llvm-project/llvm/test/CodeGen/X86/fold-load.ll

74 lines
2.2 KiB
LLVM
Raw Normal View History

; RUN: llc < %s -mcpu=generic -mtriple=i686-- | FileCheck %s
%struct._obstack_chunk = type { i8*, %struct._obstack_chunk*, [4 x i8] }
%struct.obstack = type { i32, %struct._obstack_chunk*, i8*, i8*, i8*, i32, i32, %struct._obstack_chunk* (...)*, void (...)*, i8*, i8 }
@stmt_obstack = external global %struct.obstack ; <%struct.obstack*> [#uses=1]
; This should just not crash.
define void @test1() nounwind {
entry:
br i1 true, label %cond_true, label %cond_next
cond_true: ; preds = %entry
%new_size.0.i = select i1 false, i32 0, i32 0 ; <i32> [#uses=1]
%tmp.i = load i32, i32* bitcast (i8* getelementptr (%struct.obstack, %struct.obstack* @stmt_obstack, i32 0, i32 10) to i32*) ; <i32> [#uses=1]
%tmp.i.upgrd.1 = trunc i32 %tmp.i to i8 ; <i8> [#uses=1]
%tmp21.i = and i8 %tmp.i.upgrd.1, 1 ; <i8> [#uses=1]
%tmp22.i = icmp eq i8 %tmp21.i, 0 ; <i1> [#uses=1]
br i1 %tmp22.i, label %cond_false30.i, label %cond_true23.i
cond_true23.i: ; preds = %cond_true
ret void
cond_false30.i: ; preds = %cond_true
%tmp35.i = tail call %struct._obstack_chunk* null( i32 %new_size.0.i ) ; <%struct._obstack_chunk*> [#uses=0]
ret void
cond_next: ; preds = %entry
ret void
}
define i32 @test2(i16* %P, i16* %Q) nounwind {
%A = load i16, i16* %P, align 4 ; <i16> [#uses=11]
%C = zext i16 %A to i32 ; <i32> [#uses=1]
%D = and i32 %C, 255 ; <i32> [#uses=1]
br label %L
L:
store i16 %A, i16* %Q
ret i32 %D
; CHECK-LABEL: test2:
; CHECK: movl 4(%esp), %eax
; CHECK-NEXT: movzwl (%eax), %e{{..}}
}
; rdar://10554090
; xor in exit block will be CSE'ed and load will be folded to xor in entry.
define i1 @test3(i32* %P, i32* %Q) nounwind {
; CHECK-LABEL: test3:
MachineSink: Fix and tweak critical-edge breaking heuristic. Per original comment, the intention of this loop is to go ahead and break the critical edge (in order to sink this instruction) if there's reason to believe doing so might "unblock" the sinking of additional instructions that define registers used by this one. The idea is that if we have a few instructions to sink "together" breaking the edge might be worthwhile. This commit makes a few small changes to help better realize this goal: First, modify the loop to ignore registers defined by this instruction. We don't sink definitions of physical registers, and sinking an SSA definition isn't going to unblock an upstream instruction. Second, ignore uses of physical registers. Instructions that define physical registers are rejected for sinking, and so moving this one won't enable moving any defining instructions. As an added bonus, while virtual register use-def chains are generally small due to SSA goodness, iteration over the uses and definitions (used by hasOneNonDBGUse) for physical registers like EFLAGS can be rather expensive in practice. (This is the original reason for looking at this) Finally, to keep things simple continue to only consider this trick for registers that have a single use (via hasOneNonDBGUse), but to avoid spuriously breaking critical edges only do so if the definition resides in the same MBB and therefore this one directly blocks it from being sunk as well. If sinking them together is meant to be, let the iterative nature of this pass sink the definition into this block first. Update tests to accomodate this change, add new testcase where sinking avoids pipeline stalls. llvm-svn: 192608
2013-10-15 00:57:17 +08:00
; CHECK: movl 8(%esp), %e
; CHECK: movl 4(%esp), %e
; CHECK: xorl (%e
; CHECK: j
entry:
%0 = load i32, i32* %P, align 4
%1 = load i32, i32* %Q, align 4
%2 = xor i32 %0, %1
%3 = and i32 %2, 89947
%4 = icmp eq i32 %3, 0
br i1 %4, label %exit, label %land.end
exit:
%shr.i.i19 = xor i32 %1, %0
%5 = and i32 %shr.i.i19, 3456789123
%6 = icmp eq i32 %5, 0
br label %land.end
land.end:
%7 = phi i1 [ %6, %exit ], [ false, %entry ]
ret i1 %7
}