llvm-project/llvm/lib/CodeGen/RegAllocLocal.cpp

628 lines
25 KiB
C++
Raw Normal View History

//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include "Support/CommandLine.h"
#include <iostream>
#include <set>
namespace {
Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
Statistic<> NumReloaded("ra-local", "Number of registers reloaded");
cl::opt<bool> DisableKill("no-kill", cl::Hidden,
cl::desc("Disable register kill in local-ra"));
class RA : public MachineFunctionPass {
const TargetMachine *TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
// StackSlotForVirtReg - Maps SSA Regs => frame index where these values are
// spilled
std::map<unsigned, int> StackSlotForVirtReg;
// Virt2PhysRegMap - This map contains entries for each virtual register
// that is currently available in a physical register.
//
std::map<unsigned, unsigned> Virt2PhysRegMap;
// PhysRegsUsed - This map contains entries for each physical register that
// currently has a value (ie, it is in Virt2PhysRegMap). The value mapped
// to is the virtual register corresponding to the physical register (the
// inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this
// register is pinned because it is used by a future instruction.
//
std::map<unsigned, unsigned> PhysRegsUsed;
// PhysRegsUseOrder - This contains a list of the physical registers that
// currently have a virtual register value in them. This list provides an
// ordering of registers, imposing a reallocation order. This list is only
// used if all registers are allocated and we have to spill one, in which
// case we spill the least recently used register. Entries at the front of
// the list are the least recently used registers, entries at the back are
// the most recently used.
//
std::vector<unsigned> PhysRegsUseOrder;
// LastUserOf map - This multimap contains the set of registers that each
// key instruction is the last user of. If an instruction has an entry in
// this map, that means that the specified operands are killed after the
// instruction is executed, thus they don't need to be spilled into memory
//
std::multimap<MachineInstr*, unsigned> LastUserOf;
void MarkPhysRegRecentlyUsed(unsigned Reg) {
assert(!PhysRegsUseOrder.empty() && "No registers used!");
if (PhysRegsUseOrder.back() == Reg) return; // Already most recently used
for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
// Add it to the end of the list
PhysRegsUseOrder.push_back(RegMatch);
if (RegMatch == Reg)
return; // Found an exact match, exit early
}
}
public:
virtual const char *getPassName() const {
return "Local Register Allocator";
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
/// CalculateLastUseOfVReg - Calculate an approximation of the killing
/// uses for the virtual registers in the function. Here we try to capture
/// registers that are defined and only used within the same basic block.
/// Because we don't have use-def chains yet, we have to do this the hard
/// way.
///
void CalculateLastUseOfVReg(MachineBasicBlock &MBB,
std::map<unsigned, MachineInstr*> &LastUseOfVReg) const;
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
/// or if the first register is in the alias set of the second register.
///
bool areRegsEqual(unsigned R1, unsigned R2) const {
if (R1 == R2) return true;
if (const unsigned *AliasSet = RegInfo->getAliasSet(R2))
for (unsigned i = 0; AliasSet[i]; ++i)
if (AliasSet[i] == R1) return true;
return false;
}
/// getStackSpaceFor - This returns the frame index of the specified virtual
/// register on the stack, allocating space if neccesary.
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
void removePhysReg(unsigned PhysReg);
/// spillVirtReg - This method spills the value specified by PhysReg into
/// the virtual register slot specified by VirtReg. It then updates the RA
/// data structures to indicate the fact that PhysReg is now available.
///
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg);
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it.
//
void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
spillVirtReg(MBB, I, PI->second, PhysReg);
} else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) {
// If the selected register aliases any other registers, we must make
// sure that one of the aliases isn't alive...
for (unsigned i = 0; AliasSet[i]; ++i) {
PI = PhysRegsUsed.find(AliasSet[i]);
if (PI != PhysRegsUsed.end()) // Spill aliased register...
spillVirtReg(MBB, I, PI->second, AliasSet[i]);
}
}
}
void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register.
///
unsigned getFreeReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned virtualReg);
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates
/// the regalloc data structures to reflect the fact that the virtual reg is
/// now alive in a physical register, and the previous one isn't.
///
unsigned reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I, unsigned VirtReg);
};
}
/// getStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
int RA::getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *RC) {
// Find the location VirtReg would belong...
std::map<unsigned, int>::iterator I =
StackSlotForVirtReg.lower_bound(VirtReg);
if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
return I->second; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx =
MF->getFrameInfo()->CreateStackObject(RC->getSize(), RC->getAlignment());
// Assign the slot...
StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
return FrameIdx;
}
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RA::removePhysReg(unsigned PhysReg) {
PhysRegsUsed.erase(PhysReg); // PhyReg no longer used
std::vector<unsigned>::iterator It =
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
assert(It != PhysRegsUseOrder.end() &&
"Spilled a physical register, but it was not in use list!");
PhysRegsUseOrder.erase(It);
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg) {
// If this is just a marker register, we don't need to spill it.
if (VirtReg != 0) {
const TargetRegisterClass *RegClass =
MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RegClass);
// Add move instruction(s)
RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass);
++NumSpilled; // Update statistics
Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available
}
removePhysReg(PhysReg);
}
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
///
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
if (PhysRegsUsed.count(PhysReg)) return false;
// If the selected register aliases any other allocated registers, it is
// not free!
if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg))
for (unsigned i = 0; AliasSet[i]; ++i)
if (PhysRegsUsed.count(AliasSet[i])) // Aliased register in use?
return false; // Can't use this reg then.
return true;
}
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg) {
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
// Get iterators defining the range of registers that are valid to allocate in
// this class, which also specifies the preferred allocation order.
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
// First check to see if we have a free register of the requested type...
unsigned PhysReg = 0;
for (; RI != RE; ++RI) {
unsigned R = *RI;
if (isPhysRegAvailable(R)) { // Is reg unused?
// Found an unused register!
PhysReg = R;
assert(PhysReg != 0 && "Cannot use register!");
break;
}
}
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
// Loop over all of the preallocated registers from the least recently used
// to the most recently used. When we find one that is capable of holding
// our register, use it.
for (unsigned i = 0; PhysReg == 0; ++i) {
assert(i != PhysRegsUseOrder.size() &&
"Couldn't find a register of the appropriate class!");
unsigned R = PhysRegsUseOrder[i];
// If the current register is compatible, use it.
if (RegInfo->getRegClass(R) == RC) {
PhysReg = R;
break;
} else {
// If one of the registers aliased to the current register is
// compatible, use it.
if (const unsigned *AliasSet = RegInfo->getAliasSet(R))
for (unsigned a = 0; AliasSet[a]; ++a)
if (RegInfo->getRegClass(AliasSet[a]) == RC) {
PhysReg = AliasSet[a]; // Take an aliased register
break;
}
}
}
assert(PhysReg && "Physical register not assigned!?!?");
// At this point PhysRegsUseOrder[i] is the least recently used register of
// compatible register class. Spill it to memory and reap its remains.
spillPhysReg(MBB, I, PhysReg);
}
// Now that we know which register we need to assign this to, do it now!
AssignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
"Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
Virt2PhysRegMap[VirtReg] = PhysReg;
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
}
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
/// alive in a physical register, and the previous one isn't.
///
unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned VirtReg) {
std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
if (It != Virt2PhysRegMap.end()) {
MarkPhysRegRecentlyUsed(It->second);
return It->second; // Already have this value available!
}
unsigned PhysReg = getFreeReg(MBB, I, VirtReg);
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
// Add move instruction(s)
RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIndex, RC);
++NumReloaded; // Update statistics
return PhysReg;
}
/// CalculateLastUseOfVReg - Calculate an approximation of the killing uses for
/// the virtual registers in the function. Here we try to capture registers
/// that are defined and only used within the same basic block. Because we
/// don't have use-def chains yet, we have to do this the hard way.
///
void RA::CalculateLastUseOfVReg(MachineBasicBlock &MBB,
std::map<unsigned, MachineInstr*> &LastUseOfVReg) const {
// Calculate the last machine instruction in this basic block that uses the
// specified virtual register defined in this basic block.
std::map<unsigned, MachineInstr*> LastLocalUses;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;++I){
MachineInstr *MI = *I;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (Op.isVirtualRegister()) {
if (Op.opIsDef()) { // Definition of a new virtual reg?
LastLocalUses[Op.getAllocatedRegNum()] = 0; // Record it
} else { // Use of a virtual reg.
std::map<unsigned, MachineInstr*>::iterator It =
LastLocalUses.find(Op.getAllocatedRegNum());
if (It != LastLocalUses.end()) // Local use?
It->second = MI; // Update last use
else
LastUseOfVReg[Op.getAllocatedRegNum()] = 0;
}
}
}
}
// Move local uses over... if there are any uses of a local already in the
// lastuse map, the newly inserted entry is ignored.
LastUseOfVReg.insert(LastLocalUses.begin(), LastLocalUses.end());
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM->getInstrInfo();
while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI yet
MBB.erase(MBB.begin());
assert(MI->getOperand(0).isVirtualRegister() &&
"PHI node doesn't write virt reg?");
unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
if (!MII.isBranch(opMI->getOpcode()))
++opI;
const TargetRegisterClass *RC =
MF->getSSARegMap()->getRegClass(virtualReg);
assert(opVal.isVirtualRegister() &&
"Machine PHI Operands must all be virtual registers!");
RegInfo->copyRegToReg(opBlock, opI, virtualReg, opVal.getReg(), RC);
}
}
// really delete the PHI instruction now!
delete MI;
}
}
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator I = MBB.begin();
for (; I != MBB.end(); ++I) {
MachineInstr *MI = *I;
const MachineInstrDescriptor &MID = TM->getInstrInfo().get(MI->getOpcode());
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
// FIXME: We don't need to spill a register if this is the last use of the
// value!
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
MI->getOperand(i).isPhysicalRegister()) {
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
spillPhysReg(MBB, I, Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
PhysRegsUseOrder.push_back(Reg);
}
// Loop over the implicit defs, spilling them, as above.
if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
unsigned Reg = ImplicitDefs[i];
// We don't want to spill implicit definitions if they were explicitly
// chosen. For this reason, check to see now if the register we are
// to spill has a vreg of 0.
if (PhysRegsUsed.count(Reg) && PhysRegsUsed[Reg] != 0)
spillPhysReg(MBB, I, Reg);
else if (PhysRegsUsed.count(Reg)) {
// Remove the entry from PhysRegsUseOrder to avoid having two entries!
removePhysReg(Reg);
}
PhysRegsUseOrder.push_back(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
}
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
if (const unsigned *ImplicitUses = MID.ImplicitUses)
for (unsigned i = 0; ImplicitUses[i]; ++i)
MarkPhysRegRecentlyUsed(ImplicitUses[i]);
// Loop over all of the operands again, getting the used operands into
// registers. This has the potiential to spill incoming values if we are
// out of registers.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsUse() &&
MI->getOperand(i).isVirtualRegister()) {
unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// implicit defs and assign them to a register, spilling the incoming value
// if we need to scavange a register.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
!MI->getOperand(i).isPhysicalRegister()) {
unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
unsigned DestPhysReg;
if (TM->getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
assert(MI->getOperand(1).isRegister() &&
MI->getOperand(1).getAllocatedRegNum() &&
MI->getOperand(1).opIsUse() &&
"Two address instruction invalid!");
DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
// Spill the incoming value, because we are about to change the
// register contents.
spillPhysReg(MBB, I, DestPhysReg);
AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
} else {
DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
}
MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register
}
if (!DisableKill) {
// If this instruction is the last user of anything in registers, kill the
// value, freeing the register being used, so it doesn't need to be
// spilled to memory at the end of the block.
std::multimap<MachineInstr*, unsigned>::iterator LUOI =
LastUserOf.lower_bound(MI);
for (; LUOI != LastUserOf.end() && LUOI->first == MI; ++MI) {
unsigned VirtReg = LUOI->second; // entry found?
unsigned PhysReg = Virt2PhysRegMap[VirtReg];
if (PhysReg) {
DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
<< " Last use of: " << *MI);
removePhysReg(PhysReg);
}
Virt2PhysRegMap.erase(VirtReg);
}
}
}
// Rewind the iterator to point to the first flow control instruction...
const MachineInstrInfo &MII = TM->getInstrInfo();
I = MBB.end();
do {
--I;
} while ((MII.isReturn((*I)->getOpcode()) ||
MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
++I;
// Spill all physical registers holding virtual registers now.
while (!PhysRegsUsed.empty())
spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
PhysRegsUsed.begin()->first);
assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RA::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
TM = &Fn.getTarget();
RegInfo = TM->getRegisterInfo();
// First pass: eliminate PHI instructions by inserting copies into predecessor
// blocks, and calculate a simple approximation of killing uses for virtual
// registers.
//
std::map<unsigned, MachineInstr*> LastUseOfVReg;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
if (!DisableKill)
CalculateLastUseOfVReg(*MBB, LastUseOfVReg);
EliminatePHINodes(*MBB);
}
// At this point LastUseOfVReg has been filled in to contain the last
// MachineInstr user of the specified virtual register, if that user is
// within the same basic block as the definition (otherwise it contains
// null). Invert this mapping now:
if (!DisableKill)
for (std::map<unsigned, MachineInstr*>::iterator I = LastUseOfVReg.begin(),
E = LastUseOfVReg.end(); I != E; ++I)
if (I->second)
LastUserOf.insert(std::make_pair(I->second, I->first));
// We're done with the temporary list now.
LastUseOfVReg.clear();
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
LastUserOf.clear();
StackSlotForVirtReg.clear();
return true;
}
Pass *createLocalRegisterAllocator() {
return new RA();
}