[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// RUN: mlir-opt %s -sparsification | FileCheck %s --check-prefix=CHECK-HIR
|
|
|
|
//
|
2021-07-15 13:58:21 +08:00
|
|
|
// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion | \
|
|
|
|
// RUN: FileCheck %s --check-prefix=CHECK-MIR
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
//
|
2021-07-15 13:58:21 +08:00
|
|
|
// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion \
|
2022-01-30 20:23:28 +08:00
|
|
|
// RUN: --func-bufferize --arith-bufferize \
|
2021-07-15 13:58:21 +08:00
|
|
|
// RUN: --tensor-bufferize --finalizing-bufferize | \
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// RUN: FileCheck %s --check-prefix=CHECK-LIR
|
|
|
|
|
|
|
|
#CSC = #sparse_tensor.encoding<{
|
|
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
|
|
dimOrdering = affine_map<(i,j) -> (j,i)>
|
|
|
|
}>
|
|
|
|
|
|
|
|
#trait_matvec = {
|
|
|
|
indexing_maps = [
|
|
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
|
|
affine_map<(i,j) -> (j)>, // b
|
|
|
|
affine_map<(i,j) -> (i)> // x (out)
|
|
|
|
],
|
|
|
|
iterator_types = ["parallel","reduction"],
|
|
|
|
doc = "x(i) += A(i,j) * b(j)"
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-HIR-LABEL: func @matvec(
|
|
|
|
// CHECK-HIR-SAME: %[[VAL_0:.*]]: tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>>,
|
|
|
|
// CHECK-HIR-SAME: %[[VAL_1:.*]]: tensor<64xf64>,
|
|
|
|
// CHECK-HIR-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-HIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
|
2022-02-17 08:30:46 +08:00
|
|
|
// CHECK-HIR-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf64>
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64>
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
|
|
|
|
// CHECK-HIR-DAG: %[[VAL_11:.*]] = memref.alloc() : memref<32xf64>
|
2021-07-15 13:58:21 +08:00
|
|
|
// CHECK-HIR: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xf64> to memref<32xf64>
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-HIR: scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
|
|
|
|
// CHECK-HIR: %[[VAL_13:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]]] : memref<64xf64>
|
|
|
|
// CHECK-HIR: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-HIR: %[[VAL_15:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-HIR: %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_15]]] : memref<?xindex>
|
|
|
|
// CHECK-HIR: scf.for %[[VAL_17:.*]] = %[[VAL_14]] to %[[VAL_16]] step %[[VAL_5]] {
|
|
|
|
// CHECK-HIR: %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_17]]] : memref<?xindex>
|
|
|
|
// CHECK-HIR: %[[VAL_19:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64>
|
|
|
|
// CHECK-HIR: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_17]]] : memref<?xf64>
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-HIR: %[[VAL_21:.*]] = arith.mulf %[[VAL_20]], %[[VAL_13]] : f64
|
|
|
|
// CHECK-HIR: %[[VAL_22:.*]] = arith.addf %[[VAL_19]], %[[VAL_21]] : f64
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-HIR: memref.store %[[VAL_22]], %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64>
|
|
|
|
// CHECK-HIR: }
|
|
|
|
// CHECK-HIR: }
|
2021-11-25 18:42:16 +08:00
|
|
|
// CHECK-HIR: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-HIR: return %[[VAL_23]] : tensor<32xf64>
|
|
|
|
// CHECK-HIR: }
|
|
|
|
|
|
|
|
// CHECK-MIR-LABEL: func @matvec(
|
|
|
|
// CHECK-MIR-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>,
|
|
|
|
// CHECK-MIR-SAME: %[[VAL_1:.*]]: tensor<64xf64>,
|
|
|
|
// CHECK-MIR-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-MIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_5:.*]] = arith.constant 0 : index
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
|
2022-02-17 08:30:46 +08:00
|
|
|
// CHECK-MIR-DAG: %[[VAL_7:.*]] = call @sparsePointers(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_8:.*]] = call @sparseIndices(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr<i8>) -> memref<?xf64>
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64>
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
|
|
|
|
// CHECK-MIR-DAG: %[[VAL_12:.*]] = memref.alloc() : memref<32xf64>
|
2021-07-15 13:58:21 +08:00
|
|
|
// CHECK-MIR: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32xf64> to memref<32xf64>
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-MIR: scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
|
|
|
|
// CHECK-MIR: %[[VAL_16:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_15]]] : memref<64xf64>
|
|
|
|
// CHECK-MIR: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-MIR: %[[VAL_18:.*]] = arith.addi %[[VAL_15]], %[[VAL_6]] : index
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-MIR: %[[VAL_19:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
|
|
|
|
// CHECK-MIR: scf.for %[[VAL_20:.*]] = %[[VAL_17]] to %[[VAL_19]] step %[[VAL_6]] {
|
|
|
|
// CHECK-MIR: %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
|
|
|
|
// CHECK-MIR: %[[VAL_22:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64>
|
|
|
|
// CHECK-MIR: %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xf64>
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-MIR: %[[VAL_24:.*]] = arith.mulf %[[VAL_23]], %[[VAL_16]] : f64
|
|
|
|
// CHECK-MIR: %[[VAL_25:.*]] = arith.addf %[[VAL_22]], %[[VAL_24]] : f64
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-MIR: memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64>
|
|
|
|
// CHECK-MIR: }
|
|
|
|
// CHECK-MIR: }
|
2021-11-25 18:42:16 +08:00
|
|
|
// CHECK-MIR: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf64>
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-MIR: return %[[VAL_26]] : tensor<32xf64>
|
|
|
|
// CHECK-MIR: }
|
|
|
|
|
|
|
|
// CHECK-LIR-LABEL: func @matvec(
|
|
|
|
// CHECK-LIR-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>,
|
|
|
|
// CHECK-LIR-SAME: %[[VAL_1:.*]]: memref<64xf64>,
|
|
|
|
// CHECK-LIR-SAME: %[[VAL_2:.*]]: memref<32xf64>) -> memref<32xf64> {
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-LIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index
|
|
|
|
// CHECK-LIR-DAG: %[[VAL_5:.*]] = arith.constant 0 : index
|
|
|
|
// CHECK-LIR-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
|
2022-02-17 08:30:46 +08:00
|
|
|
// CHECK-LIR-DAG: %[[VAL_7:.*]] = call @sparsePointers(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
|
|
|
|
// CHECK-LIR-DAG: %[[VAL_8:.*]] = call @sparseIndices(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex>
|
|
|
|
// CHECK-LIR-DAG: %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr<i8>) -> memref<?xf64>
|
|
|
|
// CHECK-LIR-DAG: %[[VAL_10:.*]] = memref.alloc() : memref<32xf64>
|
2021-07-15 13:58:21 +08:00
|
|
|
// CHECK-LIR: memref.copy %[[VAL_2]], %[[VAL_10]] : memref<32xf64> to memref<32xf64>
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-LIR: scf.for %[[VAL_13:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
|
|
|
|
// CHECK-LIR: %[[VAL_14:.*]] = memref.load %[[VAL_1]]{{\[}}%[[VAL_13]]] : memref<64xf64>
|
|
|
|
// CHECK-LIR: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex>
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-LIR: %[[VAL_16:.*]] = arith.addi %[[VAL_13]], %[[VAL_6]] : index
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-LIR: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
|
|
|
|
// CHECK-LIR: scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_6]] {
|
|
|
|
// CHECK-LIR: %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
|
|
|
|
// CHECK-LIR: %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
|
|
|
|
// CHECK-LIR: %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
|
2021-10-13 07:14:57 +08:00
|
|
|
// CHECK-LIR: %[[VAL_22:.*]] = arith.mulf %[[VAL_21]], %[[VAL_14]] : f64
|
|
|
|
// CHECK-LIR: %[[VAL_23:.*]] = arith.addf %[[VAL_20]], %[[VAL_22]] : f64
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// CHECK-LIR: memref.store %[[VAL_23]], %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
|
|
|
|
// CHECK-LIR: }
|
|
|
|
// CHECK-LIR: }
|
|
|
|
// CHECK-LIR: return %[[VAL_10]] : memref<32xf64>
|
|
|
|
// CHECK-LIR: }
|
|
|
|
|
2022-04-21 07:18:14 +08:00
|
|
|
func.func @matvec(%arga: tensor<32x64xf64, #CSC>,
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
%argb: tensor<64xf64>,
|
|
|
|
%argx: tensor<32xf64>) -> tensor<32xf64> {
|
|
|
|
%0 = linalg.generic #trait_matvec
|
|
|
|
ins(%arga, %argb : tensor<32x64xf64, #CSC>, tensor<64xf64>)
|
|
|
|
outs(%argx: tensor<32xf64>) {
|
|
|
|
^bb(%A: f64, %b: f64, %x: f64):
|
2021-10-13 07:14:57 +08:00
|
|
|
%0 = arith.mulf %A, %b : f64
|
|
|
|
%1 = arith.addf %x, %0 : f64
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
linalg.yield %1 : f64
|
|
|
|
} -> tensor<32xf64>
|
|
|
|
return %0 : tensor<32xf64>
|
|
|
|
}
|