2003-05-27 23:45:27 +08:00
|
|
|
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
|
2005-04-22 07:48:37 +08:00
|
|
|
//
|
2003-10-21 03:43:21 +08:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-30 04:36:04 +08:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2005-04-22 07:48:37 +08:00
|
|
|
//
|
2003-10-21 03:43:21 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2003-05-27 23:45:27 +08:00
|
|
|
//
|
|
|
|
// This transformation implements the well known scalar replacement of
|
|
|
|
// aggregates transformation. This xform breaks up alloca instructions of
|
|
|
|
// aggregate type (structure or array) into individual alloca instructions for
|
2003-09-12 00:45:55 +08:00
|
|
|
// each member (if possible). Then, if possible, it transforms the individual
|
|
|
|
// alloca instructions into nice clean scalar SSA form.
|
|
|
|
//
|
|
|
|
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
|
|
|
|
// often interact, especially for C++ programs. As such, iterating between
|
|
|
|
// SRoA, then Mem2Reg until we run out of things to promote works well.
|
2003-05-27 23:45:27 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2006-12-20 05:40:18 +08:00
|
|
|
#define DEBUG_TYPE "scalarrepl"
|
2003-05-27 23:45:27 +08:00
|
|
|
#include "llvm/Transforms/Scalar.h"
|
2003-09-12 00:45:55 +08:00
|
|
|
#include "llvm/Constants.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
2003-05-27 23:45:27 +08:00
|
|
|
#include "llvm/Function.h"
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
#include "llvm/GlobalVariable.h"
|
2004-07-30 01:05:13 +08:00
|
|
|
#include "llvm/Instructions.h"
|
2007-03-05 15:52:57 +08:00
|
|
|
#include "llvm/IntrinsicInst.h"
|
|
|
|
#include "llvm/Pass.h"
|
2003-09-12 00:45:55 +08:00
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
2006-06-29 07:17:24 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
2005-12-12 15:19:13 +08:00
|
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
|
|
#include "llvm/Support/MathExtras.h"
|
2006-08-27 20:54:02 +08:00
|
|
|
#include "llvm/Support/Compiler.h"
|
2007-02-13 06:56:41 +08:00
|
|
|
#include "llvm/ADT/SmallVector.h"
|
2004-09-02 06:55:40 +08:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
#include "llvm/ADT/StringExtras.h"
|
2003-12-03 01:43:55 +08:00
|
|
|
using namespace llvm;
|
2003-11-12 06:41:34 +08:00
|
|
|
|
2006-12-20 05:40:18 +08:00
|
|
|
STATISTIC(NumReplaced, "Number of allocas broken up");
|
|
|
|
STATISTIC(NumPromoted, "Number of allocas promoted");
|
|
|
|
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
STATISTIC(NumGlobals, "Number of allocas copied from constant global");
|
2003-05-27 23:45:27 +08:00
|
|
|
|
2006-12-20 05:40:18 +08:00
|
|
|
namespace {
|
2006-06-29 07:17:24 +08:00
|
|
|
struct VISIBILITY_HIDDEN SROA : public FunctionPass {
|
2007-05-06 21:37:16 +08:00
|
|
|
static char ID; // Pass identification, replacement for typeid
|
2008-09-05 01:05:41 +08:00
|
|
|
explicit SROA(signed T = -1) : FunctionPass(&ID) {
|
2007-07-10 05:19:23 +08:00
|
|
|
if (T == -1)
|
2007-08-03 05:33:36 +08:00
|
|
|
SRThreshold = 128;
|
2007-07-10 05:19:23 +08:00
|
|
|
else
|
|
|
|
SRThreshold = T;
|
|
|
|
}
|
2007-05-02 05:15:47 +08:00
|
|
|
|
2003-05-27 23:45:27 +08:00
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
|
2003-09-12 00:45:55 +08:00
|
|
|
bool performScalarRepl(Function &F);
|
|
|
|
bool performPromotion(Function &F);
|
|
|
|
|
2003-08-31 08:45:13 +08:00
|
|
|
// getAnalysisUsage - This pass does not require any passes, but we know it
|
|
|
|
// will not alter the CFG, so say so.
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
2007-06-08 05:57:03 +08:00
|
|
|
AU.addRequired<DominatorTree>();
|
2003-09-12 00:45:55 +08:00
|
|
|
AU.addRequired<DominanceFrontier>();
|
|
|
|
AU.addRequired<TargetData>();
|
2003-08-31 08:45:13 +08:00
|
|
|
AU.setPreservesCFG();
|
|
|
|
}
|
|
|
|
|
2003-05-27 23:45:27 +08:00
|
|
|
private:
|
2009-01-07 14:34:28 +08:00
|
|
|
TargetData *TD;
|
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
/// AllocaInfo - When analyzing uses of an alloca instruction, this captures
|
|
|
|
/// information about the uses. All these fields are initialized to false
|
|
|
|
/// and set to true when something is learned.
|
|
|
|
struct AllocaInfo {
|
|
|
|
/// isUnsafe - This is set to true if the alloca cannot be SROA'd.
|
|
|
|
bool isUnsafe : 1;
|
|
|
|
|
|
|
|
/// needsCanon - This is set to true if there is some use of the alloca
|
|
|
|
/// that requires canonicalization.
|
|
|
|
bool needsCanon : 1;
|
|
|
|
|
|
|
|
/// isMemCpySrc - This is true if this aggregate is memcpy'd from.
|
|
|
|
bool isMemCpySrc : 1;
|
|
|
|
|
2007-07-06 14:01:16 +08:00
|
|
|
/// isMemCpyDst - This is true if this aggregate is memcpy'd into.
|
2007-05-30 14:11:23 +08:00
|
|
|
bool isMemCpyDst : 1;
|
|
|
|
|
|
|
|
AllocaInfo()
|
|
|
|
: isUnsafe(false), needsCanon(false),
|
|
|
|
isMemCpySrc(false), isMemCpyDst(false) {}
|
|
|
|
};
|
|
|
|
|
2007-07-10 05:19:23 +08:00
|
|
|
unsigned SRThreshold;
|
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
|
|
|
|
|
2004-11-14 12:24:28 +08:00
|
|
|
int isSafeAllocaToScalarRepl(AllocationInst *AI);
|
2007-05-30 14:11:23 +08:00
|
|
|
|
|
|
|
void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
|
|
|
|
AllocaInfo &Info);
|
|
|
|
void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
|
|
|
|
AllocaInfo &Info);
|
|
|
|
void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
|
|
|
|
unsigned OpNo, AllocaInfo &Info);
|
|
|
|
void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
|
|
|
|
AllocaInfo &Info);
|
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
void DoScalarReplacement(AllocationInst *AI,
|
|
|
|
std::vector<AllocationInst*> &WorkList);
|
2004-11-14 12:24:28 +08:00
|
|
|
void CanonicalizeAllocaUsers(AllocationInst *AI);
|
2003-05-27 23:45:27 +08:00
|
|
|
AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
|
2005-12-12 15:19:13 +08:00
|
|
|
|
2007-03-19 08:16:43 +08:00
|
|
|
void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
|
2007-03-05 15:52:57 +08:00
|
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
|
|
|
|
AllocationInst *AI,
|
|
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
|
|
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
2009-01-08 13:42:05 +08:00
|
|
|
void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
|
|
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
2009-01-07 15:18:45 +08:00
|
|
|
|
2005-12-12 15:19:13 +08:00
|
|
|
const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
|
|
|
|
void ConvertToScalar(AllocationInst *AI, const Type *Ty);
|
|
|
|
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
|
2008-02-29 15:03:13 +08:00
|
|
|
Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
|
|
|
|
unsigned Offset);
|
|
|
|
Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
|
|
|
|
unsigned Offset);
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
|
2003-05-27 23:45:27 +08:00
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2008-05-13 08:00:25 +08:00
|
|
|
char SROA::ID = 0;
|
|
|
|
static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
|
|
|
|
|
2003-11-12 06:41:34 +08:00
|
|
|
// Public interface to the ScalarReplAggregates pass
|
2007-07-10 05:19:23 +08:00
|
|
|
FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
|
|
|
|
return new SROA(Threshold);
|
|
|
|
}
|
2003-05-27 23:45:27 +08:00
|
|
|
|
|
|
|
|
|
|
|
bool SROA::runOnFunction(Function &F) {
|
2009-01-07 14:34:28 +08:00
|
|
|
TD = &getAnalysis<TargetData>();
|
|
|
|
|
2003-09-12 23:36:03 +08:00
|
|
|
bool Changed = performPromotion(F);
|
|
|
|
while (1) {
|
|
|
|
bool LocalChange = performScalarRepl(F);
|
|
|
|
if (!LocalChange) break; // No need to repromote if no scalarrepl
|
|
|
|
Changed = true;
|
|
|
|
LocalChange = performPromotion(F);
|
|
|
|
if (!LocalChange) break; // No need to re-scalarrepl if no promotion
|
|
|
|
}
|
2003-09-12 00:45:55 +08:00
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool SROA::performPromotion(Function &F) {
|
|
|
|
std::vector<AllocaInst*> Allocas;
|
2007-06-08 05:57:03 +08:00
|
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
2003-10-06 05:20:13 +08:00
|
|
|
DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
|
2003-09-12 00:45:55 +08:00
|
|
|
|
2003-09-20 22:39:18 +08:00
|
|
|
BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
|
2003-09-12 00:45:55 +08:00
|
|
|
|
2003-09-12 23:36:03 +08:00
|
|
|
bool Changed = false;
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2003-09-12 00:45:55 +08:00
|
|
|
while (1) {
|
|
|
|
Allocas.clear();
|
|
|
|
|
|
|
|
// Find allocas that are safe to promote, by looking at all instructions in
|
|
|
|
// the entry node
|
|
|
|
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
|
2007-04-26 01:15:20 +08:00
|
|
|
if (isAllocaPromotable(AI))
|
2003-09-12 00:45:55 +08:00
|
|
|
Allocas.push_back(AI);
|
|
|
|
|
|
|
|
if (Allocas.empty()) break;
|
|
|
|
|
2007-06-08 05:57:03 +08:00
|
|
|
PromoteMemToReg(Allocas, DT, DF);
|
2003-09-12 00:45:55 +08:00
|
|
|
NumPromoted += Allocas.size();
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
2008-06-23 01:46:21 +08:00
|
|
|
/// getNumSAElements - Return the number of elements in the specific struct or
|
|
|
|
/// array.
|
|
|
|
static uint64_t getNumSAElements(const Type *T) {
|
|
|
|
if (const StructType *ST = dyn_cast<StructType>(T))
|
|
|
|
return ST->getNumElements();
|
|
|
|
return cast<ArrayType>(T)->getNumElements();
|
|
|
|
}
|
|
|
|
|
2003-09-12 00:45:55 +08:00
|
|
|
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
|
|
|
|
// which runs on all of the malloc/alloca instructions in the function, removing
|
|
|
|
// them if they are only used by getelementptr instructions.
|
|
|
|
//
|
|
|
|
bool SROA::performScalarRepl(Function &F) {
|
2003-05-27 23:45:27 +08:00
|
|
|
std::vector<AllocationInst*> WorkList;
|
|
|
|
|
|
|
|
// Scan the entry basic block, adding any alloca's and mallocs to the worklist
|
2003-09-20 22:39:18 +08:00
|
|
|
BasicBlock &BB = F.getEntryBlock();
|
2003-05-27 23:45:27 +08:00
|
|
|
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
|
|
|
|
if (AllocationInst *A = dyn_cast<AllocationInst>(I))
|
|
|
|
WorkList.push_back(A);
|
|
|
|
|
|
|
|
// Process the worklist
|
|
|
|
bool Changed = false;
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
AllocationInst *AI = WorkList.back();
|
|
|
|
WorkList.pop_back();
|
2005-12-12 15:19:13 +08:00
|
|
|
|
2006-12-23 07:14:42 +08:00
|
|
|
// Handle dead allocas trivially. These can be formed by SROA'ing arrays
|
|
|
|
// with unused elements.
|
|
|
|
if (AI->use_empty()) {
|
|
|
|
AI->eraseFromParent();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2005-12-12 15:19:13 +08:00
|
|
|
// If we can turn this aggregate value (potentially with casts) into a
|
|
|
|
// simple scalar value that can be mem2reg'd into a register value.
|
|
|
|
bool IsNotTrivial = false;
|
|
|
|
if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
|
2006-04-21 04:48:50 +08:00
|
|
|
if (IsNotTrivial && ActualType != Type::VoidTy) {
|
2005-12-12 15:19:13 +08:00
|
|
|
ConvertToScalar(AI, ActualType);
|
|
|
|
Changed = true;
|
|
|
|
continue;
|
|
|
|
}
|
2003-05-27 23:45:27 +08:00
|
|
|
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
// Check to see if we can perform the core SROA transformation. We cannot
|
|
|
|
// transform the allocation instruction if it is an array allocation
|
|
|
|
// (allocations OF arrays are ok though), and an allocation of a scalar
|
|
|
|
// value cannot be decomposed at all.
|
2007-04-25 13:02:56 +08:00
|
|
|
if (!AI->isArrayAllocation() &&
|
|
|
|
(isa<StructType>(AI->getAllocatedType()) ||
|
2007-05-25 02:43:04 +08:00
|
|
|
isa<ArrayType>(AI->getAllocatedType())) &&
|
|
|
|
AI->getAllocatedType()->isSized() &&
|
2008-06-23 01:46:21 +08:00
|
|
|
// Do not promote any struct whose size is larger than "128" bytes.
|
2009-01-07 14:34:28 +08:00
|
|
|
TD->getABITypeSize(AI->getAllocatedType()) < SRThreshold &&
|
2008-06-23 01:46:21 +08:00
|
|
|
// Do not promote any struct into more than "32" separate vars.
|
|
|
|
getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
|
2007-04-25 13:02:56 +08:00
|
|
|
// Check that all of the users of the allocation are capable of being
|
|
|
|
// transformed.
|
|
|
|
switch (isSafeAllocaToScalarRepl(AI)) {
|
|
|
|
default: assert(0 && "Unexpected value!");
|
|
|
|
case 0: // Not safe to scalar replace.
|
|
|
|
break;
|
|
|
|
case 1: // Safe, but requires cleanup/canonicalizations first
|
|
|
|
CanonicalizeAllocaUsers(AI);
|
|
|
|
// FALL THROUGH.
|
|
|
|
case 3: // Safe to scalar replace.
|
|
|
|
DoScalarReplacement(AI, WorkList);
|
|
|
|
Changed = true;
|
|
|
|
continue;
|
|
|
|
}
|
2004-11-14 12:24:28 +08:00
|
|
|
}
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
|
|
|
|
// Check to see if this allocation is only modified by a memcpy/memmove from
|
|
|
|
// a constant global. If this is the case, we can change all users to use
|
|
|
|
// the constant global instead. This is commonly produced by the CFE by
|
|
|
|
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
|
|
|
|
// is only subsequently read.
|
|
|
|
if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
|
|
|
|
DOUT << "Found alloca equal to global: " << *AI;
|
|
|
|
DOUT << " memcpy = " << *TheCopy;
|
|
|
|
Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
|
|
|
|
AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
|
|
|
|
TheCopy->eraseFromParent(); // Don't mutate the global.
|
|
|
|
AI->eraseFromParent();
|
|
|
|
++NumGlobals;
|
|
|
|
Changed = true;
|
|
|
|
continue;
|
|
|
|
}
|
2007-04-25 13:02:56 +08:00
|
|
|
|
|
|
|
// Otherwise, couldn't process this.
|
|
|
|
}
|
2003-05-27 23:45:27 +08:00
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
return Changed;
|
|
|
|
}
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
|
|
|
|
/// predicate, do SROA now.
|
|
|
|
void SROA::DoScalarReplacement(AllocationInst *AI,
|
|
|
|
std::vector<AllocationInst*> &WorkList) {
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
DOUT << "Found inst to SROA: " << *AI;
|
2007-04-25 13:02:56 +08:00
|
|
|
SmallVector<AllocaInst*, 32> ElementAllocas;
|
|
|
|
if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
|
|
|
|
ElementAllocas.reserve(ST->getNumContainedTypes());
|
|
|
|
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
|
|
|
|
AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
|
|
|
|
AI->getAlignment(),
|
|
|
|
AI->getName() + "." + utostr(i), AI);
|
|
|
|
ElementAllocas.push_back(NA);
|
|
|
|
WorkList.push_back(NA); // Add to worklist for recursive processing
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
|
|
|
|
ElementAllocas.reserve(AT->getNumElements());
|
|
|
|
const Type *ElTy = AT->getElementType();
|
|
|
|
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
|
|
|
|
AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
|
|
|
|
AI->getName() + "." + utostr(i), AI);
|
|
|
|
ElementAllocas.push_back(NA);
|
|
|
|
WorkList.push_back(NA); // Add to worklist for recursive processing
|
2003-05-27 23:45:27 +08:00
|
|
|
}
|
2007-04-25 13:02:56 +08:00
|
|
|
}
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
// Now that we have created the alloca instructions that we want to use,
|
|
|
|
// expand the getelementptr instructions to use them.
|
|
|
|
//
|
|
|
|
while (!AI->use_empty()) {
|
|
|
|
Instruction *User = cast<Instruction>(AI->use_back());
|
|
|
|
if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
|
|
|
|
RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
|
|
|
|
BCInst->eraseFromParent();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2008-06-24 01:11:23 +08:00
|
|
|
// Replace:
|
|
|
|
// %res = load { i32, i32 }* %alloc
|
|
|
|
// with:
|
|
|
|
// %load.0 = load i32* %alloc.0
|
|
|
|
// %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
|
|
|
|
// %load.1 = load i32* %alloc.1
|
|
|
|
// %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
|
2008-06-05 20:51:53 +08:00
|
|
|
// (Also works for arrays instead of structs)
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
|
|
|
Value *Insert = UndefValue::get(LI->getType());
|
|
|
|
for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
|
|
|
|
Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
|
|
|
|
Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
|
|
|
|
}
|
|
|
|
LI->replaceAllUsesWith(Insert);
|
|
|
|
LI->eraseFromParent();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2008-06-24 01:11:23 +08:00
|
|
|
// Replace:
|
|
|
|
// store { i32, i32 } %val, { i32, i32 }* %alloc
|
|
|
|
// with:
|
|
|
|
// %val.0 = extractvalue { i32, i32 } %val, 0
|
|
|
|
// store i32 %val.0, i32* %alloc.0
|
|
|
|
// %val.1 = extractvalue { i32, i32 } %val, 1
|
|
|
|
// store i32 %val.1, i32* %alloc.1
|
2008-06-05 20:51:53 +08:00
|
|
|
// (Also works for arrays instead of structs)
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
|
|
|
Value *Val = SI->getOperand(0);
|
|
|
|
for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
|
|
|
|
Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
|
|
|
|
new StoreInst(Extract, ElementAllocas[i], SI);
|
|
|
|
}
|
|
|
|
SI->eraseFromParent();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
|
|
|
|
// We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
|
|
|
|
unsigned Idx =
|
|
|
|
(unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
|
|
|
|
|
|
|
|
assert(Idx < ElementAllocas.size() && "Index out of range?");
|
|
|
|
AllocaInst *AllocaToUse = ElementAllocas[Idx];
|
|
|
|
|
|
|
|
Value *RepValue;
|
|
|
|
if (GEPI->getNumOperands() == 3) {
|
|
|
|
// Do not insert a new getelementptr instruction with zero indices, only
|
|
|
|
// to have it optimized out later.
|
|
|
|
RepValue = AllocaToUse;
|
|
|
|
} else {
|
|
|
|
// We are indexing deeply into the structure, so we still need a
|
|
|
|
// getelement ptr instruction to finish the indexing. This may be
|
|
|
|
// expanded itself once the worklist is rerun.
|
|
|
|
//
|
|
|
|
SmallVector<Value*, 8> NewArgs;
|
|
|
|
NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
|
|
|
|
NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
|
2008-04-07 04:25:17 +08:00
|
|
|
RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
|
|
|
|
NewArgs.end(), "", GEPI);
|
2007-04-25 13:02:56 +08:00
|
|
|
RepValue->takeName(GEPI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this GEP is to the start of the aggregate, check for memcpys.
|
2009-01-07 14:25:07 +08:00
|
|
|
if (Idx == 0 && GEPI->hasAllZeroIndices())
|
|
|
|
RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
|
2003-05-27 23:45:27 +08:00
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
// Move all of the users over to the new GEP.
|
|
|
|
GEPI->replaceAllUsesWith(RepValue);
|
|
|
|
// Delete the old GEP
|
|
|
|
GEPI->eraseFromParent();
|
2003-05-27 23:45:27 +08:00
|
|
|
}
|
|
|
|
|
2007-04-25 13:02:56 +08:00
|
|
|
// Finally, delete the Alloca instruction
|
|
|
|
AI->eraseFromParent();
|
|
|
|
NumReplaced++;
|
2003-05-27 23:45:27 +08:00
|
|
|
}
|
2003-05-30 12:15:41 +08:00
|
|
|
|
|
|
|
|
2004-11-14 12:24:28 +08:00
|
|
|
/// isSafeElementUse - Check to see if this use is an allowed use for a
|
2007-03-19 08:16:43 +08:00
|
|
|
/// getelementptr instruction of an array aggregate allocation. isFirstElt
|
|
|
|
/// indicates whether Ptr is known to the start of the aggregate.
|
2004-11-14 12:24:28 +08:00
|
|
|
///
|
2007-05-30 14:11:23 +08:00
|
|
|
void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
|
|
|
|
AllocaInfo &Info) {
|
2004-11-14 12:24:28 +08:00
|
|
|
for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
|
|
|
|
I != E; ++I) {
|
|
|
|
Instruction *User = cast<Instruction>(*I);
|
|
|
|
switch (User->getOpcode()) {
|
|
|
|
case Instruction::Load: break;
|
|
|
|
case Instruction::Store:
|
|
|
|
// Store is ok if storing INTO the pointer, not storing the pointer
|
2007-05-30 14:11:23 +08:00
|
|
|
if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
|
2004-11-14 12:24:28 +08:00
|
|
|
break;
|
|
|
|
case Instruction::GetElementPtr: {
|
|
|
|
GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
|
2007-03-19 08:16:43 +08:00
|
|
|
bool AreAllZeroIndices = isFirstElt;
|
2004-11-14 12:24:28 +08:00
|
|
|
if (GEP->getNumOperands() > 1) {
|
2007-03-19 08:16:43 +08:00
|
|
|
if (!isa<ConstantInt>(GEP->getOperand(1)) ||
|
|
|
|
!cast<ConstantInt>(GEP->getOperand(1))->isZero())
|
2007-05-30 14:11:23 +08:00
|
|
|
// Using pointer arithmetic to navigate the array.
|
|
|
|
return MarkUnsafe(Info);
|
2007-03-19 08:16:43 +08:00
|
|
|
|
2009-01-07 14:25:07 +08:00
|
|
|
if (AreAllZeroIndices)
|
|
|
|
AreAllZeroIndices = GEP->hasAllZeroIndices();
|
2004-11-14 12:24:28 +08:00
|
|
|
}
|
2007-05-30 14:11:23 +08:00
|
|
|
isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
|
|
|
|
if (Info.isUnsafe) return;
|
2004-11-14 12:24:28 +08:00
|
|
|
break;
|
|
|
|
}
|
2007-03-19 08:16:43 +08:00
|
|
|
case Instruction::BitCast:
|
2007-05-30 14:11:23 +08:00
|
|
|
if (isFirstElt) {
|
|
|
|
isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
|
|
|
|
if (Info.isUnsafe) return;
|
2007-03-19 08:16:43 +08:00
|
|
|
break;
|
2007-05-30 14:11:23 +08:00
|
|
|
}
|
2007-03-19 08:16:43 +08:00
|
|
|
DOUT << " Transformation preventing inst: " << *User;
|
2007-05-30 14:11:23 +08:00
|
|
|
return MarkUnsafe(Info);
|
2007-03-19 08:16:43 +08:00
|
|
|
case Instruction::Call:
|
|
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
|
2007-05-30 14:11:23 +08:00
|
|
|
if (isFirstElt) {
|
|
|
|
isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
|
|
|
|
if (Info.isUnsafe) return;
|
2007-03-19 08:16:43 +08:00
|
|
|
break;
|
2007-05-30 14:11:23 +08:00
|
|
|
}
|
2007-03-19 08:16:43 +08:00
|
|
|
}
|
|
|
|
DOUT << " Transformation preventing inst: " << *User;
|
2007-05-30 14:11:23 +08:00
|
|
|
return MarkUnsafe(Info);
|
2004-11-14 12:24:28 +08:00
|
|
|
default:
|
2006-11-26 17:46:52 +08:00
|
|
|
DOUT << " Transformation preventing inst: " << *User;
|
2007-05-30 14:11:23 +08:00
|
|
|
return MarkUnsafe(Info);
|
2004-11-14 12:24:28 +08:00
|
|
|
}
|
|
|
|
}
|
2007-05-30 14:11:23 +08:00
|
|
|
return; // All users look ok :)
|
2004-11-14 12:24:28 +08:00
|
|
|
}
|
|
|
|
|
2004-11-14 13:00:19 +08:00
|
|
|
/// AllUsersAreLoads - Return true if all users of this value are loads.
|
|
|
|
static bool AllUsersAreLoads(Value *Ptr) {
|
|
|
|
for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
|
|
|
|
I != E; ++I)
|
|
|
|
if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
|
|
|
|
return false;
|
2005-04-22 07:48:37 +08:00
|
|
|
return true;
|
2004-11-14 13:00:19 +08:00
|
|
|
}
|
|
|
|
|
2003-05-30 12:15:41 +08:00
|
|
|
/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
|
|
|
|
/// aggregate allocation.
|
|
|
|
///
|
2007-05-30 14:11:23 +08:00
|
|
|
void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
|
|
|
|
AllocaInfo &Info) {
|
2007-03-05 15:52:57 +08:00
|
|
|
if (BitCastInst *C = dyn_cast<BitCastInst>(User))
|
2007-05-30 14:11:23 +08:00
|
|
|
return isSafeUseOfBitCastedAllocation(C, AI, Info);
|
|
|
|
|
2008-06-05 20:51:53 +08:00
|
|
|
if (isa<LoadInst>(User))
|
|
|
|
return; // Loads (returning a first class aggregrate) are always rewritable
|
|
|
|
|
|
|
|
if (isa<StoreInst>(User) && User->getOperand(0) != AI)
|
|
|
|
return; // Store is ok if storing INTO the pointer, not storing the pointer
|
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
|
|
|
|
if (GEPI == 0)
|
|
|
|
return MarkUnsafe(Info);
|
2003-10-30 01:55:44 +08:00
|
|
|
|
2003-11-26 05:09:18 +08:00
|
|
|
gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
|
|
|
|
|
2006-03-08 09:05:29 +08:00
|
|
|
// The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
|
2003-11-26 05:09:18 +08:00
|
|
|
if (I == E ||
|
2007-05-30 14:11:23 +08:00
|
|
|
I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
|
|
|
|
return MarkUnsafe(Info);
|
|
|
|
}
|
2003-11-26 05:09:18 +08:00
|
|
|
|
|
|
|
++I;
|
2007-05-30 14:11:23 +08:00
|
|
|
if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
|
2003-10-30 01:55:44 +08:00
|
|
|
|
2007-03-19 08:16:43 +08:00
|
|
|
bool IsAllZeroIndices = true;
|
|
|
|
|
2008-08-23 13:21:06 +08:00
|
|
|
// If the first index is a non-constant index into an array, see if we can
|
|
|
|
// handle it as a special case.
|
2003-11-26 05:09:18 +08:00
|
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
|
2008-08-23 13:21:06 +08:00
|
|
|
if (!isa<ConstantInt>(I.getOperand())) {
|
2007-03-19 08:16:43 +08:00
|
|
|
IsAllZeroIndices = 0;
|
2008-08-23 13:21:06 +08:00
|
|
|
uint64_t NumElements = AT->getNumElements();
|
2007-03-19 08:16:43 +08:00
|
|
|
|
2004-11-14 13:00:19 +08:00
|
|
|
// If this is an array index and the index is not constant, we cannot
|
|
|
|
// promote... that is unless the array has exactly one or two elements in
|
|
|
|
// it, in which case we CAN promote it, but we have to canonicalize this
|
|
|
|
// out if this is the only problem.
|
2006-03-08 09:05:29 +08:00
|
|
|
if ((NumElements == 1 || NumElements == 2) &&
|
2007-05-30 14:11:23 +08:00
|
|
|
AllUsersAreLoads(GEPI)) {
|
|
|
|
Info.needsCanon = true;
|
|
|
|
return; // Canonicalization required!
|
|
|
|
}
|
|
|
|
return MarkUnsafe(Info);
|
2004-11-14 13:00:19 +08:00
|
|
|
}
|
2003-05-30 12:15:41 +08:00
|
|
|
}
|
2008-10-07 00:23:31 +08:00
|
|
|
|
2008-08-23 13:21:06 +08:00
|
|
|
// Walk through the GEP type indices, checking the types that this indexes
|
|
|
|
// into.
|
|
|
|
for (; I != E; ++I) {
|
|
|
|
// Ignore struct elements, no extra checking needed for these.
|
|
|
|
if (isa<StructType>(*I))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
|
|
|
|
if (!IdxVal) return MarkUnsafe(Info);
|
2008-10-07 00:23:31 +08:00
|
|
|
|
|
|
|
// Are all indices still zero?
|
2008-08-23 13:21:06 +08:00
|
|
|
IsAllZeroIndices &= IdxVal->isZero();
|
2008-10-07 00:23:31 +08:00
|
|
|
|
|
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
|
|
|
|
// This GEP indexes an array. Verify that this is an in-range constant
|
|
|
|
// integer. Specifically, consider A[0][i]. We cannot know that the user
|
|
|
|
// isn't doing invalid things like allowing i to index an out-of-range
|
|
|
|
// subscript that accesses A[1]. Because of this, we have to reject SROA
|
2008-11-05 04:54:03 +08:00
|
|
|
// of any accesses into structs where any of the components are variables.
|
2008-10-07 00:23:31 +08:00
|
|
|
if (IdxVal->getZExtValue() >= AT->getNumElements())
|
|
|
|
return MarkUnsafe(Info);
|
2008-11-05 04:54:03 +08:00
|
|
|
} else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
|
|
|
|
if (IdxVal->getZExtValue() >= VT->getNumElements())
|
|
|
|
return MarkUnsafe(Info);
|
2008-10-07 00:23:31 +08:00
|
|
|
}
|
2008-08-23 13:21:06 +08:00
|
|
|
}
|
|
|
|
|
2003-11-26 05:09:18 +08:00
|
|
|
// If there are any non-simple uses of this getelementptr, make sure to reject
|
|
|
|
// them.
|
2007-05-30 14:11:23 +08:00
|
|
|
return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
|
2007-03-19 08:16:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
|
|
|
|
/// intrinsic can be promoted by SROA. At this point, we know that the operand
|
|
|
|
/// of the memintrinsic is a pointer to the beginning of the allocation.
|
2007-05-30 14:11:23 +08:00
|
|
|
void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
|
|
|
|
unsigned OpNo, AllocaInfo &Info) {
|
2007-03-19 08:16:43 +08:00
|
|
|
// If not constant length, give up.
|
|
|
|
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
|
2007-05-30 14:11:23 +08:00
|
|
|
if (!Length) return MarkUnsafe(Info);
|
2007-03-19 08:16:43 +08:00
|
|
|
|
|
|
|
// If not the whole aggregate, give up.
|
2007-11-04 22:43:57 +08:00
|
|
|
if (Length->getZExtValue() !=
|
2009-01-07 14:34:28 +08:00
|
|
|
TD->getABITypeSize(AI->getType()->getElementType()))
|
2007-05-30 14:11:23 +08:00
|
|
|
return MarkUnsafe(Info);
|
2007-03-19 08:16:43 +08:00
|
|
|
|
|
|
|
// We only know about memcpy/memset/memmove.
|
|
|
|
if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
|
2007-05-30 14:11:23 +08:00
|
|
|
return MarkUnsafe(Info);
|
|
|
|
|
|
|
|
// Otherwise, we can transform it. Determine whether this is a memcpy/set
|
|
|
|
// into or out of the aggregate.
|
|
|
|
if (OpNo == 1)
|
|
|
|
Info.isMemCpyDst = true;
|
|
|
|
else {
|
|
|
|
assert(OpNo == 2);
|
|
|
|
Info.isMemCpySrc = true;
|
|
|
|
}
|
2003-05-30 12:15:41 +08:00
|
|
|
}
|
|
|
|
|
2007-03-05 15:52:57 +08:00
|
|
|
/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
|
|
|
|
/// are
|
2007-05-30 14:11:23 +08:00
|
|
|
void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
|
|
|
|
AllocaInfo &Info) {
|
2007-03-05 15:52:57 +08:00
|
|
|
for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
|
|
|
|
UI != E; ++UI) {
|
|
|
|
if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
|
2007-05-30 14:11:23 +08:00
|
|
|
isSafeUseOfBitCastedAllocation(BCU, AI, Info);
|
2007-03-05 15:52:57 +08:00
|
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
|
2007-05-30 14:11:23 +08:00
|
|
|
isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
|
|
|
|
// If storing the entire alloca in one chunk through a bitcasted pointer
|
|
|
|
// to integer, we can transform it. This happens (for example) when you
|
|
|
|
// cast a {i32,i32}* to i64* and store through it. This is similar to the
|
|
|
|
// memcpy case and occurs in various "byval" cases and emulated memcpys.
|
|
|
|
if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
|
|
|
|
TD->getABITypeSize(SI->getOperand(0)->getType()) ==
|
|
|
|
TD->getABITypeSize(AI->getType()->getElementType())) {
|
|
|
|
Info.isMemCpyDst = true;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
return MarkUnsafe(Info);
|
2009-01-08 13:42:05 +08:00
|
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
|
|
|
|
// If loading the entire alloca in one chunk through a bitcasted pointer
|
|
|
|
// to integer, we can transform it. This happens (for example) when you
|
|
|
|
// cast a {i32,i32}* to i64* and load through it. This is similar to the
|
|
|
|
// memcpy case and occurs in various "byval" cases and emulated memcpys.
|
|
|
|
if (isa<IntegerType>(LI->getType()) &&
|
|
|
|
TD->getABITypeSize(LI->getType()) ==
|
|
|
|
TD->getABITypeSize(AI->getType()->getElementType())) {
|
|
|
|
Info.isMemCpySrc = true;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
return MarkUnsafe(Info);
|
2007-03-05 15:52:57 +08:00
|
|
|
} else {
|
2007-05-30 14:11:23 +08:00
|
|
|
return MarkUnsafe(Info);
|
2007-03-05 15:52:57 +08:00
|
|
|
}
|
2007-05-30 14:11:23 +08:00
|
|
|
if (Info.isUnsafe) return;
|
2007-03-05 15:52:57 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-03-19 08:16:43 +08:00
|
|
|
/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
|
|
|
|
/// to its first element. Transform users of the cast to use the new values
|
|
|
|
/// instead.
|
|
|
|
void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
|
2007-03-05 15:52:57 +08:00
|
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
2007-03-19 08:16:43 +08:00
|
|
|
Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
|
|
|
|
while (UI != UE) {
|
2009-01-07 15:18:45 +08:00
|
|
|
Instruction *User = cast<Instruction>(*UI++);
|
|
|
|
if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
|
2007-03-05 15:52:57 +08:00
|
|
|
RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
if (BCU->use_empty()) BCU->eraseFromParent();
|
2007-03-05 15:52:57 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
|
|
|
|
// This must be memcpy/memmove/memset of the entire aggregate.
|
|
|
|
// Split into one per element.
|
|
|
|
RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
2009-01-08 13:42:05 +08:00
|
|
|
// If this is a store of the entire alloca from an integer, rewrite it.
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
|
|
|
|
continue;
|
|
|
|
}
|
2009-01-08 13:42:05 +08:00
|
|
|
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
|
|
|
// If this is a load of the entire alloca to an integer, rewrite it.
|
|
|
|
RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
|
|
|
|
continue;
|
|
|
|
}
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
|
|
|
|
// Otherwise it must be some other user of a gep of the first pointer. Just
|
|
|
|
// leave these alone.
|
2009-01-07 15:18:45 +08:00
|
|
|
continue;
|
2009-01-08 13:42:05 +08:00
|
|
|
}
|
2009-01-07 15:18:45 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
|
|
|
|
/// Rewrite it to copy or set the elements of the scalarized memory.
|
|
|
|
void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
|
|
|
|
AllocationInst *AI,
|
|
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
|
|
|
|
|
|
// If this is a memcpy/memmove, construct the other pointer as the
|
|
|
|
// appropriate type.
|
|
|
|
Value *OtherPtr = 0;
|
|
|
|
if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
|
|
|
|
if (BCInst == MCI->getRawDest())
|
|
|
|
OtherPtr = MCI->getRawSource();
|
|
|
|
else {
|
|
|
|
assert(BCInst == MCI->getRawSource());
|
|
|
|
OtherPtr = MCI->getRawDest();
|
2007-03-19 08:16:43 +08:00
|
|
|
}
|
2009-01-07 15:18:45 +08:00
|
|
|
} else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
|
|
|
|
if (BCInst == MMI->getRawDest())
|
|
|
|
OtherPtr = MMI->getRawSource();
|
|
|
|
else {
|
|
|
|
assert(BCInst == MMI->getRawSource());
|
|
|
|
OtherPtr = MMI->getRawDest();
|
2007-03-05 15:52:57 +08:00
|
|
|
}
|
2009-01-07 15:18:45 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If there is an other pointer, we want to convert it to the same pointer
|
|
|
|
// type as AI has, so we can GEP through it safely.
|
|
|
|
if (OtherPtr) {
|
|
|
|
// It is likely that OtherPtr is a bitcast, if so, remove it.
|
|
|
|
if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
|
|
|
|
OtherPtr = BC->getOperand(0);
|
|
|
|
// All zero GEPs are effectively bitcasts.
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
|
|
|
|
if (GEP->hasAllZeroIndices())
|
|
|
|
OtherPtr = GEP->getOperand(0);
|
2007-03-05 15:52:57 +08:00
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
|
|
|
|
if (BCE->getOpcode() == Instruction::BitCast)
|
|
|
|
OtherPtr = BCE->getOperand(0);
|
|
|
|
|
|
|
|
// If the pointer is not the right type, insert a bitcast to the right
|
|
|
|
// type.
|
|
|
|
if (OtherPtr->getType() != AI->getType())
|
|
|
|
OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
|
|
|
|
MI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Process each element of the aggregate.
|
|
|
|
Value *TheFn = MI->getOperand(0);
|
|
|
|
const Type *BytePtrTy = MI->getRawDest()->getType();
|
|
|
|
bool SROADest = MI->getRawDest() == BCInst;
|
|
|
|
|
|
|
|
Constant *Zero = Constant::getNullValue(Type::Int32Ty);
|
2007-03-05 15:52:57 +08:00
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
|
|
// If this is a memcpy/memmove, emit a GEP of the other element address.
|
|
|
|
Value *OtherElt = 0;
|
|
|
|
if (OtherPtr) {
|
|
|
|
Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
|
|
|
|
OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
|
2008-06-23 01:46:21 +08:00
|
|
|
OtherPtr->getNameStr()+"."+utostr(i),
|
2009-01-07 15:18:45 +08:00
|
|
|
MI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *EltPtr = NewElts[i];
|
|
|
|
const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
|
|
|
|
|
|
|
|
// If we got down to a scalar, insert a load or store as appropriate.
|
|
|
|
if (EltTy->isSingleValueType()) {
|
|
|
|
if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
|
|
|
|
Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
|
|
|
|
MI);
|
|
|
|
new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
|
|
|
|
continue;
|
2007-03-05 15:52:57 +08:00
|
|
|
}
|
2009-01-07 15:18:45 +08:00
|
|
|
assert(isa<MemSetInst>(MI));
|
2007-03-08 14:36:54 +08:00
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
// If the stored element is zero (common case), just store a null
|
|
|
|
// constant.
|
|
|
|
Constant *StoreVal;
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
|
|
|
|
if (CI->isZero()) {
|
|
|
|
StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
|
2007-03-08 14:36:54 +08:00
|
|
|
} else {
|
2009-01-07 15:18:45 +08:00
|
|
|
// If EltTy is a vector type, get the element type.
|
|
|
|
const Type *ValTy = EltTy;
|
|
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
|
|
|
|
ValTy = VTy->getElementType();
|
|
|
|
|
|
|
|
// Construct an integer with the right value.
|
|
|
|
unsigned EltSize = TD->getTypeSizeInBits(ValTy);
|
|
|
|
APInt OneVal(EltSize, CI->getZExtValue());
|
|
|
|
APInt TotalVal(OneVal);
|
|
|
|
// Set each byte.
|
|
|
|
for (unsigned i = 0; 8*i < EltSize; ++i) {
|
|
|
|
TotalVal = TotalVal.shl(8);
|
|
|
|
TotalVal |= OneVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert the integer value to the appropriate type.
|
|
|
|
StoreVal = ConstantInt::get(TotalVal);
|
|
|
|
if (isa<PointerType>(ValTy))
|
|
|
|
StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
|
|
|
|
else if (ValTy->isFloatingPoint())
|
|
|
|
StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
|
|
|
|
assert(StoreVal->getType() == ValTy && "Type mismatch!");
|
|
|
|
|
|
|
|
// If the requested value was a vector constant, create it.
|
|
|
|
if (EltTy != ValTy) {
|
|
|
|
unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
|
|
|
|
SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
|
|
|
|
StoreVal = ConstantVector::get(&Elts[0], NumElts);
|
2007-03-08 14:36:54 +08:00
|
|
|
}
|
|
|
|
}
|
2009-01-07 15:18:45 +08:00
|
|
|
new StoreInst(StoreVal, EltPtr, MI);
|
|
|
|
continue;
|
2007-03-08 14:36:54 +08:00
|
|
|
}
|
2009-01-07 15:18:45 +08:00
|
|
|
// Otherwise, if we're storing a byte variable, use a memset call for
|
|
|
|
// this element.
|
|
|
|
}
|
2007-03-08 14:36:54 +08:00
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
// Cast the element pointer to BytePtrTy.
|
|
|
|
if (EltPtr->getType() != BytePtrTy)
|
|
|
|
EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
|
2007-03-08 14:36:54 +08:00
|
|
|
|
2009-01-07 15:18:45 +08:00
|
|
|
// Cast the other pointer (if we have one) to BytePtrTy.
|
|
|
|
if (OtherElt && OtherElt->getType() != BytePtrTy)
|
|
|
|
OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
|
|
|
|
MI);
|
|
|
|
|
|
|
|
unsigned EltSize = TD->getABITypeSize(EltTy);
|
|
|
|
|
|
|
|
// Finally, insert the meminst for this element.
|
|
|
|
if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
|
|
|
|
Value *Ops[] = {
|
|
|
|
SROADest ? EltPtr : OtherElt, // Dest ptr
|
|
|
|
SROADest ? OtherElt : EltPtr, // Src ptr
|
|
|
|
ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
|
|
|
|
Zero // Align
|
|
|
|
};
|
|
|
|
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
|
|
|
|
} else {
|
|
|
|
assert(isa<MemSetInst>(MI));
|
|
|
|
Value *Ops[] = {
|
|
|
|
EltPtr, MI->getOperand(2), // Dest, Value,
|
|
|
|
ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
|
|
|
|
Zero // Align
|
|
|
|
};
|
|
|
|
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
|
2007-03-08 14:36:54 +08:00
|
|
|
}
|
2007-03-05 15:52:57 +08:00
|
|
|
}
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
MI->eraseFromParent();
|
2007-03-05 15:52:57 +08:00
|
|
|
}
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
|
|
|
|
/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
|
|
|
|
/// overwrites the entire allocation. Extract out the pieces of the stored
|
|
|
|
/// integer and store them individually.
|
|
|
|
void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
|
|
|
|
AllocationInst *AI,
|
|
|
|
SmallVector<AllocaInst*, 32> &NewElts){
|
|
|
|
// Extract each element out of the integer according to its structure offset
|
|
|
|
// and store the element value to the individual alloca.
|
|
|
|
Value *SrcVal = SI->getOperand(0);
|
|
|
|
const Type *AllocaEltTy = AI->getType()->getElementType();
|
|
|
|
uint64_t AllocaSizeBits = TD->getABITypeSizeInBits(AllocaEltTy);
|
2009-01-07 15:18:45 +08:00
|
|
|
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
// If this isn't a store of an integer to the whole alloca, it may be a store
|
|
|
|
// to the first element. Just ignore the store in this case and normal SROA
|
|
|
|
// will handle it.
|
|
|
|
if (!isa<IntegerType>(SrcVal->getType()) ||
|
|
|
|
TD->getABITypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
|
|
|
|
return;
|
|
|
|
|
|
|
|
DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
|
|
|
|
|
|
|
|
// There are two forms here: AI could be an array or struct. Both cases
|
|
|
|
// have different ways to compute the element offset.
|
|
|
|
if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
|
|
|
|
const StructLayout *Layout = TD->getStructLayout(EltSTy);
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
|
|
// Get the number of bits to shift SrcVal to get the value.
|
|
|
|
const Type *FieldTy = EltSTy->getElementType(i);
|
|
|
|
uint64_t Shift = Layout->getElementOffsetInBits(i);
|
|
|
|
|
|
|
|
if (TD->isBigEndian())
|
|
|
|
Shift = AllocaSizeBits-Shift-TD->getABITypeSizeInBits(FieldTy);
|
|
|
|
|
|
|
|
Value *EltVal = SrcVal;
|
|
|
|
if (Shift) {
|
|
|
|
Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
|
|
|
|
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
|
|
|
|
"sroa.store.elt", SI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Truncate down to an integer of the right size.
|
|
|
|
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
|
2009-01-10 02:18:43 +08:00
|
|
|
|
|
|
|
// Ignore zero sized fields like {}, they obviously contain no data.
|
|
|
|
if (FieldSizeBits == 0) continue;
|
|
|
|
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
if (FieldSizeBits != AllocaSizeBits)
|
|
|
|
EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
|
|
|
|
Value *DestField = NewElts[i];
|
|
|
|
if (EltVal->getType() == FieldTy) {
|
|
|
|
// Storing to an integer field of this size, just do it.
|
|
|
|
} else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
|
|
|
|
// Bitcast to the right element type (for fp/vector values).
|
|
|
|
EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
|
|
|
|
} else {
|
|
|
|
// Otherwise, bitcast the dest pointer (for aggregates).
|
|
|
|
DestField = new BitCastInst(DestField,
|
|
|
|
PointerType::getUnqual(EltVal->getType()),
|
|
|
|
"", SI);
|
|
|
|
}
|
|
|
|
new StoreInst(EltVal, DestField, SI);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
|
|
|
|
const Type *ArrayEltTy = ATy->getElementType();
|
|
|
|
uint64_t ElementOffset = TD->getABITypeSizeInBits(ArrayEltTy);
|
|
|
|
uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
|
|
|
|
|
|
|
|
uint64_t Shift;
|
|
|
|
|
|
|
|
if (TD->isBigEndian())
|
|
|
|
Shift = AllocaSizeBits-ElementOffset;
|
|
|
|
else
|
|
|
|
Shift = 0;
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
2009-01-10 02:18:43 +08:00
|
|
|
// Ignore zero sized fields like {}, they obviously contain no data.
|
|
|
|
if (ElementSizeBits == 0) continue;
|
Implement the first half of PR3290: if there is a store of an
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
2009-01-07 16:11:13 +08:00
|
|
|
|
|
|
|
Value *EltVal = SrcVal;
|
|
|
|
if (Shift) {
|
|
|
|
Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
|
|
|
|
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
|
|
|
|
"sroa.store.elt", SI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Truncate down to an integer of the right size.
|
|
|
|
if (ElementSizeBits != AllocaSizeBits)
|
|
|
|
EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
|
|
|
|
Value *DestField = NewElts[i];
|
|
|
|
if (EltVal->getType() == ArrayEltTy) {
|
|
|
|
// Storing to an integer field of this size, just do it.
|
|
|
|
} else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
|
|
|
|
// Bitcast to the right element type (for fp/vector values).
|
|
|
|
EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
|
|
|
|
} else {
|
|
|
|
// Otherwise, bitcast the dest pointer (for aggregates).
|
|
|
|
DestField = new BitCastInst(DestField,
|
|
|
|
PointerType::getUnqual(EltVal->getType()),
|
|
|
|
"", SI);
|
|
|
|
}
|
|
|
|
new StoreInst(EltVal, DestField, SI);
|
|
|
|
|
|
|
|
if (TD->isBigEndian())
|
|
|
|
Shift -= ElementOffset;
|
|
|
|
else
|
|
|
|
Shift += ElementOffset;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SI->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
2009-01-08 13:42:05 +08:00
|
|
|
/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
|
|
|
|
/// an integer. Load the individual pieces to form the aggregate value.
|
|
|
|
void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
|
|
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
|
|
// Extract each element out of the NewElts according to its structure offset
|
|
|
|
// and form the result value.
|
|
|
|
const Type *AllocaEltTy = AI->getType()->getElementType();
|
|
|
|
uint64_t AllocaSizeBits = TD->getABITypeSizeInBits(AllocaEltTy);
|
|
|
|
|
|
|
|
// If this isn't a load of the whole alloca to an integer, it may be a load
|
|
|
|
// of the first element. Just ignore the load in this case and normal SROA
|
|
|
|
// will handle it.
|
|
|
|
if (!isa<IntegerType>(LI->getType()) ||
|
|
|
|
TD->getABITypeSizeInBits(LI->getType()) != AllocaSizeBits)
|
|
|
|
return;
|
|
|
|
|
|
|
|
DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
|
|
|
|
|
|
|
|
// There are two forms here: AI could be an array or struct. Both cases
|
|
|
|
// have different ways to compute the element offset.
|
|
|
|
const StructLayout *Layout = 0;
|
|
|
|
uint64_t ArrayEltBitOffset = 0;
|
|
|
|
if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
|
|
|
|
Layout = TD->getStructLayout(EltSTy);
|
|
|
|
} else {
|
|
|
|
const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
|
|
|
|
ArrayEltBitOffset = TD->getABITypeSizeInBits(ArrayEltTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *ResultVal = Constant::getNullValue(LI->getType());
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
|
|
// Load the value from the alloca. If the NewElt is an aggregate, cast
|
|
|
|
// the pointer to an integer of the same size before doing the load.
|
|
|
|
Value *SrcField = NewElts[i];
|
|
|
|
const Type *FieldTy =
|
|
|
|
cast<PointerType>(SrcField->getType())->getElementType();
|
2009-01-10 02:18:43 +08:00
|
|
|
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
|
|
|
|
|
|
|
|
// Ignore zero sized fields like {}, they obviously contain no data.
|
|
|
|
if (FieldSizeBits == 0) continue;
|
|
|
|
|
|
|
|
const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
|
2009-01-08 13:42:05 +08:00
|
|
|
if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
|
|
|
|
!isa<VectorType>(FieldTy))
|
|
|
|
SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
|
|
|
|
"", LI);
|
|
|
|
SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
|
|
|
|
|
|
|
|
// If SrcField is a fp or vector of the right size but that isn't an
|
|
|
|
// integer type, bitcast to an integer so we can shift it.
|
|
|
|
if (SrcField->getType() != FieldIntTy)
|
|
|
|
SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
|
|
|
|
|
|
|
|
// Zero extend the field to be the same size as the final alloca so that
|
|
|
|
// we can shift and insert it.
|
|
|
|
if (SrcField->getType() != ResultVal->getType())
|
|
|
|
SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
|
|
|
|
|
|
|
|
// Determine the number of bits to shift SrcField.
|
|
|
|
uint64_t Shift;
|
|
|
|
if (Layout) // Struct case.
|
|
|
|
Shift = Layout->getElementOffsetInBits(i);
|
|
|
|
else // Array case.
|
|
|
|
Shift = i*ArrayEltBitOffset;
|
|
|
|
|
|
|
|
if (TD->isBigEndian())
|
|
|
|
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
|
|
|
|
|
|
|
|
if (Shift) {
|
|
|
|
Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
|
|
|
|
SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
|
|
|
|
}
|
|
|
|
|
|
|
|
ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
|
|
|
|
}
|
|
|
|
|
|
|
|
LI->replaceAllUsesWith(ResultVal);
|
|
|
|
LI->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
2007-03-05 15:52:57 +08:00
|
|
|
|
2007-11-04 22:43:57 +08:00
|
|
|
/// HasPadding - Return true if the specified type has any structure or
|
|
|
|
/// alignment padding, false otherwise.
|
2008-06-04 16:21:45 +08:00
|
|
|
static bool HasPadding(const Type *Ty, const TargetData &TD) {
|
2007-05-30 14:11:23 +08:00
|
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
|
|
const StructLayout *SL = TD.getStructLayout(STy);
|
|
|
|
unsigned PrevFieldBitOffset = 0;
|
|
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
2007-11-04 22:43:57 +08:00
|
|
|
unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
|
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
// Padding in sub-elements?
|
2008-06-04 16:21:45 +08:00
|
|
|
if (HasPadding(STy->getElementType(i), TD))
|
2007-05-30 14:11:23 +08:00
|
|
|
return true;
|
2007-11-04 22:43:57 +08:00
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
// Check to see if there is any padding between this element and the
|
|
|
|
// previous one.
|
|
|
|
if (i) {
|
2007-11-04 22:43:57 +08:00
|
|
|
unsigned PrevFieldEnd =
|
2007-05-30 14:11:23 +08:00
|
|
|
PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
|
|
|
|
if (PrevFieldEnd < FieldBitOffset)
|
|
|
|
return true;
|
|
|
|
}
|
2007-11-04 22:43:57 +08:00
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
PrevFieldBitOffset = FieldBitOffset;
|
|
|
|
}
|
2007-11-04 22:43:57 +08:00
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
// Check for tail padding.
|
|
|
|
if (unsigned EltCount = STy->getNumElements()) {
|
|
|
|
unsigned PrevFieldEnd = PrevFieldBitOffset +
|
|
|
|
TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
|
2007-11-04 22:43:57 +08:00
|
|
|
if (PrevFieldEnd < SL->getSizeInBits())
|
2007-05-30 14:11:23 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
2008-06-04 16:21:45 +08:00
|
|
|
return HasPadding(ATy->getElementType(), TD);
|
2007-11-04 22:43:57 +08:00
|
|
|
} else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
2008-06-04 16:21:45 +08:00
|
|
|
return HasPadding(VTy->getElementType(), TD);
|
2007-05-30 14:11:23 +08:00
|
|
|
}
|
2008-06-04 16:21:45 +08:00
|
|
|
return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
|
2007-05-30 14:11:23 +08:00
|
|
|
}
|
2007-03-05 15:52:57 +08:00
|
|
|
|
2004-11-14 12:24:28 +08:00
|
|
|
/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
|
|
|
|
/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
|
|
|
|
/// or 1 if safe after canonicalization has been performed.
|
2003-05-30 12:15:41 +08:00
|
|
|
///
|
2004-11-14 12:24:28 +08:00
|
|
|
int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
|
2003-05-30 12:15:41 +08:00
|
|
|
// Loop over the use list of the alloca. We can only transform it if all of
|
|
|
|
// the users are safe to transform.
|
2007-05-30 14:11:23 +08:00
|
|
|
AllocaInfo Info;
|
|
|
|
|
2003-05-30 12:15:41 +08:00
|
|
|
for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
|
2004-11-14 12:24:28 +08:00
|
|
|
I != E; ++I) {
|
2007-05-30 14:11:23 +08:00
|
|
|
isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
|
|
|
|
if (Info.isUnsafe) {
|
2006-11-26 17:46:52 +08:00
|
|
|
DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
|
2004-11-14 12:24:28 +08:00
|
|
|
return 0;
|
2003-05-30 12:15:41 +08:00
|
|
|
}
|
2004-11-14 12:24:28 +08:00
|
|
|
}
|
2007-05-30 14:11:23 +08:00
|
|
|
|
|
|
|
// Okay, we know all the users are promotable. If the aggregate is a memcpy
|
|
|
|
// source and destination, we have to be careful. In particular, the memcpy
|
|
|
|
// could be moving around elements that live in structure padding of the LLVM
|
|
|
|
// types, but may actually be used. In these cases, we refuse to promote the
|
|
|
|
// struct.
|
|
|
|
if (Info.isMemCpySrc && Info.isMemCpyDst &&
|
2009-01-07 14:34:28 +08:00
|
|
|
HasPadding(AI->getType()->getElementType(), *TD))
|
2007-05-30 14:11:23 +08:00
|
|
|
return 0;
|
2007-11-04 22:43:57 +08:00
|
|
|
|
2007-05-30 14:11:23 +08:00
|
|
|
// If we require cleanup, return 1, otherwise return 3.
|
|
|
|
return Info.needsCanon ? 1 : 3;
|
2004-11-14 12:24:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
|
|
|
|
/// allocation, but only if cleaned up, perform the cleanups required.
|
|
|
|
void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
|
2004-11-14 13:00:19 +08:00
|
|
|
// At this point, we know that the end result will be SROA'd and promoted, so
|
|
|
|
// we can insert ugly code if required so long as sroa+mem2reg will clean it
|
|
|
|
// up.
|
|
|
|
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
|
|
|
|
UI != E; ) {
|
2007-03-20 02:25:57 +08:00
|
|
|
GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
|
|
|
|
if (!GEPI) continue;
|
2004-11-16 01:29:41 +08:00
|
|
|
gep_type_iterator I = gep_type_begin(GEPI);
|
2004-11-14 13:00:19 +08:00
|
|
|
++I;
|
|
|
|
|
|
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
|
|
|
|
uint64_t NumElements = AT->getNumElements();
|
2005-04-22 07:48:37 +08:00
|
|
|
|
2004-11-14 13:00:19 +08:00
|
|
|
if (!isa<ConstantInt>(I.getOperand())) {
|
|
|
|
if (NumElements == 1) {
|
2006-12-31 13:48:39 +08:00
|
|
|
GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
|
2004-11-14 13:00:19 +08:00
|
|
|
} else {
|
|
|
|
assert(NumElements == 2 && "Unhandled case!");
|
|
|
|
// All users of the GEP must be loads. At each use of the GEP, insert
|
|
|
|
// two loads of the appropriate indexed GEP and select between them.
|
2006-12-23 14:05:41 +08:00
|
|
|
Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
|
2004-11-14 13:00:19 +08:00
|
|
|
Constant::getNullValue(I.getOperand()->getType()),
|
2006-12-23 14:05:41 +08:00
|
|
|
"isone", GEPI);
|
2004-11-14 13:00:19 +08:00
|
|
|
// Insert the new GEP instructions, which are properly indexed.
|
2007-02-13 06:56:41 +08:00
|
|
|
SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
|
2006-12-31 13:48:39 +08:00
|
|
|
Indices[1] = Constant::getNullValue(Type::Int32Ty);
|
2008-04-07 04:25:17 +08:00
|
|
|
Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
|
|
|
|
Indices.begin(),
|
|
|
|
Indices.end(),
|
|
|
|
GEPI->getName()+".0", GEPI);
|
2006-12-31 13:48:39 +08:00
|
|
|
Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
|
2008-04-07 04:25:17 +08:00
|
|
|
Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
|
|
|
|
Indices.begin(),
|
|
|
|
Indices.end(),
|
|
|
|
GEPI->getName()+".1", GEPI);
|
2004-11-14 13:00:19 +08:00
|
|
|
// Replace all loads of the variable index GEP with loads from both
|
|
|
|
// indexes and a select.
|
|
|
|
while (!GEPI->use_empty()) {
|
|
|
|
LoadInst *LI = cast<LoadInst>(GEPI->use_back());
|
|
|
|
Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
|
|
|
|
Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
|
2008-04-07 04:25:17 +08:00
|
|
|
Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
|
2004-11-14 13:00:19 +08:00
|
|
|
LI->replaceAllUsesWith(R);
|
|
|
|
LI->eraseFromParent();
|
|
|
|
}
|
|
|
|
GEPI->eraseFromParent();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2003-05-30 12:15:41 +08:00
|
|
|
}
|
2005-12-12 15:19:13 +08:00
|
|
|
|
|
|
|
/// MergeInType - Add the 'In' type to the accumulated type so far. If the
|
|
|
|
/// types are incompatible, return true, otherwise update Accum and return
|
|
|
|
/// false.
|
2006-04-15 05:42:41 +08:00
|
|
|
///
|
2006-12-15 15:32:38 +08:00
|
|
|
/// There are three cases we handle here:
|
|
|
|
/// 1) An effectively-integer union, where the pieces are stored into as
|
2006-04-15 05:42:41 +08:00
|
|
|
/// smaller integers (common with byte swap and other idioms).
|
2006-12-15 15:32:38 +08:00
|
|
|
/// 2) A union of vector types of the same size and potentially its elements.
|
|
|
|
/// Here we turn element accesses into insert/extract element operations.
|
|
|
|
/// 3) A union of scalar types, such as int/float or int/pointer. Here we
|
|
|
|
/// merge together into integers, allowing the xform to work with #1 as
|
|
|
|
/// well.
|
2006-10-09 07:28:04 +08:00
|
|
|
static bool MergeInType(const Type *In, const Type *&Accum,
|
|
|
|
const TargetData &TD) {
|
2005-12-12 15:19:13 +08:00
|
|
|
// If this is our first type, just use it.
|
2007-02-15 10:26:10 +08:00
|
|
|
const VectorType *PTy;
|
2006-04-15 05:42:41 +08:00
|
|
|
if (Accum == Type::VoidTy || In == Accum) {
|
2005-12-12 15:19:13 +08:00
|
|
|
Accum = In;
|
2006-12-15 15:32:38 +08:00
|
|
|
} else if (In == Type::VoidTy) {
|
|
|
|
// Noop.
|
2007-01-15 10:27:26 +08:00
|
|
|
} else if (In->isInteger() && Accum->isInteger()) { // integer union.
|
2005-12-12 15:19:13 +08:00
|
|
|
// Otherwise pick whichever type is larger.
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
if (cast<IntegerType>(In)->getBitWidth() >
|
|
|
|
cast<IntegerType>(Accum)->getBitWidth())
|
2005-12-12 15:19:13 +08:00
|
|
|
Accum = In;
|
2006-10-09 07:28:04 +08:00
|
|
|
} else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
|
2006-10-09 07:53:04 +08:00
|
|
|
// Pointer unions just stay as one of the pointers.
|
2007-02-15 10:26:10 +08:00
|
|
|
} else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
|
|
|
|
if ((PTy = dyn_cast<VectorType>(Accum)) &&
|
2006-12-15 15:32:38 +08:00
|
|
|
PTy->getElementType() == In) {
|
|
|
|
// Accum is a vector, and we are accessing an element: ok.
|
2007-02-15 10:26:10 +08:00
|
|
|
} else if ((PTy = dyn_cast<VectorType>(In)) &&
|
2006-12-15 15:32:38 +08:00
|
|
|
PTy->getElementType() == Accum) {
|
|
|
|
// In is a vector, and accum is an element: ok, remember In.
|
|
|
|
Accum = In;
|
2007-02-15 10:26:10 +08:00
|
|
|
} else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
|
|
|
|
PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
|
2006-12-15 15:32:38 +08:00
|
|
|
// Two vectors of the same size: keep Accum.
|
|
|
|
} else {
|
|
|
|
// Cannot insert an short into a <4 x int> or handle
|
|
|
|
// <2 x int> -> <4 x int>
|
|
|
|
return true;
|
|
|
|
}
|
2006-12-13 10:26:45 +08:00
|
|
|
} else {
|
2006-12-15 15:32:38 +08:00
|
|
|
// Pointer/FP/Integer unions merge together as integers.
|
|
|
|
switch (Accum->getTypeID()) {
|
|
|
|
case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
|
2006-12-31 13:48:39 +08:00
|
|
|
case Type::FloatTyID: Accum = Type::Int32Ty; break;
|
|
|
|
case Type::DoubleTyID: Accum = Type::Int64Ty; break;
|
2007-09-28 08:21:38 +08:00
|
|
|
case Type::X86_FP80TyID: return true;
|
|
|
|
case Type::FP128TyID: return true;
|
|
|
|
case Type::PPC_FP128TyID: return true;
|
2006-12-15 15:32:38 +08:00
|
|
|
default:
|
2007-01-15 10:27:26 +08:00
|
|
|
assert(Accum->isInteger() && "Unknown FP type!");
|
2006-12-15 15:32:38 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (In->getTypeID()) {
|
|
|
|
case Type::PointerTyID: In = TD.getIntPtrType(); break;
|
2006-12-31 13:48:39 +08:00
|
|
|
case Type::FloatTyID: In = Type::Int32Ty; break;
|
|
|
|
case Type::DoubleTyID: In = Type::Int64Ty; break;
|
2007-09-28 08:21:38 +08:00
|
|
|
case Type::X86_FP80TyID: return true;
|
|
|
|
case Type::FP128TyID: return true;
|
|
|
|
case Type::PPC_FP128TyID: return true;
|
2006-12-15 15:32:38 +08:00
|
|
|
default:
|
2007-01-15 10:27:26 +08:00
|
|
|
assert(In->isInteger() && "Unknown FP type!");
|
2006-12-15 15:32:38 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
return MergeInType(In, Accum, TD);
|
2005-12-12 15:19:13 +08:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-01-07 14:34:28 +08:00
|
|
|
/// getIntAtLeastAsBigAs - Return an integer type that is at least as big as the
|
|
|
|
/// specified type. If there is no suitable type, this returns null.
|
|
|
|
const Type *getIntAtLeastAsBigAs(unsigned NumBits) {
|
2005-12-12 15:19:13 +08:00
|
|
|
if (NumBits > 64) return 0;
|
2006-12-31 13:48:39 +08:00
|
|
|
if (NumBits > 32) return Type::Int64Ty;
|
|
|
|
if (NumBits > 16) return Type::Int32Ty;
|
|
|
|
if (NumBits > 8) return Type::Int16Ty;
|
|
|
|
return Type::Int8Ty;
|
2005-12-12 15:19:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// CanConvertToScalar - V is a pointer. If we can convert the pointee to a
|
|
|
|
/// single scalar integer type, return that type. Further, if the use is not
|
|
|
|
/// a completely trivial use that mem2reg could promote, set IsNotTrivial. If
|
|
|
|
/// there are no uses of this pointer, return Type::VoidTy to differentiate from
|
|
|
|
/// failure.
|
|
|
|
///
|
|
|
|
const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
|
|
|
|
const Type *UsedType = Type::VoidTy; // No uses, no forced type.
|
|
|
|
const PointerType *PTy = cast<PointerType>(V->getType());
|
|
|
|
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
|
|
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
2008-06-05 20:51:53 +08:00
|
|
|
// FIXME: Loads of a first class aggregrate value could be converted to a
|
|
|
|
// series of loads and insertvalues
|
|
|
|
if (!LI->getType()->isSingleValueType())
|
|
|
|
return 0;
|
|
|
|
|
2009-01-07 14:34:28 +08:00
|
|
|
if (MergeInType(LI->getType(), UsedType, *TD))
|
2005-12-12 15:19:13 +08:00
|
|
|
return 0;
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
2007-01-21 08:29:26 +08:00
|
|
|
// Storing the pointer, not into the value?
|
2005-12-12 15:19:13 +08:00
|
|
|
if (SI->getOperand(0) == V) return 0;
|
2008-06-05 20:51:53 +08:00
|
|
|
|
|
|
|
// FIXME: Stores of a first class aggregrate value could be converted to a
|
|
|
|
// series of extractvalues and stores
|
|
|
|
if (!SI->getOperand(0)->getType()->isSingleValueType())
|
|
|
|
return 0;
|
2005-12-12 15:19:13 +08:00
|
|
|
|
2006-04-15 05:42:41 +08:00
|
|
|
// NOTE: We could handle storing of FP imms into integers here!
|
2005-12-12 15:19:13 +08:00
|
|
|
|
2009-01-07 14:34:28 +08:00
|
|
|
if (MergeInType(SI->getOperand(0)->getType(), UsedType, *TD))
|
2005-12-12 15:19:13 +08:00
|
|
|
return 0;
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
|
2005-12-12 15:19:13 +08:00
|
|
|
IsNotTrivial = true;
|
|
|
|
const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
|
2009-01-07 14:34:28 +08:00
|
|
|
if (!SubTy || MergeInType(SubTy, UsedType, *TD)) return 0;
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
2005-12-12 15:19:13 +08:00
|
|
|
// Check to see if this is stepping over an element: GEP Ptr, int C
|
|
|
|
if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
|
2006-10-20 15:07:24 +08:00
|
|
|
unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
|
2009-01-07 14:34:28 +08:00
|
|
|
unsigned ElSize = TD->getABITypeSize(PTy->getElementType());
|
2005-12-12 15:19:13 +08:00
|
|
|
unsigned BitOffset = Idx*ElSize*8;
|
|
|
|
if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
|
|
|
|
|
|
|
|
IsNotTrivial = true;
|
|
|
|
const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
|
|
|
|
if (SubElt == 0) return 0;
|
2007-01-15 10:27:26 +08:00
|
|
|
if (SubElt != Type::VoidTy && SubElt->isInteger()) {
|
2005-12-12 15:19:13 +08:00
|
|
|
const Type *NewTy =
|
2009-01-07 14:34:28 +08:00
|
|
|
getIntAtLeastAsBigAs(TD->getABITypeSizeInBits(SubElt)+BitOffset);
|
|
|
|
if (NewTy == 0 || MergeInType(NewTy, UsedType, *TD)) return 0;
|
2005-12-12 15:19:13 +08:00
|
|
|
continue;
|
|
|
|
}
|
2009-01-07 14:39:58 +08:00
|
|
|
// Cannot handle this!
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GEP->getNumOperands() == 3 &&
|
|
|
|
isa<ConstantInt>(GEP->getOperand(1)) &&
|
|
|
|
isa<ConstantInt>(GEP->getOperand(2)) &&
|
|
|
|
cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
|
2005-12-12 15:19:13 +08:00
|
|
|
// We are stepping into an element, e.g. a structure or an array:
|
2009-01-07 14:25:07 +08:00
|
|
|
// GEP Ptr, i32 0, i32 Cst
|
2005-12-12 15:19:13 +08:00
|
|
|
const Type *AggTy = PTy->getElementType();
|
2006-10-20 15:07:24 +08:00
|
|
|
unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
|
2005-12-12 15:19:13 +08:00
|
|
|
|
|
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
|
|
|
|
if (Idx >= ATy->getNumElements()) return 0; // Out of range.
|
2007-02-15 11:39:18 +08:00
|
|
|
} else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
|
2007-07-16 22:29:03 +08:00
|
|
|
// Getting an element of the vector.
|
2007-02-15 11:39:18 +08:00
|
|
|
if (Idx >= VectorTy->getNumElements()) return 0; // Out of range.
|
2006-04-15 05:42:41 +08:00
|
|
|
|
2007-02-15 11:39:18 +08:00
|
|
|
// Merge in the vector type.
|
2009-01-07 14:34:28 +08:00
|
|
|
if (MergeInType(VectorTy, UsedType, *TD)) return 0;
|
2006-04-15 05:42:41 +08:00
|
|
|
|
|
|
|
const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
|
|
|
|
if (SubTy == 0) return 0;
|
|
|
|
|
2009-01-07 14:34:28 +08:00
|
|
|
if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
|
2006-04-15 05:42:41 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
// We'll need to change this to an insert/extract element operation.
|
|
|
|
IsNotTrivial = true;
|
|
|
|
continue; // Everything looks ok
|
|
|
|
|
2005-12-12 15:19:13 +08:00
|
|
|
} else if (isa<StructType>(AggTy)) {
|
|
|
|
// Structs are always ok.
|
|
|
|
} else {
|
|
|
|
return 0;
|
|
|
|
}
|
2009-01-07 14:34:28 +08:00
|
|
|
const Type *NTy = getIntAtLeastAsBigAs(TD->getABITypeSizeInBits(AggTy));
|
|
|
|
if (NTy == 0 || MergeInType(NTy, UsedType, *TD)) return 0;
|
2005-12-12 15:19:13 +08:00
|
|
|
const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
|
|
|
|
if (SubTy == 0) return 0;
|
2009-01-07 14:34:28 +08:00
|
|
|
if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
|
2005-12-12 15:19:13 +08:00
|
|
|
return 0;
|
|
|
|
continue; // Everything looks ok
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2009-01-07 14:39:58 +08:00
|
|
|
|
|
|
|
// Cannot handle this!
|
|
|
|
return 0;
|
2005-12-12 15:19:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return UsedType;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
|
|
|
|
/// predicate and is non-trivial. Convert it to something that can be trivially
|
|
|
|
/// promoted into a register by mem2reg.
|
|
|
|
void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
|
2006-11-26 17:46:52 +08:00
|
|
|
DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = "
|
|
|
|
<< *ActualTy << "\n";
|
2005-12-12 15:19:13 +08:00
|
|
|
++NumConverted;
|
|
|
|
|
|
|
|
BasicBlock *EntryBlock = AI->getParent();
|
2007-03-23 00:38:57 +08:00
|
|
|
assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
|
2005-12-12 15:19:13 +08:00
|
|
|
"Not in the entry block!");
|
|
|
|
EntryBlock->getInstList().remove(AI); // Take the alloca out of the program.
|
|
|
|
|
|
|
|
// Create and insert the alloca.
|
2006-04-15 05:42:41 +08:00
|
|
|
AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
|
|
|
|
EntryBlock->begin());
|
2005-12-12 15:19:13 +08:00
|
|
|
ConvertUsesToScalar(AI, NewAI, 0);
|
|
|
|
delete AI;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
|
2006-04-15 05:42:41 +08:00
|
|
|
/// directly. This happens when we are converting an "integer union" to a
|
|
|
|
/// single integer scalar, or when we are converting a "vector union" to a
|
|
|
|
/// vector with insert/extractelement instructions.
|
|
|
|
///
|
|
|
|
/// Offset is an offset from the original alloca, in bits that need to be
|
|
|
|
/// shifted to the right. By the end of this, there should be no uses of Ptr.
|
2005-12-12 15:19:13 +08:00
|
|
|
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
|
|
|
|
while (!Ptr->use_empty()) {
|
|
|
|
Instruction *User = cast<Instruction>(Ptr->use_back());
|
|
|
|
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
2008-02-29 15:03:13 +08:00
|
|
|
Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
|
2005-12-12 15:19:13 +08:00
|
|
|
LI->replaceAllUsesWith(NV);
|
|
|
|
LI->eraseFromParent();
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
2005-12-12 15:19:13 +08:00
|
|
|
assert(SI->getOperand(0) != Ptr && "Consistency error!");
|
|
|
|
|
2008-02-29 15:03:13 +08:00
|
|
|
Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
|
2005-12-12 15:19:13 +08:00
|
|
|
new StoreInst(SV, NewAI, SI);
|
|
|
|
SI->eraseFromParent();
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
|
2008-01-30 08:39:15 +08:00
|
|
|
ConvertUsesToScalar(CI, NewAI, Offset);
|
2005-12-12 15:19:13 +08:00
|
|
|
CI->eraseFromParent();
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
2005-12-12 15:19:13 +08:00
|
|
|
const PointerType *AggPtrTy =
|
|
|
|
cast<PointerType>(GEP->getOperand(0)->getType());
|
2007-11-04 22:43:57 +08:00
|
|
|
unsigned AggSizeInBits =
|
2009-01-07 14:34:28 +08:00
|
|
|
TD->getABITypeSizeInBits(AggPtrTy->getElementType());
|
2007-11-04 22:43:57 +08:00
|
|
|
|
2005-12-12 15:19:13 +08:00
|
|
|
// Check to see if this is stepping over an element: GEP Ptr, int C
|
|
|
|
unsigned NewOffset = Offset;
|
|
|
|
if (GEP->getNumOperands() == 2) {
|
2006-10-20 15:07:24 +08:00
|
|
|
unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
|
2005-12-12 15:19:13 +08:00
|
|
|
unsigned BitOffset = Idx*AggSizeInBits;
|
|
|
|
|
2007-04-11 08:57:54 +08:00
|
|
|
NewOffset += BitOffset;
|
2009-01-07 14:39:58 +08:00
|
|
|
ConvertUsesToScalar(GEP, NewAI, NewOffset);
|
|
|
|
GEP->eraseFromParent();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(GEP->getNumOperands() == 3 && "Unsupported operation");
|
|
|
|
|
|
|
|
// We know that operand #2 is zero.
|
|
|
|
unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
|
|
|
|
const Type *AggTy = AggPtrTy->getElementType();
|
|
|
|
if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
|
|
|
|
unsigned ElSizeBits =
|
|
|
|
TD->getABITypeSizeInBits(SeqTy->getElementType());
|
|
|
|
|
|
|
|
NewOffset += ElSizeBits*Idx;
|
2005-12-12 15:19:13 +08:00
|
|
|
} else {
|
2009-01-07 14:39:58 +08:00
|
|
|
const StructType *STy = cast<StructType>(AggTy);
|
|
|
|
unsigned EltBitOffset =
|
|
|
|
TD->getStructLayout(STy)->getElementOffsetInBits(Idx);
|
|
|
|
|
|
|
|
NewOffset += EltBitOffset;
|
2005-12-12 15:19:13 +08:00
|
|
|
}
|
|
|
|
ConvertUsesToScalar(GEP, NewAI, NewOffset);
|
|
|
|
GEP->eraseFromParent();
|
2009-01-07 14:39:58 +08:00
|
|
|
continue;
|
2005-12-12 15:19:13 +08:00
|
|
|
}
|
2009-01-07 14:39:58 +08:00
|
|
|
|
|
|
|
assert(0 && "Unsupported operation!");
|
|
|
|
abort();
|
2005-12-12 15:19:13 +08:00
|
|
|
}
|
|
|
|
}
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
|
2008-02-29 15:03:13 +08:00
|
|
|
/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
|
|
|
|
/// use the new alloca directly, returning the value that should replace the
|
|
|
|
/// load. This happens when we are converting an "integer union" to a
|
|
|
|
/// single integer scalar, or when we are converting a "vector union" to a
|
|
|
|
/// vector with insert/extractelement instructions.
|
|
|
|
///
|
|
|
|
/// Offset is an offset from the original alloca, in bits that need to be
|
|
|
|
/// shifted to the right. By the end of this, there should be no uses of Ptr.
|
|
|
|
Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
|
|
|
|
unsigned Offset) {
|
|
|
|
// The load is a bit extract from NewAI shifted right by Offset bits.
|
|
|
|
Value *NV = new LoadInst(NewAI, LI->getName(), LI);
|
|
|
|
|
|
|
|
if (NV->getType() == LI->getType() && Offset == 0) {
|
|
|
|
// We win, no conversion needed.
|
|
|
|
return NV;
|
|
|
|
}
|
2008-02-29 15:12:06 +08:00
|
|
|
|
|
|
|
// If the result type of the 'union' is a pointer, then this must be ptr->ptr
|
|
|
|
// cast. Anything else would result in NV being an integer.
|
|
|
|
if (isa<PointerType>(NV->getType())) {
|
|
|
|
assert(isa<PointerType>(LI->getType()));
|
|
|
|
return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
|
|
|
|
}
|
2008-02-29 15:03:13 +08:00
|
|
|
|
2008-02-29 15:12:06 +08:00
|
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
|
2008-02-29 15:03:13 +08:00
|
|
|
// If the result alloca is a vector type, this is either an element
|
|
|
|
// access or a bitcast to another vector type.
|
2008-02-29 15:12:06 +08:00
|
|
|
if (isa<VectorType>(LI->getType()))
|
|
|
|
return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
|
|
|
|
|
|
|
|
// Otherwise it must be an element access.
|
|
|
|
unsigned Elt = 0;
|
|
|
|
if (Offset) {
|
2009-01-07 14:34:28 +08:00
|
|
|
unsigned EltSize = TD->getABITypeSizeInBits(VTy->getElementType());
|
2008-02-29 15:12:06 +08:00
|
|
|
Elt = Offset/EltSize;
|
|
|
|
Offset -= EltSize*Elt;
|
2008-02-29 15:03:13 +08:00
|
|
|
}
|
2008-02-29 15:12:06 +08:00
|
|
|
NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
|
|
|
|
"tmp", LI);
|
2008-02-29 15:03:13 +08:00
|
|
|
|
2008-02-29 15:12:06 +08:00
|
|
|
// If we're done, return this element.
|
|
|
|
if (NV->getType() == LI->getType() && Offset == 0)
|
|
|
|
return NV;
|
|
|
|
}
|
|
|
|
|
|
|
|
const IntegerType *NTy = cast<IntegerType>(NV->getType());
|
|
|
|
|
|
|
|
// If this is a big-endian system and the load is narrower than the
|
|
|
|
// full alloca type, we need to do a shift to get the right bits.
|
|
|
|
int ShAmt = 0;
|
2009-01-07 14:34:28 +08:00
|
|
|
if (TD->isBigEndian()) {
|
2008-02-29 15:12:06 +08:00
|
|
|
// On big-endian machines, the lowest bit is stored at the bit offset
|
|
|
|
// from the pointer given by getTypeStoreSizeInBits. This matters for
|
|
|
|
// integers with a bitwidth that is not a multiple of 8.
|
2009-01-07 14:34:28 +08:00
|
|
|
ShAmt = TD->getTypeStoreSizeInBits(NTy) -
|
|
|
|
TD->getTypeStoreSizeInBits(LI->getType()) - Offset;
|
2008-02-29 15:12:06 +08:00
|
|
|
} else {
|
|
|
|
ShAmt = Offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note: we support negative bitwidths (with shl) which are not defined.
|
|
|
|
// We do this to support (f.e.) loads off the end of a structure where
|
|
|
|
// only some bits are used.
|
|
|
|
if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
|
2008-05-17 03:29:10 +08:00
|
|
|
NV = BinaryOperator::CreateLShr(NV,
|
2008-02-29 15:12:06 +08:00
|
|
|
ConstantInt::get(NV->getType(),ShAmt),
|
|
|
|
LI->getName(), LI);
|
|
|
|
else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
|
2008-05-17 03:29:10 +08:00
|
|
|
NV = BinaryOperator::CreateShl(NV,
|
2008-02-29 15:12:06 +08:00
|
|
|
ConstantInt::get(NV->getType(),-ShAmt),
|
|
|
|
LI->getName(), LI);
|
|
|
|
|
|
|
|
// Finally, unconditionally truncate the integer to the right width.
|
2009-01-07 14:34:28 +08:00
|
|
|
unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
|
2008-02-29 15:12:06 +08:00
|
|
|
if (LIBitWidth < NTy->getBitWidth())
|
|
|
|
NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
|
|
|
|
LI->getName(), LI);
|
|
|
|
|
|
|
|
// If the result is an integer, this is a trunc or bitcast.
|
|
|
|
if (isa<IntegerType>(LI->getType())) {
|
|
|
|
// Should be done.
|
|
|
|
} else if (LI->getType()->isFloatingPoint()) {
|
|
|
|
// Just do a bitcast, we know the sizes match up.
|
|
|
|
NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
|
|
|
|
} else {
|
|
|
|
// Otherwise must be a pointer.
|
|
|
|
NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
|
2008-02-29 15:03:13 +08:00
|
|
|
}
|
2008-02-29 15:12:06 +08:00
|
|
|
assert(NV->getType() == LI->getType() && "Didn't convert right?");
|
2008-02-29 15:03:13 +08:00
|
|
|
return NV;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
|
|
|
|
/// pair of the new alloca directly, returning the value that should be stored
|
|
|
|
/// to the alloca. This happens when we are converting an "integer union" to a
|
|
|
|
/// single integer scalar, or when we are converting a "vector union" to a
|
|
|
|
/// vector with insert/extractelement instructions.
|
|
|
|
///
|
|
|
|
/// Offset is an offset from the original alloca, in bits that need to be
|
|
|
|
/// shifted to the right. By the end of this, there should be no uses of Ptr.
|
|
|
|
Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
|
|
|
|
unsigned Offset) {
|
|
|
|
|
|
|
|
// Convert the stored type to the actual type, shift it left to insert
|
|
|
|
// then 'or' into place.
|
|
|
|
Value *SV = SI->getOperand(0);
|
|
|
|
const Type *AllocaType = NewAI->getType()->getElementType();
|
|
|
|
if (SV->getType() == AllocaType && Offset == 0) {
|
|
|
|
// All is well.
|
|
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
|
|
|
|
Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
|
|
|
|
|
|
|
|
// If the result alloca is a vector type, this is either an element
|
|
|
|
// access or a bitcast to another vector type.
|
|
|
|
if (isa<VectorType>(SV->getType())) {
|
|
|
|
SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
|
|
|
|
} else {
|
|
|
|
// Must be an element insertion.
|
2009-01-07 14:34:28 +08:00
|
|
|
unsigned Elt = Offset/TD->getABITypeSizeInBits(PTy->getElementType());
|
2008-04-07 04:25:17 +08:00
|
|
|
SV = InsertElementInst::Create(Old, SV,
|
|
|
|
ConstantInt::get(Type::Int32Ty, Elt),
|
|
|
|
"tmp", SI);
|
2008-02-29 15:03:13 +08:00
|
|
|
}
|
|
|
|
} else if (isa<PointerType>(AllocaType)) {
|
|
|
|
// If the alloca type is a pointer, then all the elements must be
|
|
|
|
// pointers.
|
|
|
|
if (SV->getType() != AllocaType)
|
|
|
|
SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
|
|
|
|
} else {
|
|
|
|
Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
|
|
|
|
|
|
|
|
// If SV is a float, convert it to the appropriate integer type.
|
|
|
|
// If it is a pointer, do the same, and also handle ptr->ptr casts
|
|
|
|
// here.
|
2009-01-07 14:34:28 +08:00
|
|
|
unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
|
|
|
|
unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
|
|
|
|
unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
|
|
|
|
unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
|
2008-02-29 15:03:13 +08:00
|
|
|
if (SV->getType()->isFloatingPoint())
|
|
|
|
SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
|
|
|
|
SV->getName(), SI);
|
|
|
|
else if (isa<PointerType>(SV->getType()))
|
2009-01-07 14:34:28 +08:00
|
|
|
SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), SI);
|
2008-02-29 15:03:13 +08:00
|
|
|
|
|
|
|
// Always zero extend the value if needed.
|
|
|
|
if (SV->getType() != AllocaType)
|
|
|
|
SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
|
|
|
|
|
|
|
|
// If this is a big-endian system and the store is narrower than the
|
|
|
|
// full alloca type, we need to do a shift to get the right bits.
|
|
|
|
int ShAmt = 0;
|
2009-01-07 14:34:28 +08:00
|
|
|
if (TD->isBigEndian()) {
|
2008-02-29 15:03:13 +08:00
|
|
|
// On big-endian machines, the lowest bit is stored at the bit offset
|
|
|
|
// from the pointer given by getTypeStoreSizeInBits. This matters for
|
|
|
|
// integers with a bitwidth that is not a multiple of 8.
|
|
|
|
ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
|
|
|
|
} else {
|
|
|
|
ShAmt = Offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note: we support negative bitwidths (with shr) which are not defined.
|
|
|
|
// We do this to support (f.e.) stores off the end of a structure where
|
|
|
|
// only some bits in the structure are set.
|
|
|
|
APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
|
|
|
|
if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
|
2008-05-17 03:29:10 +08:00
|
|
|
SV = BinaryOperator::CreateShl(SV,
|
2008-02-29 15:03:13 +08:00
|
|
|
ConstantInt::get(SV->getType(), ShAmt),
|
|
|
|
SV->getName(), SI);
|
|
|
|
Mask <<= ShAmt;
|
|
|
|
} else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
|
2008-05-17 03:29:10 +08:00
|
|
|
SV = BinaryOperator::CreateLShr(SV,
|
2008-02-29 15:03:13 +08:00
|
|
|
ConstantInt::get(SV->getType(),-ShAmt),
|
|
|
|
SV->getName(), SI);
|
|
|
|
Mask = Mask.lshr(ShAmt);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mask out the bits we are about to insert from the old value, and or
|
|
|
|
// in the new bits.
|
|
|
|
if (SrcWidth != DestWidth) {
|
|
|
|
assert(DestWidth > SrcWidth);
|
2008-05-17 03:29:10 +08:00
|
|
|
Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
|
2008-02-29 15:03:13 +08:00
|
|
|
Old->getName()+".mask", SI);
|
2008-05-17 03:29:10 +08:00
|
|
|
SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
|
2008-02-29 15:03:13 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return SV;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
If an alloca only has two types of uses: 1) reads 2) a memcpy/memmove that
copies from a constant global, then we can change the reads to read from the
global instead of from the alloca. This eliminates the alloca and the memcpy,
and promotes secondary optimizations (because the loads are now loads from
a constant global).
This is important for a common C idiom:
void foo() {
int A[] = {1,2,3,4,5,6,7,8,9...};
... only reads of A ...
}
For some reason, people forget to mark the array static or const.
This triggers on these multisource benchmarks:
JM/ldecode: block_pos, [3 x [4 x [4 x i32]]]
FreeBench/mason: m, [18 x i32], inlined 4 times
MiBench/office-stringsearch: search_strings, [1332 x i8*]
MiBench/office-stringsearch: find_strings, [1333 x i8*]
Prolangs-C++/city: dirs, [9 x i8*], inlined 4 places
and these spec benchmarks:
177.mesa: message, [8 x [32 x i8]]
186.crafty: bias_rl45, [64 x i32]
186.crafty: diag_sq, [64 x i32]
186.crafty: empty, [9 x i8]
186.crafty: xlate, [15 x i8]
186.crafty: status, [13 x i8]
186.crafty: bdinfo, [25 x i8]
445.gobmk: routines, [16 x i8*]
458.sjeng: piece_rep, [14 x i8*]
458.sjeng: t, [13 x i32], inlined 4 places.
464.h264ref: block8x8_idx, [3 x [4 x [4 x i32]]]
464.h264ref: block_pos, [3 x [4 x [4 x i32]]]
464.h264ref: j_off_tab, [12 x i32]
This implements Transforms/ScalarRepl/memcpy-from-global.ll
llvm-svn: 36429
2007-04-25 14:40:51 +08:00
|
|
|
|
|
|
|
/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
|
|
|
|
/// some part of a constant global variable. This intentionally only accepts
|
|
|
|
/// constant expressions because we don't can't rewrite arbitrary instructions.
|
|
|
|
static bool PointsToConstantGlobal(Value *V) {
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
|
|
return GV->isConstant();
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
|
|
if (CE->getOpcode() == Instruction::BitCast ||
|
|
|
|
CE->getOpcode() == Instruction::GetElementPtr)
|
|
|
|
return PointsToConstantGlobal(CE->getOperand(0));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
|
|
|
|
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
|
|
|
|
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
|
|
|
|
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
|
|
|
|
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
|
|
|
|
/// the alloca, and if the source pointer is a pointer to a constant global, we
|
|
|
|
/// can optimize this.
|
|
|
|
static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
|
|
|
|
bool isOffset) {
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
|
|
|
|
if (isa<LoadInst>(*UI)) {
|
|
|
|
// Ignore loads, they are always ok.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
|
|
|
|
// If uses of the bitcast are ok, we are ok.
|
|
|
|
if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
|
|
|
|
return false;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
|
|
|
|
// If the GEP has all zero indices, it doesn't offset the pointer. If it
|
|
|
|
// doesn't, it does.
|
|
|
|
if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
|
|
|
|
isOffset || !GEP->hasAllZeroIndices()))
|
|
|
|
return false;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is isn't our memcpy/memmove, reject it as something we can't
|
|
|
|
// handle.
|
|
|
|
if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If we already have seen a copy, reject the second one.
|
|
|
|
if (TheCopy) return false;
|
|
|
|
|
|
|
|
// If the pointer has been offset from the start of the alloca, we can't
|
|
|
|
// safely handle this.
|
|
|
|
if (isOffset) return false;
|
|
|
|
|
|
|
|
// If the memintrinsic isn't using the alloca as the dest, reject it.
|
|
|
|
if (UI.getOperandNo() != 1) return false;
|
|
|
|
|
|
|
|
MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
|
|
|
|
|
|
|
|
// If the source of the memcpy/move is not a constant global, reject it.
|
|
|
|
if (!PointsToConstantGlobal(MI->getOperand(2)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Otherwise, the transform is safe. Remember the copy instruction.
|
|
|
|
TheCopy = MI;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
|
|
|
|
/// modified by a copy from a constant global. If we can prove this, we can
|
|
|
|
/// replace any uses of the alloca with uses of the global directly.
|
|
|
|
Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
|
|
|
|
Instruction *TheCopy = 0;
|
|
|
|
if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
|
|
|
|
return TheCopy;
|
|
|
|
return 0;
|
|
|
|
}
|