llvm-project/llvm/lib/Analysis/DDG.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

326 lines
11 KiB
C++
Raw Normal View History

Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
//===- DDG.cpp - Data Dependence Graph -------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The implementation for the data dependence graph.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DDG.h"
#include "llvm/ADT/SCCIterator.h"
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Support/CommandLine.h"
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
using namespace llvm;
static cl::opt<bool> SimplifyDDG(
"ddg-simplify", cl::init(true), cl::Hidden, cl::ZeroOrMore,
cl::desc(
"Simplify DDG by merging nodes that have less interesting edges."));
static cl::opt<bool>
CreatePiBlocks("ddg-pi-blocks", cl::init(true), cl::Hidden, cl::ZeroOrMore,
cl::desc("Create pi-block nodes."));
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
#define DEBUG_TYPE "ddg"
template class llvm::DGEdge<DDGNode, DDGEdge>;
template class llvm::DGNode<DDGNode, DDGEdge>;
template class llvm::DirectedGraph<DDGNode, DDGEdge>;
//===--------------------------------------------------------------------===//
// DDGNode implementation
//===--------------------------------------------------------------------===//
DDGNode::~DDGNode() {}
bool DDGNode::collectInstructions(
llvm::function_ref<bool(Instruction *)> const &Pred,
InstructionListType &IList) const {
assert(IList.empty() && "Expected the IList to be empty on entry.");
if (isa<SimpleDDGNode>(this)) {
for (Instruction *I : cast<const SimpleDDGNode>(this)->getInstructions())
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
if (Pred(I))
IList.push_back(I);
} else if (isa<PiBlockDDGNode>(this)) {
for (const DDGNode *PN : cast<const PiBlockDDGNode>(this)->getNodes()) {
assert(!isa<PiBlockDDGNode>(PN) && "Nested PiBlocks are not supported.");
SmallVector<Instruction *, 8> TmpIList;
PN->collectInstructions(Pred, TmpIList);
IList.insert(IList.end(), TmpIList.begin(), TmpIList.end());
}
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
} else
llvm_unreachable("unimplemented type of node");
return !IList.empty();
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGNode::NodeKind K) {
const char *Out;
switch (K) {
case DDGNode::NodeKind::SingleInstruction:
Out = "single-instruction";
break;
case DDGNode::NodeKind::MultiInstruction:
Out = "multi-instruction";
break;
case DDGNode::NodeKind::PiBlock:
Out = "pi-block";
break;
case DDGNode::NodeKind::Root:
Out = "root";
break;
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
case DDGNode::NodeKind::Unknown:
Out = "?? (error)";
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
break;
}
OS << Out;
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGNode &N) {
OS << "Node Address:" << &N << ":" << N.getKind() << "\n";
if (isa<SimpleDDGNode>(N)) {
OS << " Instructions:\n";
for (const Instruction *I : cast<const SimpleDDGNode>(N).getInstructions())
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
OS.indent(2) << *I << "\n";
} else if (isa<PiBlockDDGNode>(&N)) {
OS << "--- start of nodes in pi-block ---\n";
auto &Nodes = cast<const PiBlockDDGNode>(&N)->getNodes();
unsigned Count = 0;
for (const DDGNode *N : Nodes)
OS << *N << (++Count == Nodes.size() ? "" : "\n");
OS << "--- end of nodes in pi-block ---\n";
} else if (!isa<RootDDGNode>(N))
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
llvm_unreachable("unimplemented type of node");
OS << (N.getEdges().empty() ? " Edges:none!\n" : " Edges:\n");
for (auto &E : N.getEdges())
OS.indent(2) << *E;
return OS;
}
//===--------------------------------------------------------------------===//
// SimpleDDGNode implementation
//===--------------------------------------------------------------------===//
SimpleDDGNode::SimpleDDGNode(Instruction &I)
: DDGNode(NodeKind::SingleInstruction), InstList() {
assert(InstList.empty() && "Expected empty list.");
InstList.push_back(&I);
}
SimpleDDGNode::SimpleDDGNode(const SimpleDDGNode &N)
: DDGNode(N), InstList(N.InstList) {
assert(((getKind() == NodeKind::SingleInstruction && InstList.size() == 1) ||
(getKind() == NodeKind::MultiInstruction && InstList.size() > 1)) &&
"constructing from invalid simple node.");
}
SimpleDDGNode::SimpleDDGNode(SimpleDDGNode &&N)
: DDGNode(std::move(N)), InstList(std::move(N.InstList)) {
assert(((getKind() == NodeKind::SingleInstruction && InstList.size() == 1) ||
(getKind() == NodeKind::MultiInstruction && InstList.size() > 1)) &&
"constructing from invalid simple node.");
}
SimpleDDGNode::~SimpleDDGNode() { InstList.clear(); }
//===--------------------------------------------------------------------===//
// PiBlockDDGNode implementation
//===--------------------------------------------------------------------===//
PiBlockDDGNode::PiBlockDDGNode(const PiNodeList &List)
: DDGNode(NodeKind::PiBlock), NodeList(List) {
assert(!NodeList.empty() && "pi-block node constructed with an empty list.");
}
PiBlockDDGNode::PiBlockDDGNode(const PiBlockDDGNode &N)
: DDGNode(N), NodeList(N.NodeList) {
assert(getKind() == NodeKind::PiBlock && !NodeList.empty() &&
"constructing from invalid pi-block node.");
}
PiBlockDDGNode::PiBlockDDGNode(PiBlockDDGNode &&N)
: DDGNode(std::move(N)), NodeList(std::move(N.NodeList)) {
assert(getKind() == NodeKind::PiBlock && !NodeList.empty() &&
"constructing from invalid pi-block node.");
}
PiBlockDDGNode::~PiBlockDDGNode() { NodeList.clear(); }
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
//===--------------------------------------------------------------------===//
// DDGEdge implementation
//===--------------------------------------------------------------------===//
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGEdge::EdgeKind K) {
const char *Out;
switch (K) {
case DDGEdge::EdgeKind::RegisterDefUse:
Out = "def-use";
break;
case DDGEdge::EdgeKind::MemoryDependence:
Out = "memory";
break;
case DDGEdge::EdgeKind::Rooted:
Out = "rooted";
break;
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
case DDGEdge::EdgeKind::Unknown:
Out = "?? (error)";
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
break;
}
OS << Out;
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGEdge &E) {
OS << "[" << E.getKind() << "] to " << &E.getTargetNode() << "\n";
return OS;
}
//===--------------------------------------------------------------------===//
// DataDependenceGraph implementation
//===--------------------------------------------------------------------===//
using BasicBlockListType = SmallVector<BasicBlock *, 8>;
DataDependenceGraph::DataDependenceGraph(Function &F, DependenceInfo &D)
: DependenceGraphInfo(F.getName().str(), D) {
// Put the basic blocks in program order for correct dependence
// directions.
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
BasicBlockListType BBList;
for (auto &SCC : make_range(scc_begin(&F), scc_end(&F)))
for (BasicBlock * BB : SCC)
BBList.push_back(BB);
std::reverse(BBList.begin(), BBList.end());
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
DDGBuilder(*this, D, BBList).populate();
}
DataDependenceGraph::DataDependenceGraph(Loop &L, LoopInfo &LI,
DependenceInfo &D)
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
: DependenceGraphInfo(Twine(L.getHeader()->getParent()->getName() + "." +
L.getHeader()->getName())
.str(),
D) {
// Put the basic blocks in program order for correct dependence
// directions.
LoopBlocksDFS DFS(&L);
DFS.perform(&LI);
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
BasicBlockListType BBList;
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
BBList.push_back(BB);
DDGBuilder(*this, D, BBList).populate();
}
DataDependenceGraph::~DataDependenceGraph() {
for (auto *N : Nodes) {
for (auto *E : *N)
delete E;
delete N;
}
}
bool DataDependenceGraph::addNode(DDGNode &N) {
if (!DDGBase::addNode(N))
return false;
// In general, if the root node is already created and linked, it is not safe
// to add new nodes since they may be unreachable by the root. However,
// pi-block nodes need to be added after the root node is linked, and they are
// always reachable by the root, because they represent components that are
// already reachable by root.
auto *Pi = dyn_cast<PiBlockDDGNode>(&N);
2019-11-11 19:13:32 +08:00
assert((!Root || Pi) &&
"Root node is already added. No more nodes can be added.");
if (isa<RootDDGNode>(N))
Root = &N;
if (Pi)
for (DDGNode *NI : Pi->getNodes())
PiBlockMap.insert(std::make_pair(NI, Pi));
return true;
}
const PiBlockDDGNode *DataDependenceGraph::getPiBlock(const NodeType &N) const {
if (PiBlockMap.find(&N) == PiBlockMap.end())
return nullptr;
auto *Pi = PiBlockMap.find(&N)->second;
assert(PiBlockMap.find(Pi) == PiBlockMap.end() &&
"Nested pi-blocks detected.");
return Pi;
}
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
raw_ostream &llvm::operator<<(raw_ostream &OS, const DataDependenceGraph &G) {
for (DDGNode *Node : G)
// Avoid printing nodes that are part of a pi-block twice. They will get
// printed when the pi-block is printed.
if (!G.getPiBlock(*Node))
OS << *Node << "\n";
OS << "\n";
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
return OS;
}
//===--------------------------------------------------------------------===//
// DDGBuilder implementation
//===--------------------------------------------------------------------===//
bool DDGBuilder::areNodesMergeable(const DDGNode &Src,
const DDGNode &Tgt) const {
// Only merge two nodes if they are both simple nodes and the consecutive
// instructions after merging belong to the same BB.
const auto *SimpleSrc = dyn_cast<const SimpleDDGNode>(&Src);
const auto *SimpleTgt = dyn_cast<const SimpleDDGNode>(&Tgt);
if (!SimpleSrc || !SimpleTgt)
return false;
return SimpleSrc->getLastInstruction()->getParent() ==
SimpleTgt->getFirstInstruction()->getParent();
}
void DDGBuilder::mergeNodes(DDGNode &A, DDGNode &B) {
DDGEdge &EdgeToFold = A.back();
assert(A.getEdges().size() == 1 && EdgeToFold.getTargetNode() == B &&
"Expected A to have a single edge to B.");
assert(isa<SimpleDDGNode>(&A) && isa<SimpleDDGNode>(&B) &&
"Expected simple nodes");
// Copy instructions from B to the end of A.
cast<SimpleDDGNode>(&A)->appendInstructions(*cast<SimpleDDGNode>(&B));
// Move to A any outgoing edges from B.
for (DDGEdge *BE : B)
Graph.connect(A, BE->getTargetNode(), *BE);
A.removeEdge(EdgeToFold);
destroyEdge(EdgeToFold);
Graph.removeNode(B);
destroyNode(B);
}
bool DDGBuilder::shouldSimplify() const { return SimplifyDDG; }
bool DDGBuilder::shouldCreatePiBlocks() const { return CreatePiBlocks; }
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
//===--------------------------------------------------------------------===//
// DDG Analysis Passes
//===--------------------------------------------------------------------===//
/// DDG as a loop pass.
DDGAnalysis::Result DDGAnalysis::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
Function *F = L.getHeader()->getParent();
DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
return std::make_unique<DataDependenceGraph>(L, AR.LI, DI);
Data Dependence Graph Basics Summary: This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper: D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS. This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges. The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored. The algorithm for building the graph involves the following steps in order: 1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph. 2. For each node in the graph establish def-use edges to/from other nodes in the graph. 3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it. Authored By: bmahjour Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert Reviewed By: Meinersbur, fhahn, myhsu Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto Tag: #llvm Differential Revision: https://reviews.llvm.org/D65350 llvm-svn: 372238
2019-09-19 01:43:45 +08:00
}
AnalysisKey DDGAnalysis::Key;
PreservedAnalyses DDGAnalysisPrinterPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
OS << "'DDG' for loop '" << L.getHeader()->getName() << "':\n";
OS << *AM.getResult<DDGAnalysis>(L, AR);
return PreservedAnalyses::all();
}