replace the load with the call in all users
selector_load->replaceAllUsesWith(srN_call);
selector_load->eraseFromParent();
return true;
}
bool
IRForTarget::RewriteObjCSelectors (BasicBlock &basic_block)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
BasicBlock::iterator ii;
typedef SmallVector <Instruction*, 2> InstrList;
typedef InstrList::iterator InstrIterator;
InstrList selector_loads;
for (ii = basic_block.begin();
ii != basic_block.end();
++ii)
{
Instruction &inst = *ii;
if (LoadInst *load = dyn_cast<LoadInst>(&inst))
if (IsObjCSelectorRef(load->getPointerOperand()))
selector_loads.push_back(&inst);
}
InstrIterator iter;
for (iter = selector_loads.begin();
iter != selector_loads.end();
++iter)
{
if (!RewriteObjCSelector(*iter))
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't change a static reference to an Objective-C selector to a dynamic reference\n");
if (log)
log->PutCString("Couldn't rewrite a reference to an Objective-C selector");
return false;
}
}
return true;
}
// This function does not report errors; its callers are responsible.
bool
IRForTarget::RewritePersistentAlloc (llvm::Instruction *persistent_alloc)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
AllocaInst *alloc = dyn_cast<AllocaInst>(persistent_alloc);
MDNode *alloc_md = alloc->getMetadata("clang.decl.ptr");
if (!alloc_md || !alloc_md->getNumOperands())
return false;
ConstantInt *constant_int = dyn_cast<ConstantInt>(alloc_md->getOperand(0));
if (!constant_int)
return false;
// We attempt to register this as a new persistent variable with the DeclMap.
uintptr_t ptr = constant_int->getZExtValue();
clang::VarDecl *decl = reinterpret_cast<clang::VarDecl *>(ptr);
lldb_private::TypeFromParser result_decl_type (decl->getType().getAsOpaquePtr(),
&decl->getASTContext());
StringRef decl_name (decl->getName());
lldb_private::ConstString persistent_variable_name (decl_name.data(), decl_name.size());
if (!m_decl_map->AddPersistentVariable(decl, persistent_variable_name, result_decl_type, false, false))
return false;
GlobalVariable *persistent_global = new GlobalVariable((*m_module),
alloc->getType(),
false, /* not constant */
GlobalValue::ExternalLinkage,
NULL, /* no initializer */
alloc->getName().str().c_str());
// What we're going to do here is make believe this was a regular old external
// variable. That means we need to make the metadata valid.
NamedMDNode *named_metadata = m_module->getOrInsertNamedMetadata("clang.global.decl.ptrs");
llvm::Value* values[2];
values[0] = persistent_global;
values[1] = constant_int;
ArrayRef<llvm::Value*> value_ref(values, 2);
MDNode *persistent_global_md = MDNode::get(m_module->getContext(), value_ref);
named_metadata->addOperand(persistent_global_md);
// Now, since the variable is a pointer variable, we will drop in a load of that
// pointer variable.
LoadInst *persistent_load = new LoadInst (persistent_global, "", alloc);
if (log)
log->Printf("Replacing \"%s\" with \"%s\"",
PrintValue(alloc).c_str(),
PrintValue(persistent_load).c_str());
alloc->replaceAllUsesWith(persistent_load);
alloc->eraseFromParent();
return true;
}
bool
IRForTarget::RewritePersistentAllocs(llvm::BasicBlock &basic_block)
{
if (!m_resolve_vars)
return true;
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
BasicBlock::iterator ii;
typedef SmallVector <Instruction*, 2> InstrList;
typedef InstrList::iterator InstrIterator;
InstrList pvar_allocs;
for (ii = basic_block.begin();
ii != basic_block.end();
++ii)
{
Instruction &inst = *ii;
if (AllocaInst *alloc = dyn_cast<AllocaInst>(&inst))
{
llvm::StringRef alloc_name = alloc->getName();
if (alloc_name.startswith("$") &&
!alloc_name.startswith("$__lldb"))
{
if (alloc_name.find_first_of("0123456789") == 1)
{
if (log)
log->Printf("Rejecting a numeric persistent variable.");
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Names starting with $0, $1, ... are reserved for use as result names\n");
return false;
}
pvar_allocs.push_back(alloc);
}
}
}
InstrIterator iter;
for (iter = pvar_allocs.begin();
iter != pvar_allocs.end();
++iter)
{
if (!RewritePersistentAlloc(*iter))
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't rewrite the creation of a persistent variable\n");
if (log)
log->PutCString("Couldn't rewrite the creation of a persistent variable");
return false;
}
}
return true;
}
bool
IRForTarget::MaterializeInitializer (uint8_t *data, Constant *initializer)
{
if (!initializer)
return true;
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log && log->GetVerbose())
log->Printf(" MaterializeInitializer(%p, %s)", data, PrintValue(initializer).c_str());
Type *initializer_type = initializer->getType();
if (ConstantInt *int_initializer = dyn_cast<ConstantInt>(initializer))
{
memcpy (data, int_initializer->getValue().getRawData(), m_target_data->getTypeStoreSize(initializer_type));
return true;
}
else if (ConstantDataArray *array_initializer = dyn_cast<ConstantDataArray>(initializer))
{
if (array_initializer->isString())
{
std::string array_initializer_string = array_initializer->getAsString();
memcpy (data, array_initializer_string.c_str(), m_target_data->getTypeStoreSize(initializer_type));
}
else
{
ArrayType *array_initializer_type = array_initializer->getType();
Type *array_element_type = array_initializer_type->getElementType();
size_t element_size = m_target_data->getTypeAllocSize(array_element_type);
for (int i = 0; i < array_initializer->getNumOperands(); ++i)
{
Value *operand_value = array_initializer->getOperand(i);
Constant *operand_constant = dyn_cast<Constant>(operand_value);
if (!operand_constant)
return false;
if (!MaterializeInitializer(data + (i * element_size), operand_constant))
return false;
}
}
return true;
}
else if (ConstantStruct *struct_initializer = dyn_cast<ConstantStruct>(initializer))
{
StructType *struct_initializer_type = struct_initializer->getType();
const StructLayout *struct_layout = m_target_data->getStructLayout(struct_initializer_type);
for (int i = 0;
i < struct_initializer->getNumOperands();
++i)
{
if (!MaterializeInitializer(data + struct_layout->getElementOffset(i), struct_initializer->getOperand(i)))
return false;
}
return true;
}
return false;
}
bool
IRForTarget::MaterializeInternalVariable (GlobalVariable *global_variable)
{
if (GlobalVariable::isExternalLinkage(global_variable->getLinkage()))
return false;
if (global_variable == m_reloc_placeholder)
return true;
uint64_t offset = m_data_allocator->GetStream().GetSize();
llvm::Type *variable_type = global_variable->getType();
Constant *initializer = global_variable->getInitializer();
llvm::Type *initializer_type = initializer->getType();
size_t size = m_target_data->getTypeAllocSize(initializer_type);
size_t align = m_target_data->getPrefTypeAlignment(initializer_type);
const size_t mask = (align - 1);
uint64_t aligned_offset = (offset + mask) & ~mask;
m_data_allocator->GetStream().PutNHex8(aligned_offset - offset, 0);
offset = aligned_offset;
lldb_private::DataBufferHeap data(size, '\0');
if (initializer)
if (!MaterializeInitializer(data.GetBytes(), initializer))
return false;
m_data_allocator->GetStream().Write(data.GetBytes(), data.GetByteSize());
Constant *new_pointer = BuildRelocation(variable_type, offset);
global_variable->replaceAllUsesWith(new_pointer);
global_variable->eraseFromParent();
return true;
}
// This function does not report errors; its callers are responsible.
bool
IRForTarget::MaybeHandleVariable (Value *llvm_value_ptr)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
log->Printf("MaybeHandleVariable (%s)", PrintValue(llvm_value_ptr).c_str());
if (ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(llvm_value_ptr))
{
switch (constant_expr->getOpcode())
{
default:
break;
case Instruction::GetElementPtr:
case Instruction::BitCast:
Value *s = constant_expr->getOperand(0);
if (!MaybeHandleVariable(s))
return false;
}
}
else if (GlobalVariable *global_variable = dyn_cast<GlobalVariable>(llvm_value_ptr))
{
if (!GlobalValue::isExternalLinkage(global_variable->getLinkage()))
return MaterializeInternalVariable(global_variable);
clang::NamedDecl *named_decl = DeclForGlobal(global_variable);
if (!named_decl)
{
if (IsObjCSelectorRef(llvm_value_ptr))
return true;
if (!global_variable->hasExternalLinkage())
return true;
if (log)
log->Printf("Found global variable \"%s\" without metadata", global_variable->getName().str().c_str());
return false;
}
std::string name (named_decl->getName().str());
void *opaque_type = NULL;
clang::ASTContext *ast_context = NULL;
if (clang::ValueDecl *value_decl = dyn_cast<clang::ValueDecl>(named_decl))
{
opaque_type = value_decl->getType().getAsOpaquePtr();
ast_context = &value_decl->getASTContext();
}
else
{
return false;
}
clang::QualType qual_type;
const Type *value_type = NULL;
if (name[0] == '$')
{
// The $__lldb_expr_result name indicates the the return value has allocated as
// a static variable. Per the comment at ASTResultSynthesizer::SynthesizeBodyResult,
// accesses to this static variable need to be redirected to the result of dereferencing
// a pointer that is passed in as one of the arguments.
//
// Consequently, when reporting the size of the type, we report a pointer type pointing
// to the type of $__lldb_expr_result, not the type itself.
//
// We also do this for any user-declared persistent variables.
qual_type = ast_context->getPointerType(clang::QualType::getFromOpaquePtr(opaque_type));
value_type = PointerType::get(global_variable->getType(), 0);
}
else
{
qual_type = clang::QualType::getFromOpaquePtr(opaque_type);
value_type = global_variable->getType();
}
size_t value_size = (ast_context->getTypeSize(qual_type) + 7) / 8;
off_t value_alignment = (ast_context->getTypeAlign(qual_type) + 7) / 8;
if (log)
log->Printf("Type of \"%s\" is [clang \"%s\", llvm \"%s\"] [size %lu, align %" PRId64 "]",
name.c_str(),
qual_type.getAsString().c_str(),
PrintType(value_type).c_str(),
value_size,
value_alignment);
if (named_decl && !m_decl_map->AddValueToStruct(named_decl,
lldb_private::ConstString (name.c_str()),
llvm_value_ptr,
value_size,
value_alignment))
{
if (!global_variable->hasExternalLinkage())
return true;
else
return false;
}
}
else if (dyn_cast<llvm::Function>(llvm_value_ptr))
{
if (log)
log->Printf("Function pointers aren't handled right now");
return false;
}
return true;
}
// This function does not report errors; its callers are responsible.
bool
IRForTarget::HandleSymbol (Value *symbol)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
lldb_private::ConstString name(symbol->getName().str().c_str());
lldb::addr_t symbol_addr = m_decl_map->GetSymbolAddress (name, lldb::eSymbolTypeAny);
if (symbol_addr == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf ("Symbol \"%s\" had no address", name.GetCString());
return false;
}
if (log)
log->Printf("Found \"%s\" at 0x%" PRIx64, name.GetCString(), symbol_addr);
Type *symbol_type = symbol->getType();
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize() == Module::Pointer64) ? 64 : 32);
Constant *symbol_addr_int = ConstantInt::get(intptr_ty, symbol_addr, false);
Value *symbol_addr_ptr = ConstantExpr::getIntToPtr(symbol_addr_int, symbol_type);
if (log)
log->Printf("Replacing %s with %s", PrintValue(symbol).c_str(), PrintValue(symbol_addr_ptr).c_str());
symbol->replaceAllUsesWith(symbol_addr_ptr);
return true;
}
bool
IRForTarget::MaybeHandleCallArguments (CallInst *Old)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
log->Printf("MaybeHandleCallArguments(%s)", PrintValue(Old).c_str());
for (unsigned op_index = 0, num_ops = Old->getNumArgOperands();
op_index < num_ops;
++op_index)
if (!MaybeHandleVariable(Old->getArgOperand(op_index))) // conservatively believe that this is a store
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't rewrite one of the arguments of a function call.\n");
return false;
}
return true;
}
bool
IRForTarget::HandleObjCClass(Value *classlist_reference)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
GlobalVariable *global_variable = dyn_cast<GlobalVariable>(classlist_reference);
if (!global_variable)
return false;
Constant *initializer = global_variable->getInitializer();
if (!initializer)
return false;
if (!initializer->hasName())
return false;
StringRef name(initializer->getName());
lldb_private::ConstString name_cstr(name.str().c_str());
lldb::addr_t class_ptr = m_decl_map->GetSymbolAddress(name_cstr, lldb::eSymbolTypeObjCClass);
if (log)
log->Printf("Found reference to Objective-C class %s (0x%llx)", name_cstr.AsCString(), (unsigned long long)class_ptr);
if (class_ptr == LLDB_INVALID_ADDRESS)
return false;
if (global_variable->use_begin() == global_variable->use_end())
return false;
LoadInst *load_instruction = NULL;
for (Value::use_iterator i = global_variable->use_begin(), e = global_variable->use_end();
i != e;
++i)
{
if ((load_instruction = dyn_cast<LoadInst>(*i)))
break;
}
if (!load_instruction)
return false;
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize()
== Module::Pointer64) ? 64 : 32);
Constant *class_addr = ConstantInt::get(intptr_ty, (uint64_t)class_ptr);
Constant *class_bitcast = ConstantExpr::getIntToPtr(class_addr, load_instruction->getType());
load_instruction->replaceAllUsesWith(class_bitcast);
load_instruction->eraseFromParent();
return true;
}
bool
IRForTarget::RemoveCXAAtExit (BasicBlock &basic_block)
{
BasicBlock::iterator ii;
std::vector<CallInst *> calls_to_remove;
for (ii = basic_block.begin();
ii != basic_block.end();
++ii)
{
Instruction &inst = *ii;
CallInst *call = dyn_cast<CallInst>(&inst);
// MaybeHandleCallArguments handles error reporting; we are silent here
if (!call)
continue;
bool remove = false;
llvm::Function *func = call->getCalledFunction();
if (func && func->getName() == "__cxa_atexit")
remove = true;
llvm::Value *val = call->getCalledValue();
if (val && val->getName() == "__cxa_atexit")
remove = true;
if (remove)
calls_to_remove.push_back(call);
}
for (std::vector<CallInst *>::iterator ci = calls_to_remove.begin(), ce = calls_to_remove.end();
ci != ce;
++ci)
{
(*ci)->eraseFromParent();
}
return true;
}
bool
IRForTarget::ResolveCalls(BasicBlock &basic_block)
{
/////////////////////////////////////////////////////////////////////////
// Prepare the current basic block for execution in the remote process
//
BasicBlock::iterator ii;
for (ii = basic_block.begin();
ii != basic_block.end();
++ii)
{
Instruction &inst = *ii;
CallInst *call = dyn_cast<CallInst>(&inst);
// MaybeHandleCallArguments handles error reporting; we are silent here
if (call && !MaybeHandleCallArguments(call))
return false;
}
return true;
}
bool
IRForTarget::ResolveExternals (Function &llvm_function)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
for (Module::global_iterator global = m_module->global_begin(), end = m_module->global_end();
global != end;
++global)
{
if (!global)
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: global variable is NULL");
return false;
}
std::string global_name = (*global).getName().str();
if (log)
log->Printf("Examining %s, DeclForGlobalValue returns %p",
global_name.c_str(),
DeclForGlobal(global));
if (global_name.find("OBJC_IVAR") == 0)
{
if (!HandleSymbol(global))
{
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Couldn't find Objective-C indirect ivar symbol %s\n", global_name.c_str());
return false;
}
}
else if (global_name.find("OBJC_CLASSLIST_REFERENCES_$") != global_name.npos)
{
if (!HandleObjCClass(global))
{
if (m_error_stream)
m_error_stream->Printf("Error [IRForTarget]: Couldn't resolve the class for an Objective-C static method call\n");
return false;
}
}
else if (DeclForGlobal(global))
{
if (!MaybeHandleVariable (global))
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't rewrite external variable %s\n", global_name.c_str());
return false;
}
}
}
return true;
}
bool
IRForTarget::ReplaceStrings ()
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (!m_data_allocator)
return true; // hope for the best; some clients may not want static allocation!
typedef std::map <GlobalVariable *, size_t> OffsetsTy;
OffsetsTy offsets;
for (Module::global_iterator gi = m_module->global_begin(), ge = m_module->global_end();
gi != ge;
++gi)
{
GlobalVariable *gv = gi;
if (!gv->hasInitializer())
continue;
Constant *gc = gv->getInitializer();
std::string str;
if (gc->isNullValue())
{
Type *gc_type = gc->getType();
ArrayType *gc_array_type = dyn_cast<ArrayType>(gc_type);
if (!gc_array_type)
continue;
Type *gc_element_type = gc_array_type->getElementType();
IntegerType *gc_integer_type = dyn_cast<IntegerType>(gc_element_type);
if (gc_integer_type->getBitWidth() != 8)
continue;
str = "";
}
else
{
ConstantDataArray *gc_array = dyn_cast<ConstantDataArray>(gc);
if (!gc_array)
continue;
if (!gc_array->isCString())
continue;
if (log)
log->Printf("Found a GlobalVariable with string initializer %s", PrintValue(gc).c_str());
str = gc_array->getAsString();
}
offsets[gv] = m_data_allocator->GetStream().GetSize();
m_data_allocator->GetStream().Write(str.c_str(), str.length() + 1);
}
Type *char_ptr_ty = Type::getInt8PtrTy(m_module->getContext());
for (OffsetsTy::iterator oi = offsets.begin(), oe = offsets.end();
oi != oe;
++oi)
{
GlobalVariable *gv = oi->first;
size_t offset = oi->second;
Constant *new_initializer = BuildRelocation(char_ptr_ty, offset);
if (log)
log->Printf("Replacing GV %s with %s", PrintValue(gv).c_str(), PrintValue(new_initializer).c_str());
for (GlobalVariable::use_iterator ui = gv->use_begin(), ue = gv->use_end();
ui != ue;
++ui)
{
if (log)
log->Printf("Found use %s", PrintValue(*ui).c_str());
ConstantExpr *const_expr = dyn_cast<ConstantExpr>(*ui);
StoreInst *store_inst = dyn_cast<StoreInst>(*ui);
if (const_expr)
{
if (const_expr->getOpcode() != Instruction::GetElementPtr)
{
if (log)
log->Printf("Use (%s) of string variable is not a GetElementPtr constant", PrintValue(const_expr).c_str());
return false;
}
Constant *bit_cast = ConstantExpr::getBitCast(new_initializer, const_expr->getOperand(0)->getType());
Constant *new_gep = const_expr->getWithOperandReplaced(0, bit_cast);
const_expr->replaceAllUsesWith(new_gep);
}
else if (store_inst)
{
Constant *bit_cast = ConstantExpr::getBitCast(new_initializer, store_inst->getValueOperand()->getType());
store_inst->setOperand(0, bit_cast);
}
else
{
if (log)
log->Printf("Use (%s) of string variable is neither a constant nor a store", PrintValue(const_expr).c_str());
return false;
}
}
gv->eraseFromParent();
}
return true;
}
bool
IRForTarget::ReplaceStaticLiterals (llvm::BasicBlock &basic_block)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (!m_data_allocator)
return true;
typedef SmallVector <Value*, 2> ConstantList;
typedef SmallVector <llvm::Instruction*, 2> UserList;
typedef ConstantList::iterator ConstantIterator;
typedef UserList::iterator UserIterator;
ConstantList static_constants;
UserList static_users;
for (BasicBlock::iterator ii = basic_block.begin(), ie = basic_block.end();
ii != ie;
++ii)
{
llvm::Instruction &inst = *ii;
for (Instruction::op_iterator oi = inst.op_begin(), oe = inst.op_end();
oi != oe;
++oi)
{
Value *operand_val = oi->get();
ConstantFP *operand_constant_fp = dyn_cast<ConstantFP>(operand_val);
if (operand_constant_fp/* && operand_constant_fp->getType()->isX86_FP80Ty()*/)
{
static_constants.push_back(operand_val);
static_users.push_back(ii);
}
}
}
ConstantIterator constant_iter;
UserIterator user_iter;
ABI plug-ins must implement the following pure virtual functions: virtual bool ABI::StackUsesFrames () = 0; Should return true if your ABI uses frames when doing stack backtraces. This means a frame pointer is used that points to the previous stack frame in some way or another. virtual bool ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0; Should take a look at a call frame address (CFA) which is just the stack pointer value upon entry to a function. ABIs usually impose alignment restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed. This function should return true if "cfa" is valid call frame address for the ABI, and false otherwise. This is used by the generic stack frame unwinding code to help determine when a stack ends. virtual bool ABI::CodeAddressIsValid (lldb::addr_t pc) = 0; Validates a possible PC value and returns true if an opcode can be at "pc". Some ABIs or architectures have fixed width instructions and must be aligned to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which means the load address might be decorated with extra bits (such as bit zero to indicate a thumb function call for ARM targets), so take this into account when returning true or false. The address should also be validated to ensure it is a valid address for the address size of the inferior process. 32 bit targets should make sure the address is less than UINT32_MAX. Modified UnwindLLDB to use the new ABI functions to help it properly terminate stacks. Modified the mach-o function that extracts dependent files to not resolve the path as the paths inside a binary might not match those on the current host system. llvm-svn: 132021
2011-05-25 07:06:02 +08:00
for (constant_iter = static_constants.begin(), user_iter = static_users.begin();
constant_iter != static_constants.end();
++constant_iter, ++user_iter)
{
Value *operand_val = *constant_iter;
llvm::Instruction *inst = *user_iter;
ConstantFP *operand_constant_fp = dyn_cast<ConstantFP>(operand_val);
Type *operand_type = operand_constant_fp->getType();
if (operand_constant_fp)
{
APFloat operand_apfloat = operand_constant_fp->getValueAPF();
APInt operand_apint = operand_apfloat.bitcastToAPInt();
const uint8_t* operand_raw_data = (const uint8_t*)operand_apint.getRawData();
size_t operand_data_size = operand_apint.getBitWidth() / 8;
if (log)
{
std::string s;
raw_string_ostream ss(s);
for (size_t index = 0;
index < operand_data_size;
++index)
{
ss << (uint32_t)operand_raw_data[index];
ss << " ";
}
ss.flush();
log->Printf("Found ConstantFP with size %lu and raw data %s", operand_data_size, s.c_str());
}
lldb_private::DataBufferHeap data(operand_data_size, 0);
if (lldb::endian::InlHostByteOrder() != m_data_allocator->GetStream().GetByteOrder())
{
uint8_t *data_bytes = data.GetBytes();
for (size_t index = 0;
index < operand_data_size;
++index)
{
data_bytes[index] = operand_raw_data[operand_data_size - (1 + index)];
}
}
else
{
memcpy(data.GetBytes(), operand_raw_data, operand_data_size);
}
uint64_t offset = m_data_allocator->GetStream().GetSize();
size_t align = m_target_data->getPrefTypeAlignment(operand_type);
const size_t mask = (align - 1);
uint64_t aligned_offset = (offset + mask) & ~mask;
m_data_allocator->GetStream().PutNHex8(aligned_offset - offset, 0);
offset = aligned_offset;
m_data_allocator->GetStream().Write(data.GetBytes(), operand_data_size);
llvm::Type *fp_ptr_ty = operand_constant_fp->getType()->getPointerTo();
Constant *new_pointer = BuildRelocation(fp_ptr_ty, offset);
llvm::LoadInst *fp_load = new llvm::LoadInst(new_pointer, "fp_load", inst);
operand_constant_fp->replaceAllUsesWith(fp_load);
}
}
return true;
}
static bool isGuardVariableRef(Value *V)
{
Constant *Old = NULL;
if (!(Old = dyn_cast<Constant>(V)))
return false;
ConstantExpr *CE = NULL;
if ((CE = dyn_cast<ConstantExpr>(V)))
{
if (CE->getOpcode() != Instruction::BitCast)
return false;
Old = CE->getOperand(0);
}
GlobalVariable *GV = dyn_cast<GlobalVariable>(Old);
if (!GV || !GV->hasName() || !GV->getName().startswith("_ZGV"))
return false;
return true;
}
void
IRForTarget::TurnGuardLoadIntoZero(llvm::Instruction* guard_load)
{
Constant* zero(ConstantInt::get(Type::getInt8Ty(m_module->getContext()), 0, true));
Value::use_iterator ui;
for (ui = guard_load->use_begin();
ui != guard_load->use_end();
++ui)
{
if (isa<Constant>(*ui))
{
// do nothing for the moment
}
else
{
ui->replaceUsesOfWith(guard_load, zero);
}
}
guard_load->eraseFromParent();
}
static void ExciseGuardStore(Instruction* guard_store)
{
guard_store->eraseFromParent();
}
bool
IRForTarget::RemoveGuards(BasicBlock &basic_block)
{
///////////////////////////////////////////////////////
// Eliminate any reference to guard variables found.
//
BasicBlock::iterator ii;
typedef SmallVector <Instruction*, 2> InstrList;
typedef InstrList::iterator InstrIterator;
InstrList guard_loads;
InstrList guard_stores;
for (ii = basic_block.begin();
ii != basic_block.end();
++ii)
{
Instruction &inst = *ii;
if (LoadInst *load = dyn_cast<LoadInst>(&inst))
if (isGuardVariableRef(load->getPointerOperand()))
guard_loads.push_back(&inst);
if (StoreInst *store = dyn_cast<StoreInst>(&inst))
if (isGuardVariableRef(store->getPointerOperand()))
guard_stores.push_back(&inst);
}
InstrIterator iter;
for (iter = guard_loads.begin();
iter != guard_loads.end();
++iter)
TurnGuardLoadIntoZero(*iter);
for (iter = guard_stores.begin();
iter != guard_stores.end();
++iter)
ExciseGuardStore(*iter);
return true;
}
// This function does not report errors; its callers are responsible.
bool
IRForTarget::UnfoldConstant(Constant *old_constant, Value *new_constant, Instruction *first_entry_inst)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
Value::use_iterator ui;
SmallVector<User*, 16> users;
// We do this because the use list might change, invalidating our iterator.
// Much better to keep a work list ourselves.
for (ui = old_constant->use_begin();
ui != old_constant->use_end();
++ui)
users.push_back(*ui);
for (size_t i = 0;
i < users.size();
++i)
{
User *user = users[i];
if (Constant *constant = dyn_cast<Constant>(user))
{
// synthesize a new non-constant equivalent of the constant
if (ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant))
{
switch (constant_expr->getOpcode())
{
default:
if (log)
log->Printf("Unhandled constant expression type: \"%s\"", PrintValue(constant_expr).c_str());
return false;
case Instruction::BitCast:
{
// UnaryExpr
// OperandList[0] is value
Value *s = constant_expr->getOperand(0);
if (s == old_constant)
s = new_constant;
BitCastInst *bit_cast(new BitCastInst(s, constant_expr->getType(), "", first_entry_inst));
UnfoldConstant(constant_expr, bit_cast, first_entry_inst);
}
break;
case Instruction::GetElementPtr:
{
// GetElementPtrConstantExpr
// OperandList[0] is base
// OperandList[1]... are indices
Value *ptr = constant_expr->getOperand(0);
if (ptr == old_constant)
ptr = new_constant;
std::vector<Value*> index_vector;
unsigned operand_index;
unsigned num_operands = constant_expr->getNumOperands();
for (operand_index = 1;
operand_index < num_operands;
++operand_index)
{
Value *operand = constant_expr->getOperand(operand_index);
if (operand == old_constant)
operand = new_constant;
index_vector.push_back(operand);
}
ArrayRef <Value*> indices(index_vector);
GetElementPtrInst *get_element_ptr(GetElementPtrInst::Create(ptr, indices, "", first_entry_inst));
UnfoldConstant(constant_expr, get_element_ptr, first_entry_inst);
}
break;
}
}
else
{
if (log)
log->Printf("Unhandled constant type: \"%s\"", PrintValue(constant).c_str());
return false;
}
}
else
{
// simple fall-through case for non-constants
user->replaceUsesOfWith(old_constant, new_constant);
}
}
return true;
}
bool
IRForTarget::ReplaceVariables (Function &llvm_function)
{
if (!m_resolve_vars)
return true;
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
m_decl_map->DoStructLayout();
if (log)
log->Printf("Element arrangement:");
uint32_t num_elements;
uint32_t element_index;
size_t size;
off_t alignment;
if (!m_decl_map->GetStructInfo (num_elements, size, alignment))
return false;
Function::arg_iterator iter(llvm_function.getArgumentList().begin());
if (iter == llvm_function.getArgumentList().end())
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Wrapper takes no arguments (should take at least a struct pointer)");
return false;
}
Argument *argument = iter;
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
if (argument->getName().equals("this"))
{
++iter;
if (iter == llvm_function.getArgumentList().end())
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Wrapper takes only 'this' argument (should take a struct pointer too)");
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
return false;
}
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
argument = iter;
}
else if (argument->getName().equals("self"))
{
++iter;
if (iter == llvm_function.getArgumentList().end())
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Wrapper takes only 'self' argument (should take '_cmd' and a struct pointer too)");
return false;
}
if (!iter->getName().equals("_cmd"))
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Wrapper takes '%s' after 'self' argument (should take '_cmd')", iter->getName().str().c_str());
return false;
}
++iter;
if (iter == llvm_function.getArgumentList().end())
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Wrapper takes only 'self' and '_cmd' arguments (should take a struct pointer too)");
return false;
}
argument = iter;
}
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
if (!argument->getName().equals("$__lldb_arg"))
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Wrapper takes an argument named '%s' instead of the struct pointer", argument->getName().str().c_str());
return false;
}
if (log)
log->Printf("Arg: \"%s\"", PrintValue(argument).c_str());
BasicBlock &entry_block(llvm_function.getEntryBlock());
Instruction *FirstEntryInstruction(entry_block.getFirstNonPHIOrDbg());
if (!FirstEntryInstruction)
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't find the first instruction in the wrapper for use in rewriting");
return false;
}
LLVMContext &context(m_module->getContext());
IntegerType *offset_type(Type::getInt32Ty(context));
if (!offset_type)
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't produce an offset type");
return false;
}
for (element_index = 0; element_index < num_elements; ++element_index)
{
const clang::NamedDecl *decl = NULL;
Value *value = NULL;
off_t offset;
lldb_private::ConstString name;
if (!m_decl_map->GetStructElement (decl, value, offset, name, element_index))
{
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Structure information is incomplete");
return false;
}
if (log)
log->Printf(" \"%s\" (\"%s\") placed at %" PRId64,
name.GetCString(),
decl->getNameAsString().c_str(),
offset);
ConstantInt *offset_int(ConstantInt::get(offset_type, offset, true));
GetElementPtrInst *get_element_ptr = GetElementPtrInst::Create(argument, offset_int, "", FirstEntryInstruction);
if (value)
{
Value *replacement = NULL;
if (log)
log->Printf(" Replacing [%s]", PrintValue(value).c_str());
// Per the comment at ASTResultSynthesizer::SynthesizeBodyResult, in cases where the result
// variable is an rvalue, we have to synthesize a dereference of the appropriate structure
// entry in order to produce the static variable that the AST thinks it is accessing.
if (name == m_result_name && !m_result_is_pointer)
{
BitCastInst *bit_cast = new BitCastInst(get_element_ptr, value->getType()->getPointerTo(), "", FirstEntryInstruction);
LoadInst *load = new LoadInst(bit_cast, "", FirstEntryInstruction);
replacement = load;
}
else
{
BitCastInst *bit_cast = new BitCastInst(get_element_ptr, value->getType(), "", FirstEntryInstruction);
replacement = bit_cast;
}
if (Constant *constant = dyn_cast<Constant>(value))
UnfoldConstant(constant, replacement, FirstEntryInstruction);
else
value->replaceAllUsesWith(replacement);
if (GlobalVariable *var = dyn_cast<GlobalVariable>(value))
var->eraseFromParent();
}
}
if (log)
log->Printf("Total structure [align %" PRId64 ", size %lu]", alignment, size);
return true;
}
llvm::Constant *
IRForTarget::BuildRelocation(llvm::Type *type,
uint64_t offset)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize() == Module::Pointer64) ? 64 : 32);
llvm::Constant *offset_int = ConstantInt::get(intptr_ty, offset);
llvm::Constant *offset_array[1];
offset_array[0] = offset_int;
llvm::ArrayRef<llvm::Constant *> offsets(offset_array, 1);
llvm::Constant *reloc_getelementptr = ConstantExpr::getGetElementPtr(m_reloc_placeholder, offsets);
llvm::Constant *reloc_getbitcast = ConstantExpr::getBitCast(reloc_getelementptr, type);
return reloc_getbitcast;
}
bool
IRForTarget::CompleteDataAllocation ()
{
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
if (!m_data_allocator)
return true;
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (!m_data_allocator->GetStream().GetSize())
return true;
lldb::addr_t allocation = m_data_allocator->Allocate();
if (log)
{
if (allocation)
log->Printf("Allocated static data at 0x%llx", (unsigned long long)allocation);
else
log->Printf("Failed to allocate static data");
}
if (!allocation)
return false;
IntegerType *intptr_ty = Type::getIntNTy(m_module->getContext(),
(m_module->getPointerSize() == Module::Pointer64) ? 64 : 32);
Constant *relocated_addr = ConstantInt::get(intptr_ty, (uint64_t)allocation);
Constant *relocated_bitcast = ConstantExpr::getIntToPtr(relocated_addr, llvm::Type::getInt8PtrTy(m_module->getContext()));
m_reloc_placeholder->replaceAllUsesWith(relocated_bitcast);
m_reloc_placeholder->eraseFromParent();
return true;
}
bool
IRForTarget::StripAllGVs (Module &llvm_module)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
std::vector<GlobalVariable *> global_vars;
std::set<GlobalVariable *>erased_vars;
bool erased = true;
while (erased)
{
erased = false;
for (Module::global_iterator gi = llvm_module.global_begin(), ge = llvm_module.global_end();
gi != ge;
++gi)
{
GlobalVariable *global_var = dyn_cast<GlobalVariable>(gi);
global_var->removeDeadConstantUsers();
if (global_var->use_empty())
{
if (log)
log->Printf("Did remove %s",
PrintValue(global_var).c_str());
global_var->eraseFromParent();
erased = true;
break;
}
}
}
for (Module::global_iterator gi = llvm_module.global_begin(), ge = llvm_module.global_end();
gi != ge;
++gi)
{
GlobalVariable *global_var = dyn_cast<GlobalVariable>(gi);
GlobalValue::use_iterator ui = global_var->use_begin();
if (log)
log->Printf("Couldn't remove %s because of %s",
PrintValue(global_var).c_str(),
PrintValue(*ui).c_str());
}
return true;
}
bool
IRForTarget::runOnModule (Module &llvm_module)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
m_module = &llvm_module;
m_target_data.reset(new DataLayout(m_module));
Function* function = m_module->getFunction(StringRef(m_func_name.c_str()));
if (!function)
{
if (log)
log->Printf("Couldn't find \"%s()\" in the module", m_func_name.c_str());
if (m_error_stream)
m_error_stream->Printf("Internal error [IRForTarget]: Couldn't find wrapper '%s' in the module", m_func_name.c_str());
return false;
}
if (!FixFunctionLinkage (*function))
{
if (log)
log->Printf("Couldn't fix the linkage for the function");
return false;
}
if (log)
{
std::string s;
raw_string_ostream oss(s);
m_module->print(oss, NULL);
oss.flush();
log->Printf("Module as passed in to IRForTarget: \n\"%s\"", s.c_str());
}
llvm::Type *intptr_ty = Type::getInt8Ty(m_module->getContext());
m_reloc_placeholder = new llvm::GlobalVariable((*m_module),
intptr_ty,
false /* IsConstant */,
GlobalVariable::InternalLinkage,
Constant::getNullValue(intptr_ty),
"reloc_placeholder",
NULL /* InsertBefore */,
GlobalVariable::NotThreadLocal /* ThreadLocal */,
0 /* AddressSpace */);
Function::iterator bbi;
m_has_side_effects = HasSideEffects(*function);
////////////////////////////////////////////////////////////
// Replace $__lldb_expr_result with a persistent variable
//
if (!CreateResultVariable(*function))
{
if (log)
log->Printf("CreateResultVariable() failed");
// CreateResultVariable() reports its own errors, so we don't do so here
return false;
}
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
if (m_const_result && m_execution_policy != lldb_private::eExecutionPolicyAlways)
{
m_interpret_success = true;
return true;
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
}
for (bbi = function->begin();
bbi != function->end();
++bbi)
{
if (!RemoveGuards(*bbi))
{
if (log)
log->Printf("RemoveGuards() failed");
// RemoveGuards() reports its own errors, so we don't do so here
return false;
}
if (!RewritePersistentAllocs(*bbi))
{
if (log)
log->Printf("RewritePersistentAllocs() failed");
// RewritePersistentAllocs() reports its own errors, so we don't do so here
return false;
}
if (!RemoveCXAAtExit(*bbi))
{
if (log)
log->Printf("RemoveCXAAtExit() failed");
// RemoveCXAAtExit() reports its own errors, so we don't do so here
return false;
}
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
}
if (m_decl_map && m_execution_policy != lldb_private::eExecutionPolicyAlways)
{
IRInterpreter interpreter (*m_decl_map,
m_error_stream);
interpreter.maybeRunOnFunction(m_const_result, m_result_name, m_result_type, *function, llvm_module, m_interpreter_error);
if (m_interpreter_error.Success())
This patch modifies the expression parser to allow it to execute expressions even in the absence of a process. This allows expressions to run in situations where the target cannot run -- e.g., to perform calculations based on type information, or to inspect a binary's static data. This modification touches the following files: lldb-private-enumerations.h Introduce a new enum specifying the policy for processing an expression. Some expressions should always be JITted, for example if they are functions that will be used over and over again. Some expressions should always be interpreted, for example if the target is unsafe to run. For most, it is acceptable to JIT them, but interpretation is preferable when possible. Target.[h,cpp] Have EvaluateExpression now accept the new enum. ClangExpressionDeclMap.[cpp,h] Add support for the IR interpreter and also make the ClangExpressionDeclMap more robust in the absence of a process. ClangFunction.[cpp,h] Add support for the new enum. IRInterpreter.[cpp,h] New implementation. ClangUserExpression.[cpp,h] Add support for the new enum, and for running expressions in the absence of a process. ClangExpression.h Remove references to the old DWARF-based method of evaluating expressions, because it has been superseded for now. ClangUtilityFunction.[cpp,h] Add support for the new enum. ClangExpressionParser.[cpp,h] Add support for the new enum, remove references to DWARF, and add support for checking whether the expression could be evaluated statically. IRForTarget.[h,cpp] Add support for the new enum, and add utility functions to support the interpreter. IRToDWARF.cpp Removed CommandObjectExpression.cpp Remove references to the obsolete -i option. Process.cpp Modify calls to ClangUserExpression::Evaluate to pass the correct enum (for dlopen/dlclose) SBValue.cpp Add support for the new enum. SBFrame.cpp Add support for he new enum. BreakpointOptions.cpp Add support for the new enum. llvm-svn: 139772
2011-09-15 10:13:07 +08:00
return true;
}
if (m_execution_policy == lldb_private::eExecutionPolicyNever) {
if (m_result_name)
m_decl_map->RemoveResultVariable(m_result_name);
return false;
}
if (log && log->GetVerbose())
{
std::string s;
raw_string_ostream oss(s);
m_module->print(oss, NULL);
oss.flush();
log->Printf("Module after creating the result variable: \n\"%s\"", s.c_str());
}
///////////////////////////////////////////////////////////////////////////////
// Fix all Objective-C constant strings to use NSStringWithCString:encoding:
//
if (!RewriteObjCConstStrings(*function))
{
if (log)
log->Printf("RewriteObjCConstStrings() failed");
// RewriteObjCConstStrings() reports its own errors, so we don't do so here
return false;
}
///////////////////////////////
// Resolve function pointers
//
if (!ResolveFunctionPointers(llvm_module, *function))
{
if (log)
log->Printf("ResolveFunctionPointers() failed");
// ResolveFunctionPointers() reports its own errors, so we don't do so here
return false;
}
for (bbi = function->begin();
bbi != function->end();
++bbi)
{
if (!RewriteObjCSelectors(*bbi))
{
if (log)
log->Printf("RewriteObjCSelectors() failed");
// RewriteObjCSelectors() reports its own errors, so we don't do so here
return false;
}
}
for (bbi = function->begin();
bbi != function->end();
++bbi)
{
if (!ResolveCalls(*bbi))
{
if (log)
log->Printf("ResolveCalls() failed");
// ResolveCalls() reports its own errors, so we don't do so here
return false;
}
if (!ReplaceStaticLiterals(*bbi))
{
if (log)
log->Printf("ReplaceStaticLiterals() failed");
return false;
}
}
///////////////////////////////
// Run function-level passes
//
if (!ResolveExternals(*function))
{
if (log)
log->Printf("ResolveExternals() failed");
// ResolveExternals() reports its own errors, so we don't do so here
return false;
}
if (!ReplaceVariables(*function))
{
if (log)
log->Printf("ReplaceVariables() failed");
// ReplaceVariables() reports its own errors, so we don't do so here
return false;
}
if (!ReplaceStrings())
{
if (log)
log->Printf("ReplaceStrings() failed");
return false;
}
if (!CompleteDataAllocation())
{
if (log)
log->Printf("CompleteDataAllocation() failed");
return false;
}
if (!StripAllGVs(llvm_module))
{
if (log)
log->Printf("StripAllGVs() failed");
}
if (log && log->GetVerbose())
{
std::string s;
raw_string_ostream oss(s);
m_module->print(oss, NULL);
oss.flush();
log->Printf("Module after preparing for execution: \n\"%s\"", s.c_str());
}
return true;
}
void
IRForTarget::assignPassManager (PMStack &pass_mgr_stack, PassManagerType pass_mgr_type)
{
}
PassManagerType
IRForTarget::getPotentialPassManagerType() const
{
return PMT_ModulePassManager;
}