llvm-project/clang/test/SemaCXX/warn-unsequenced.cpp

171 lines
5.8 KiB
C++
Raw Normal View History

// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -Wno-unused %s
int f(int, int = 0);
struct A {
int x, y;
};
struct S {
S(int, int);
int n;
};
void test() {
int a;
int xs[10];
++a = 0; // ok
a + ++a; // expected-warning {{unsequenced modification and access to 'a'}}
a = ++a; // ok
a + a++; // expected-warning {{unsequenced modification and access to 'a'}}
a = a++; // expected-warning {{multiple unsequenced modifications to 'a'}}
++ ++a; // ok
(a++, a++); // ok
++a + ++a; // expected-warning {{multiple unsequenced modifications to 'a'}}
a++ + a++; // expected-warning {{multiple unsequenced modifications}}
(a++, a) = 0; // ok, increment is sequenced before value computation of LHS
a = xs[++a]; // ok
a = xs[a++]; // expected-warning {{multiple unsequenced modifications}}
(a ? xs[0] : xs[1]) = ++a; // expected-warning {{unsequenced modification and access}}
a = (++a, ++a); // ok
a = (a++, ++a); // ok
a = (a++, a++); // expected-warning {{multiple unsequenced modifications}}
f(a, a); // ok
f(a = 0, a); // expected-warning {{unsequenced modification and access}}
f(a, a += 0); // expected-warning {{unsequenced modification and access}}
f(a = 0, a = 0); // expected-warning {{multiple unsequenced modifications}}
a = f(++a); // ok
a = f(a++); // ok
a = f(++a, a++); // expected-warning {{multiple unsequenced modifications}}
// Compound assignment "A OP= B" is equivalent to "A = A OP B" except that A
// is evaluated only once.
(++a, a) = 1; // ok
(++a, a) += 1; // ok
a = ++a; // ok
a += ++a; // expected-warning {{unsequenced modification and access}}
A agg1 = { a++, a++ }; // ok
A agg2 = { a++ + a, a++ }; // expected-warning {{unsequenced modification and access}}
S str1(a++, a++); // expected-warning {{multiple unsequenced modifications}}
S str2 = { a++, a++ }; // ok
S str3 = { a++ + a, a++ }; // expected-warning {{unsequenced modification and access}}
struct Z { A a; S s; } z = { { ++a, ++a }, { ++a, ++a } }; // ok
a = S { ++a, a++ }.n; // ok
A { ++a, a++ }.x; // ok
a = A { ++a, a++ }.x; // expected-warning {{unsequenced modifications}}
A { ++a, a++ }.x + A { ++a, a++ }.y; // expected-warning {{unsequenced modifications}}
(xs[2] && (a = 0)) + a; // ok
(0 && (a = 0)) + a; // ok
(1 && (a = 0)) + a; // expected-warning {{unsequenced modification and access}}
(xs[3] || (a = 0)) + a; // ok
(0 || (a = 0)) + a; // expected-warning {{unsequenced modification and access}}
(1 || (a = 0)) + a; // ok
(xs[4] ? a : ++a) + a; // ok
(0 ? a : ++a) + a; // expected-warning {{unsequenced modification and access}}
(1 ? a : ++a) + a; // ok
(0 ? a : a++) + a; // expected-warning {{unsequenced modification and access}}
(1 ? a : a++) + a; // ok
(xs[5] ? ++a : ++a) + a; // FIXME: warn here
(++a, xs[6] ? ++a : 0) + a; // expected-warning {{unsequenced modification and access}}
// Here, the read of the fourth 'a' might happen before or after the write to
// the second 'a'.
a += (a++, a) + a; // expected-warning {{unsequenced modification and access}}
int *p = xs;
a = *(a++, p); // ok
a = a++ && a; // ok
A *q = &agg1;
(q = &agg2)->y = q->x; // expected-warning {{unsequenced modification and access to 'q'}}
// This has undefined behavior if a == 0; otherwise, the side-effect of the
// increment is sequenced before the value computation of 'f(a, a)', which is
// sequenced before the value computation of the '&&', which is sequenced
// before the assignment. We treat the sequencing in '&&' as being
// unconditional.
a = a++ && f(a, a);
// This has undefined behavior if a != 0. FIXME: We should diagnose this.
(a && a++) + a;
(xs[7] && ++a) * (!xs[7] && ++a); // ok
xs[0] = (a = 1, a); // ok
(a -= 128) &= 128; // ok
++a += 1; // ok
xs[8] ? ++a + a++ : 0; // expected-warning {{multiple unsequenced modifications}}
xs[8] ? 0 : ++a + a++; // expected-warning {{multiple unsequenced modifications}}
xs[8] ? ++a : a++; // ok
xs[8] && (++a + a++); // expected-warning {{multiple unsequenced modifications}}
xs[8] || (++a + a++); // expected-warning {{multiple unsequenced modifications}}
(__builtin_classify_type(++a) ? 1 : 0) + ++a; // ok
(__builtin_constant_p(++a) ? 1 : 0) + ++a; // ok
(__builtin_object_size(&(++a, a), 0) ? 1 : 0) + ++a; // ok
(__builtin_expect(++a, 0) ? 1 : 0) + ++a; // expected-warning {{multiple unsequenced modifications}}
}
namespace templates {
template <typename T>
struct Bar {
T get() { return 0; }
};
template <typename X>
struct Foo {
int Run();
Bar<int> bar;
};
enum E {e1, e2};
bool operator&&(E, E);
void foo(int, int);
template <typename X>
int Foo<X>::Run() {
char num = 0;
// Before instantiation, Clang may consider the builtin operator here as
// unresolved function calls, and treat the arguments as unordered when
// the builtin operator evaluatation is well-ordered. Waiting until
// instantiation to check these expressions will prevent false positives.
if ((num = bar.get()) < 5 && num < 10) { }
if ((num = bar.get()) < 5 || num < 10) { }
if (static_cast<E>((num = bar.get()) < 5) || static_cast<E>(num < 10)) { }
if (static_cast<E>((num = bar.get()) < 5) && static_cast<E>(num < 10)) { }
// expected-warning@-1 {{unsequenced modification and access to 'num'}}
foo(num++, num++);
// expected-warning@-1 2{{multiple unsequenced modifications to 'num'}}
return 1;
}
int x = Foo<int>().Run();
// expected-note@-1 {{in instantiation of member function 'templates::Foo<int>::Run'}}
template <typename T>
int Run2() {
T t = static_cast<T>(0);
return (t = static_cast<T>(1)) && t;
// expected-warning@-1 {{unsequenced modification and access to 't'}}
}
int y = Run2<bool>();
int z = Run2<E>();
// expected-note@-1{{in instantiation of function template specialization 'templates::Run2<templates::E>' requested here}}
}