llvm-project/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1167 lines
46 KiB
C++
Raw Normal View History

//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the Emit routines for the SelectionDAG class, which creates
// MachineInstrs based on the decisions of the SelectionDAG instruction
// selection.
//
//===----------------------------------------------------------------------===//
#include "InstrEmitter.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "instr-emitter"
/// MinRCSize - Smallest register class we allow when constraining virtual
/// registers. If satisfying all register class constraints would require
/// using a smaller register class, emit a COPY to a new virtual register
/// instead.
const unsigned MinRCSize = 4;
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional glue operands (which do
/// not go into the resulting MachineInstr).
unsigned InstrEmitter::CountResults(SDNode *Node) {
unsigned N = Node->getNumValues();
while (N && Node->getValueType(N - 1) == MVT::Glue)
--N;
if (N && Node->getValueType(N - 1) == MVT::Other)
--N; // Skip over chain result.
return N;
}
/// countOperands - The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then an optional glue operand.
/// Compute the number of actual operands that will go into the resulting
/// MachineInstr.
///
/// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
/// the chain and glue. These operands may be implicit on the machine instr.
static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
unsigned &NumImpUses) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
--N;
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
--N; // Ignore chain if it exists.
// Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
NumImpUses = N - NumExpUses;
for (unsigned I = N; I > NumExpUses; --I) {
if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
continue;
if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
if (Register::isPhysicalRegister(RN->getReg()))
continue;
NumImpUses = N - I;
break;
}
return N;
}
/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
/// implicit physical register output.
void InstrEmitter::
2009-06-26 13:39:02 +08:00
EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned VRBase = 0;
if (Register::isVirtualRegister(SrcReg)) {
// Just use the input register directly!
SDValue Op(Node, ResNo);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
return;
}
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
// the CopyToReg'd destination register instead of creating a new vreg.
bool MatchReg = true;
const TargetRegisterClass *UseRC = nullptr;
MVT VT = Node->getSimpleValueType(ResNo);
// Stick to the preferred register classes for legal types.
if (TLI->isTypeLegal(VT))
UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
if (!IsClone && !IsCloned)
for (SDNode *User : Node->uses()) {
bool Match = true;
2011-09-20 11:06:13 +08:00
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == ResNo) {
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (Register::isVirtualRegister(DestReg)) {
VRBase = DestReg;
Match = false;
} else if (DestReg != SrcReg)
Match = false;
} else {
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
SDValue Op = User->getOperand(i);
if (Op.getNode() != Node || Op.getResNo() != ResNo)
continue;
MVT VT = Node->getSimpleValueType(Op.getResNo());
if (VT == MVT::Other || VT == MVT::Glue)
continue;
Match = false;
if (User->isMachineOpcode()) {
const MCInstrDesc &II = TII->get(User->getMachineOpcode());
const TargetRegisterClass *RC = nullptr;
if (i+II.getNumDefs() < II.getNumOperands()) {
RC = TRI->getAllocatableClass(
TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
}
if (!UseRC)
UseRC = RC;
else if (RC) {
const TargetRegisterClass *ComRC =
TRI->getCommonSubClass(UseRC, RC);
// If multiple uses expect disjoint register classes, we emit
// copies in AddRegisterOperand.
if (ComRC)
UseRC = ComRC;
}
}
}
}
MatchReg &= Match;
if (VRBase)
break;
}
const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
// Figure out the register class to create for the destreg.
if (VRBase) {
DstRC = MRI->getRegClass(VRBase);
} else if (UseRC) {
assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
"Incompatible phys register def and uses!");
DstRC = UseRC;
} else {
DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
}
2011-09-20 11:06:13 +08:00
// If all uses are reading from the src physical register and copying the
// register is either impossible or very expensive, then don't create a copy.
if (MatchReg && SrcRC->getCopyCost() < 0) {
VRBase = SrcReg;
} else {
// Create the reg, emit the copy.
VRBase = MRI->createVirtualRegister(DstRC);
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
VRBase).addReg(SrcReg);
}
SDValue Op(Node, ResNo);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
MachineInstrBuilder &MIB,
const MCInstrDesc &II,
bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
"IMPLICIT_DEF should have been handled as a special case elsewhere!");
unsigned NumResults = CountResults(Node);
for (unsigned i = 0; i < II.getNumDefs(); ++i) {
// If the specific node value is only used by a CopyToReg and the dest reg
// is a vreg in the same register class, use the CopyToReg'd destination
// register instead of creating a new vreg.
unsigned VRBase = 0;
const TargetRegisterClass *RC =
TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
// Always let the value type influence the used register class. The
// constraints on the instruction may be too lax to represent the value
// type correctly. For example, a 64-bit float (X86::FR64) can't live in
// the 32-bit float super-class (X86::FR32).
if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
const TargetRegisterClass *VTRC = TLI->getRegClassFor(
Node->getSimpleValueType(i),
(Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
if (RC)
VTRC = TRI->getCommonSubClass(RC, VTRC);
if (VTRC)
RC = VTRC;
}
if (II.OpInfo[i].isOptionalDef()) {
// Optional def must be a physical register.
VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
assert(Register::isPhysicalRegister(VRBase));
MIB.addReg(VRBase, RegState::Define);
}
if (!VRBase && !IsClone && !IsCloned)
for (SDNode *User : Node->uses()) {
2011-09-20 11:06:13 +08:00
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node &&
User->getOperand(2).getResNo() == i) {
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (Register::isVirtualRegister(Reg)) {
const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
if (RegRC == RC) {
VRBase = Reg;
MIB.addReg(VRBase, RegState::Define);
break;
}
}
}
}
// Create the result registers for this node and add the result regs to
// the machine instruction.
if (VRBase == 0) {
assert(RC && "Isn't a register operand!");
VRBase = MRI->createVirtualRegister(RC);
MIB.addReg(VRBase, RegState::Define);
}
// If this def corresponds to a result of the SDNode insert the VRBase into
// the lookup map.
if (i < NumResults) {
SDValue Op(Node, i);
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
}
}
/// getVR - Return the virtual register corresponding to the specified result
/// of the specified node.
unsigned InstrEmitter::getVR(SDValue Op,
DenseMap<SDValue, unsigned> &VRBaseMap) {
if (Op.isMachineOpcode() &&
Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
// Add an IMPLICIT_DEF instruction before every use.
// IMPLICIT_DEF can produce any type of result so its MCInstrDesc
// does not include operand register class info.
const TargetRegisterClass *RC = TLI->getRegClassFor(
Op.getSimpleValueType(), Op.getNode()->isDivergent());
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register VReg = MRI->createVirtualRegister(RC);
BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
return VReg;
}
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
assert(I != VRBaseMap.end() && "Node emitted out of order - late");
return I->second;
}
/// AddRegisterOperand - Add the specified register as an operand to the
/// specified machine instr. Insert register copies if the register is
/// not in the required register class.
void
InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
SDValue Op,
unsigned IIOpNum,
const MCInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned) {
assert(Op.getValueType() != MVT::Other &&
Op.getValueType() != MVT::Glue &&
"Chain and glue operands should occur at end of operand list!");
// Get/emit the operand.
unsigned VReg = getVR(Op, VRBaseMap);
const MCInstrDesc &MCID = MIB->getDesc();
bool isOptDef = IIOpNum < MCID.getNumOperands() &&
MCID.OpInfo[IIOpNum].isOptionalDef();
// If the instruction requires a register in a different class, create
// a new virtual register and copy the value into it, but first attempt to
// shrink VReg's register class within reason. For example, if VReg == GR32
// and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
if (II) {
const TargetRegisterClass *OpRC = nullptr;
if (IIOpNum < II->getNumOperands())
OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
if (OpRC) {
const TargetRegisterClass *ConstrainedRC
= MRI->constrainRegClass(VReg, OpRC, MinRCSize);
if (!ConstrainedRC) {
OpRC = TRI->getAllocatableClass(OpRC);
assert(OpRC && "Constraints cannot be fulfilled for allocation");
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register NewVReg = MRI->createVirtualRegister(OpRC);
BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
VReg = NewVReg;
} else {
assert(ConstrainedRC->isAllocatable() &&
"Constraining an allocatable VReg produced an unallocatable class?");
}
}
}
// If this value has only one use, that use is a kill. This is a
// conservative approximation. InstrEmitter does trivial coalescing
// with CopyFromReg nodes, so don't emit kill flags for them.
// Avoid kill flags on Schedule cloned nodes, since there will be
// multiple uses.
// Tied operands are never killed, so we need to check that. And that
// means we need to determine the index of the operand.
bool isKill = Op.hasOneUse() &&
Op.getNode()->getOpcode() != ISD::CopyFromReg &&
!IsDebug &&
!(IsClone || IsCloned);
if (isKill) {
unsigned Idx = MIB->getNumOperands();
while (Idx > 0 &&
MIB->getOperand(Idx-1).isReg() &&
MIB->getOperand(Idx-1).isImplicit())
--Idx;
bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
if (isTied)
isKill = false;
}
MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
getDebugRegState(IsDebug));
}
/// AddOperand - Add the specified operand to the specified machine instr. II
/// specifies the instruction information for the node, and IIOpNum is the
/// operand number (in the II) that we are adding.
void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
SDValue Op,
unsigned IIOpNum,
const MCInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned) {
if (Op.isMachineOpcode()) {
AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
IsDebug, IsClone, IsCloned);
} else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
MIB.addImm(C->getSExtValue());
} else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
MIB.addFPImm(F->getConstantFPValue());
} else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
unsigned VReg = R->getReg();
MVT OpVT = Op.getSimpleValueType();
const TargetRegisterClass *IIRC =
II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
: nullptr;
const TargetRegisterClass *OpRC =
TLI->isTypeLegal(OpVT)
? TLI->getRegClassFor(OpVT,
Op.getNode()->isDivergent() ||
(IIRC && TRI->isDivergentRegClass(IIRC)))
: nullptr;
if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register NewVReg = MRI->createVirtualRegister(IIRC);
BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
VReg = NewVReg;
}
// Turn additional physreg operands into implicit uses on non-variadic
// instructions. This is used by call and return instructions passing
// arguments in registers.
bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
MIB.addReg(VReg, getImplRegState(Imp));
} else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
MIB.addRegMask(RM->getRegMask());
} else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
TGA->getTargetFlags());
} else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
MIB.addMBB(BBNode->getBasicBlock());
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
MIB.addFrameIndex(FI->getIndex());
} else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
int Offset = CP->getOffset();
unsigned Align = CP->getAlignment();
Type *Type = CP->getType();
// MachineConstantPool wants an explicit alignment.
if (Align == 0) {
Align = MF->getDataLayout().getPrefTypeAlignment(Type);
if (Align == 0) {
// Alignment of vector types. FIXME!
Align = MF->getDataLayout().getTypeAllocSize(Type);
}
}
2011-09-20 11:06:13 +08:00
unsigned Idx;
MachineConstantPool *MCP = MF->getConstantPool();
if (CP->isMachineConstantPoolEntry())
Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
else
Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
} else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
} else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
MIB.addSym(SymNode->getMCSymbol());
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
MIB.addBlockAddress(BA->getBlockAddress(),
BA->getOffset(),
BA->getTargetFlags());
} else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
} else {
assert(Op.getValueType() != MVT::Other &&
Op.getValueType() != MVT::Glue &&
"Chain and glue operands should occur at end of operand list!");
AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
IsDebug, IsClone, IsCloned);
}
}
unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
MVT VT, bool isDivergent, const DebugLoc &DL) {
const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
// RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
// within reason.
if (RC && RC != VRC)
RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
// VReg has been adjusted. It can be used with SubIdx operands now.
if (RC)
return VReg;
// VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
// register instead.
RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
assert(RC && "No legal register class for VT supports that SubIdx");
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register NewReg = MRI->createVirtualRegister(RC);
BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
.addReg(VReg);
return NewReg;
}
/// EmitSubregNode - Generate machine code for subreg nodes.
///
2011-09-20 11:06:13 +08:00
void InstrEmitter::EmitSubregNode(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsClone, bool IsCloned) {
unsigned VRBase = 0;
unsigned Opc = Node->getMachineOpcode();
2011-09-20 11:06:13 +08:00
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
// the CopyToReg'd destination register instead of creating a new vreg.
for (SDNode *User : Node->uses()) {
2011-09-20 11:06:13 +08:00
if (User->getOpcode() == ISD::CopyToReg &&
User->getOperand(2).getNode() == Node) {
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (Register::isVirtualRegister(DestReg)) {
VRBase = DestReg;
break;
}
}
}
2011-09-20 11:06:13 +08:00
if (Opc == TargetOpcode::EXTRACT_SUBREG) {
// EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
// constraints on the %dst register, COPY can target all legal register
// classes.
unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
const TargetRegisterClass *TRC =
TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
unsigned Reg;
MachineInstr *DefMI;
RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
if (R && Register::isPhysicalRegister(R->getReg())) {
Reg = R->getReg();
DefMI = nullptr;
} else {
Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
DefMI = MRI->getVRegDef(Reg);
}
unsigned SrcReg, DstReg, DefSubIdx;
if (DefMI &&
TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
SubIdx == DefSubIdx &&
TRC == MRI->getRegClass(SrcReg)) {
// Optimize these:
// r1025 = s/zext r1024, 4
// r1026 = extract_subreg r1025, 4
// to a copy
// r1026 = copy r1024
VRBase = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
MRI->clearKillFlags(SrcReg);
} else {
// Reg may not support a SubIdx sub-register, and we may need to
// constrain its register class or issue a COPY to a compatible register
// class.
if (Register::isVirtualRegister(Reg))
Reg = ConstrainForSubReg(Reg, SubIdx,
Node->getOperand(0).getSimpleValueType(),
Node->isDivergent(), Node->getDebugLoc());
// Create the destreg if it is missing.
if (VRBase == 0)
VRBase = MRI->createVirtualRegister(TRC);
// Create the extract_subreg machine instruction.
MachineInstrBuilder CopyMI =
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
TII->get(TargetOpcode::COPY), VRBase);
if (Register::isVirtualRegister(Reg))
CopyMI.addReg(Reg, 0, SubIdx);
else
CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
}
} else if (Opc == TargetOpcode::INSERT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG) {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
SDValue N2 = Node->getOperand(2);
unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
// Figure out the register class to create for the destreg. It should be
// the largest legal register class supporting SubIdx sub-registers.
// RegisterCoalescer will constrain it further if it decides to eliminate
// the INSERT_SUBREG instruction.
//
// %dst = INSERT_SUBREG %src, %sub, SubIdx
//
// is lowered by TwoAddressInstructionPass to:
//
// %dst = COPY %src
// %dst:SubIdx = COPY %sub
//
// There is no constraint on the %src register class.
//
const TargetRegisterClass *SRC =
TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
VRBase = MRI->createVirtualRegister(SRC);
// Create the insert_subreg or subreg_to_reg machine instruction.
MachineInstrBuilder MIB =
BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
2011-09-20 11:06:13 +08:00
// If creating a subreg_to_reg, then the first input operand
// is an implicit value immediate, otherwise it's a register
if (Opc == TargetOpcode::SUBREG_TO_REG) {
const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
MIB.addImm(SD->getZExtValue());
} else
AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
// Add the subregister being inserted
AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
MIB.addImm(SubIdx);
MBB->insert(InsertPos, MIB);
} else
llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
2011-09-20 11:06:13 +08:00
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
/// COPY_TO_REGCLASS is just a normal copy, except that the destination
/// register is constrained to be in a particular register class.
///
void
InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
// Create the new VReg in the destination class and emit a copy.
unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
const TargetRegisterClass *DstRC =
TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register NewVReg = MRI->createVirtualRegister(DstRC);
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
NewVReg).addReg(VReg);
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
///
void InstrEmitter::EmitRegSequence(SDNode *Node,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsClone, bool IsCloned) {
unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
unsigned NumOps = Node->getNumOperands();
// If the input pattern has a chain, then the root of the corresponding
// output pattern will get a chain as well. This can happen to be a
// REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
--NumOps; // Ignore chain if it exists.
assert((NumOps & 1) == 1 &&
"REG_SEQUENCE must have an odd number of operands!");
for (unsigned i = 1; i != NumOps; ++i) {
SDValue Op = Node->getOperand(i);
if ((i & 1) == 0) {
RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
// Skip physical registers as they don't have a vreg to get and we'll
// insert copies for them in TwoAddressInstructionPass anyway.
if (!R || !Register::isPhysicalRegister(R->getReg())) {
unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
const TargetRegisterClass *SRC =
TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
if (SRC && SRC != RC) {
MRI->setRegClass(NewVReg, SRC);
RC = SRC;
}
}
}
AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
IsClone, IsCloned);
}
MBB->insert(InsertPos, MIB);
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
(void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
/// EmitDbgValue - Generate machine instruction for a dbg_value node.
///
MachineInstr *
InstrEmitter::EmitDbgValue(SDDbgValue *SD,
DenseMap<SDValue, unsigned> &VRBaseMap) {
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-02 02:55:02 +08:00
MDNode *Var = SD->getVariable();
MDNode *Expr = SD->getExpression();
DebugLoc DL = SD->getDebugLoc();
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
SD->setIsEmitted();
if (SD->isInvalidated()) {
// An invalidated SDNode must generate an undef DBG_VALUE: although the
// original value is no longer computed, earlier DBG_VALUEs live ranges
// must not leak into later code.
auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
MIB.addReg(0U);
MIB.addReg(0U, RegState::Debug);
MIB.addMetadata(Var);
MIB.addMetadata(Expr);
return &*MIB;
}
if (SD->getKind() == SDDbgValue::FRAMEIX) {
// Stack address; this needs to be lowered in target-dependent fashion.
// EmitTargetCodeForFrameDebugValue is responsible for allocation.
[DebugInfo] LowerDbgDeclare: Add derefs when handling CallInst users LowerDbgDeclare inserts a dbg.value before each use of an address described by a dbg.declare. When inserting a dbg.value before a CallInst use, however, it fails to append DW_OP_deref to the DIExpression. The DW_OP_deref is needed to reflect the fact that a dbg.value describes a source variable directly (as opposed to a dbg.declare, which relies on pointer indirection). This patch adds in the DW_OP_deref where needed. This results in the correct values being shown during a debug session for a program compiled with ASan and optimizations (see https://reviews.llvm.org/D49520). Note that ConvertDebugDeclareToDebugValue is already correct -- no changes there were needed. One complication is that SelectionDAG is unable to distinguish between direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also fixes this long-standing issue in order to not regress integration tests relying on the incorrect assumption that all frame-index SDDbgValues are indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot be lowered properly otherwise. Basically the fix prevents a direct SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice by a debugger. There were a handful of tests relying on this incorrect "FRAMEIX => indirect" assumption which actually had incorrect DW_AT_locations: these are all fixed up in this patch. Testing: - check-llvm, and an end-to-end test using lldb to debug an optimized program. - Existing unit tests for DIExpression::appendToStack fully cover the new DIExpression::append utility. - check-debuginfo (the debug info integration tests) Differential Revision: https://reviews.llvm.org/D49454 llvm-svn: 338069
2018-07-27 04:56:53 +08:00
auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
.addFrameIndex(SD->getFrameIx());
if (SD->isIndirect())
// Push [fi + 0] onto the DIExpression stack.
FrameMI.addImm(0);
else
// Push fi onto the DIExpression stack.
FrameMI.addReg(0);
[DebugInfo] LowerDbgDeclare: Add derefs when handling CallInst users LowerDbgDeclare inserts a dbg.value before each use of an address described by a dbg.declare. When inserting a dbg.value before a CallInst use, however, it fails to append DW_OP_deref to the DIExpression. The DW_OP_deref is needed to reflect the fact that a dbg.value describes a source variable directly (as opposed to a dbg.declare, which relies on pointer indirection). This patch adds in the DW_OP_deref where needed. This results in the correct values being shown during a debug session for a program compiled with ASan and optimizations (see https://reviews.llvm.org/D49520). Note that ConvertDebugDeclareToDebugValue is already correct -- no changes there were needed. One complication is that SelectionDAG is unable to distinguish between direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also fixes this long-standing issue in order to not regress integration tests relying on the incorrect assumption that all frame-index SDDbgValues are indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot be lowered properly otherwise. Basically the fix prevents a direct SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice by a debugger. There were a handful of tests relying on this incorrect "FRAMEIX => indirect" assumption which actually had incorrect DW_AT_locations: these are all fixed up in this patch. Testing: - check-llvm, and an end-to-end test using lldb to debug an optimized program. - Existing unit tests for DIExpression::appendToStack fully cover the new DIExpression::append utility. - check-debuginfo (the debug info integration tests) Differential Revision: https://reviews.llvm.org/D49454 llvm-svn: 338069
2018-07-27 04:56:53 +08:00
return FrameMI.addMetadata(Var).addMetadata(Expr);
}
// Otherwise, we're going to create an instruction here.
const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
if (SD->getKind() == SDDbgValue::SDNODE) {
SDNode *Node = SD->getSDNode();
SDValue Op = SDValue(Node, SD->getResNo());
// It's possible we replaced this SDNode with other(s) and therefore
// didn't generate code for it. It's better to catch these cases where
// they happen and transfer the debug info, but trying to guarantee that
// in all cases would be very fragile; this is a safeguard for any
// that were missed.
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
if (I==VRBaseMap.end())
MIB.addReg(0U); // undef
else
AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
/*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
[SelectionDAG] Improve selection of DBG_VALUE using a PHI node result Summary: When building the selection DAG at ISel all PHI nodes are selected and lowered to Machine Instruction PHI nodes before we start to create any SDNodes. So there are no SDNodes for values produced by the PHI nodes. In the past when selecting a dbg.value intrinsic that uses the value produced by a PHI node we have been handling such dbg.value intrinsics as "dangling debug info". I.e. we have not created a SDDbgValue node directly, because there is no existing SDNode for the PHI result, instead we deferred the creationg of a SDDbgValue until we found the first use of the PHI result. The old solution had a couple of flaws. The position of the selected DBG_VALUE instruction would end up quite late in a basic block, and for example not directly after the PHI node as in the LLVM IR input. And in case there were no use at all in the basic block the dbg.value could be dropped completely. This patch introduces a new VREG kind of SDDbgValue nodes. It is similar to a SDNODE kind of node, but it refers directly to a virtual register and not a SDNode. When we do selection for a dbg.value that is using the result of a PHI node we can do a lookup of the virtual register directly (as it already is determined for the PHI node) and create a SDDbgValue node immediately instead of delaying the selection until we find a use. This should fix a problem with losing debug info at ISel as seen in PR37234 (https://bugs.llvm.org/show_bug.cgi?id=37234). It does not resolve PR37234 completely, because the debug info is dropped later on in the BranchFolder (see D46184). Reviewers: #debug-info, aprantl Reviewed By: #debug-info, aprantl Subscribers: rnk, gbedwell, aprantl, JDevlieghere, llvm-commits Differential Revision: https://reviews.llvm.org/D46129 llvm-svn: 331182
2018-04-30 22:37:39 +08:00
} else if (SD->getKind() == SDDbgValue::VREG) {
MIB.addReg(SD->getVReg(), RegState::Debug);
} else if (SD->getKind() == SDDbgValue::CONST) {
const Value *V = SD->getConst();
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64)
MIB.addCImm(CI);
else
MIB.addImm(CI->getSExtValue());
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
MIB.addFPImm(CF);
} else if (isa<ConstantPointerNull>(V)) {
// Note: This assumes that all nullptr constants are zero-valued.
MIB.addImm(0);
} else {
// Could be an Undef. In any case insert an Undef so we can see what we
// dropped.
MIB.addReg(0U);
}
} else {
// Insert an Undef so we can see what we dropped.
MIB.addReg(0U);
}
// Indirect addressing is indicated by an Imm as the second parameter.
if (SD->isIndirect())
MIB.addImm(0U);
else
MIB.addReg(0U, RegState::Debug);
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-02 02:55:02 +08:00
MIB.addMetadata(Var);
MIB.addMetadata(Expr);
return &*MIB;
}
MachineInstr *
InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
MDNode *Label = SD->getLabel();
DebugLoc DL = SD->getDebugLoc();
assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
MIB.addMetadata(Label);
return &*MIB;
}
/// EmitMachineNode - Generate machine code for a target-specific node and
/// needed dependencies.
///
void InstrEmitter::
EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
unsigned Opc = Node->getMachineOpcode();
2011-09-20 11:06:13 +08:00
// Handle subreg insert/extract specially
2011-09-20 11:06:13 +08:00
if (Opc == TargetOpcode::EXTRACT_SUBREG ||
Opc == TargetOpcode::INSERT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG) {
EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
return;
}
// Handle COPY_TO_REGCLASS specially.
if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
EmitCopyToRegClassNode(Node, VRBaseMap);
return;
}
// Handle REG_SEQUENCE specially.
if (Opc == TargetOpcode::REG_SEQUENCE) {
EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
return;
}
if (Opc == TargetOpcode::IMPLICIT_DEF)
// We want a unique VR for each IMPLICIT_DEF use.
return;
2011-09-20 11:06:13 +08:00
const MCInstrDesc &II = TII->get(Opc);
unsigned NumResults = CountResults(Node);
unsigned NumDefs = II.getNumDefs();
const MCPhysReg *ScratchRegs = nullptr;
// Handle STACKMAP and PATCHPOINT specially and then use the generic code.
if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
// Stackmaps do not have arguments and do not preserve their calling
// convention. However, to simplify runtime support, they clobber the same
// scratch registers as AnyRegCC.
unsigned CC = CallingConv::AnyReg;
if (Opc == TargetOpcode::PATCHPOINT) {
CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
NumDefs = NumResults;
}
ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
}
unsigned NumImpUses = 0;
unsigned NodeOperands =
countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
#ifndef NDEBUG
unsigned NumMIOperands = NodeOperands + NumResults;
if (II.isVariadic())
assert(NumMIOperands >= II.getNumOperands() &&
"Too few operands for a variadic node!");
else
assert(NumMIOperands >= II.getNumOperands() &&
NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
NumImpUses &&
"#operands for dag node doesn't match .td file!");
#endif
// Create the new machine instruction.
MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
// Add result register values for things that are defined by this
// instruction.
if (NumResults) {
CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
2011-09-20 11:06:13 +08:00
// Transfer any IR flags from the SDNode to the MachineInstr
MachineInstr *MI = MIB.getInstr();
const SDNodeFlags Flags = Node->getFlags();
if (Flags.hasNoSignedZeros())
MI->setFlag(MachineInstr::MIFlag::FmNsz);
if (Flags.hasAllowReciprocal())
MI->setFlag(MachineInstr::MIFlag::FmArcp);
if (Flags.hasNoNaNs())
MI->setFlag(MachineInstr::MIFlag::FmNoNans);
if (Flags.hasNoInfs())
MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
if (Flags.hasAllowContract())
MI->setFlag(MachineInstr::MIFlag::FmContract);
if (Flags.hasApproximateFuncs())
MI->setFlag(MachineInstr::MIFlag::FmAfn);
if (Flags.hasAllowReassociation())
MI->setFlag(MachineInstr::MIFlag::FmReassoc);
if (Flags.hasNoUnsignedWrap())
MI->setFlag(MachineInstr::MIFlag::NoUWrap);
if (Flags.hasNoSignedWrap())
MI->setFlag(MachineInstr::MIFlag::NoSWrap);
if (Flags.hasExact())
MI->setFlag(MachineInstr::MIFlag::IsExact);
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
if (Flags.hasNoFPExcept())
MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
}
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
bool HasOptPRefs = NumDefs > NumResults;
assert((!HasOptPRefs || !HasPhysRegOuts) &&
"Unable to cope with optional defs and phys regs defs!");
unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
for (unsigned i = NumSkip; i != NodeOperands; ++i)
AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
// Add scratch registers as implicit def and early clobber
if (ScratchRegs)
for (unsigned i = 0; ScratchRegs[i]; ++i)
MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
RegState::EarlyClobber);
[MI] Change the array of `MachineMemOperand` pointers to be a generically extensible collection of extra info attached to a `MachineInstr`. The primary change here is cleaning up the APIs used for setting and manipulating the `MachineMemOperand` pointer arrays so chat we can change how they are allocated. Then we introduce an extra info object that using the trailing object pattern to attach some number of MMOs but also other extra info. The design of this is specifically so that this extra info has a fixed necessary cost (the header tracking what extra info is included) and everything else can be tail allocated. This pattern works especially well with a `BumpPtrAllocator` which we use here. I've also added the basic scaffolding for putting interesting pointers into this, namely pre- and post-instruction symbols. These aren't used anywhere yet, they're just there to ensure I've actually gotten the data structure types correct. I'll flesh out support for these in a subsequent patch (MIR dumping, parsing, the works). Finally, I've included an optimization where we store any single pointer inline in the `MachineInstr` to avoid the allocation overhead. This is expected to be the overwhelmingly most common case and so should avoid any memory usage growth due to slightly less clever / dense allocation when dealing with >1 MMO. This did require several ergonomic improvements to the `PointerSumType` to reasonably support the various usage models. This also has a side effect of freeing up 8 bits within the `MachineInstr` which could be repurposed for something else. The suggested direction here came largely from Hal Finkel. I hope it was worth it. ;] It does hopefully clear a path for subsequent extensions w/o nearly as much leg work. Lots of thanks to Reid and Justin for careful reviews and ideas about how to do all of this. Differential Revision: https://reviews.llvm.org/D50701 llvm-svn: 339940
2018-08-17 05:30:05 +08:00
// Set the memory reference descriptions of this instruction now that it is
// part of the function.
MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
// Insert the instruction into position in the block. This needs to
// happen before any custom inserter hook is called so that the
// hook knows where in the block to insert the replacement code.
MBB->insert(InsertPos, MIB);
// The MachineInstr may also define physregs instead of virtregs. These
// physreg values can reach other instructions in different ways:
//
// 1. When there is a use of a Node value beyond the explicitly defined
// virtual registers, we emit a CopyFromReg for one of the implicitly
// defined physregs. This only happens when HasPhysRegOuts is true.
//
// 2. A CopyFromReg reading a physreg may be glued to this instruction.
//
// 3. A glued instruction may implicitly use a physreg.
//
// 4. A glued instruction may use a RegisterSDNode operand.
//
// Collect all the used physreg defs, and make sure that any unused physreg
// defs are marked as dead.
SmallVector<Register, 8> UsedRegs;
// Additional results must be physical register defs.
if (HasPhysRegOuts) {
for (unsigned i = NumDefs; i < NumResults; ++i) {
Register Reg = II.getImplicitDefs()[i - NumDefs];
if (!Node->hasAnyUseOfValue(i))
continue;
// This implicitly defined physreg has a use.
UsedRegs.push_back(Reg);
EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
}
}
2011-09-20 11:06:13 +08:00
// Scan the glue chain for any used physregs.
if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
if (F->getOpcode() == ISD::CopyFromReg) {
UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
continue;
} else if (F->getOpcode() == ISD::CopyToReg) {
// Skip CopyToReg nodes that are internal to the glue chain.
continue;
}
// Collect declared implicit uses.
const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
UsedRegs.append(MCID.getImplicitUses(),
MCID.getImplicitUses() + MCID.getNumImplicitUses());
// In addition to declared implicit uses, we must also check for
// direct RegisterSDNode operands.
for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
Register Reg = R->getReg();
if (Reg.isPhysical())
UsedRegs.push_back(Reg);
}
}
}
// Finally mark unused registers as dead.
if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
// Run post-isel target hook to adjust this instruction if needed.
if (II.hasPostISelHook())
TLI->AdjustInstrPostInstrSelection(*MIB, Node);
}
/// EmitSpecialNode - Generate machine code for a target-independent node and
/// needed dependencies.
void InstrEmitter::
EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump();
#endif
llvm_unreachable("This target-independent node should have been selected!");
case ISD::EntryToken:
llvm_unreachable("EntryToken should have been excluded from the schedule!");
case ISD::MERGE_VALUES:
case ISD::TokenFactor: // fall thru
break;
case ISD::CopyToReg: {
unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
SDValue SrcVal = Node->getOperand(2);
if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
// Instead building a COPY to that vreg destination, build an
// IMPLICIT_DEF instruction instead.
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
break;
}
unsigned SrcReg;
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
SrcReg = R->getReg();
else
SrcReg = getVR(SrcVal, VRBaseMap);
2011-09-20 11:06:13 +08:00
if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
break;
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
DestReg).addReg(SrcReg);
break;
}
case ISD::CopyFromReg: {
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
break;
}
case ISD::EH_LABEL:
case ISD::ANNOTATION_LABEL: {
unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
? TargetOpcode::EH_LABEL
: TargetOpcode::ANNOTATION_LABEL;
MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
TII->get(Opc)).addSym(S);
break;
}
2011-09-20 11:06:13 +08:00
case ISD::LIFETIME_START:
case ISD::LIFETIME_END: {
unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
.addFrameIndex(FI->getIndex());
break;
}
case ISD::INLINEASM:
case ISD::INLINEASM_BR: {
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
--NumOps; // Ignore the glue operand.
2011-09-20 11:06:13 +08:00
// Create the inline asm machine instruction.
unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
? TargetOpcode::INLINEASM_BR
: TargetOpcode::INLINEASM;
MachineInstrBuilder MIB =
BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
// Add the asm string as an external symbol operand.
SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
MIB.addExternalSymbol(AsmStr);
2011-09-20 11:06:13 +08:00
// Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
// bits.
int64_t ExtraInfo =
cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
getZExtValue();
MIB.addImm(ExtraInfo);
// Remember to operand index of the group flags.
SmallVector<unsigned, 8> GroupIdx;
[InlineAsm] Remove EarlyClobber on registers that are also inputs When an inline asm call has an output register marked as early-clobber, but that same register is also an input operand, what should we do? GCC accepts this, and is documented to accept this for read/write operands saying, "Furthermore, if the earlyclobber operand is also a read/write operand, then that operand is written only after it's used." For write-only operands, the situation seems less clear, but I have at least one existing codebase that assumes this will work, in part because it has syscall macros like this: ({ \ register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \ register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \ register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \ register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \ __asm__ __volatile__ \ ("sc" \ : "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \ : "0"(r0), "1"(r3), "2"(r4), "3"(r5) \ : "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \ r3; \ }) Furthermore, with register aliases and subregister relationships that only the backend knows about, rejecting this in the frontend seems like a difficult proposition (if we wanted to do so). However, keeping the early-clobber flag on the INLINEASM MI does not work for us, because it will cause the register's live interval to end to soon (so it will not appear defined to be used as an input). Fortunately, fixing this does not seem hard: When forming the INLINEASM MI, check to see if any of the early-clobber outputs are also inputs, and if so, remove the early-clobber flag. llvm-svn: 235283
2015-04-20 08:01:30 +08:00
// Remember registers that are part of early-clobber defs.
SmallVector<unsigned, 8> ECRegs;
// Add all of the operand registers to the instruction.
for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
2011-09-20 11:06:13 +08:00
GroupIdx.push_back(MIB->getNumOperands());
MIB.addImm(Flags);
++i; // Skip the ID value.
2011-09-20 11:06:13 +08:00
switch (InlineAsm::getKind(Flags)) {
default: llvm_unreachable("Bad flags!");
case InlineAsm::Kind_RegDef:
for (unsigned j = 0; j != NumVals; ++j, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
// FIXME: Add dead flags for physical and virtual registers defined.
// For now, mark physical register defs as implicit to help fast
// regalloc. This makes inline asm look a lot like calls.
MIB.addReg(Reg,
RegState::Define |
getImplRegState(Register::isPhysicalRegister(Reg)));
}
break;
case InlineAsm::Kind_RegDefEarlyClobber:
case InlineAsm::Kind_Clobber:
for (unsigned j = 0; j != NumVals; ++j, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
MIB.addReg(Reg,
RegState::Define | RegState::EarlyClobber |
getImplRegState(Register::isPhysicalRegister(Reg)));
[InlineAsm] Remove EarlyClobber on registers that are also inputs When an inline asm call has an output register marked as early-clobber, but that same register is also an input operand, what should we do? GCC accepts this, and is documented to accept this for read/write operands saying, "Furthermore, if the earlyclobber operand is also a read/write operand, then that operand is written only after it's used." For write-only operands, the situation seems less clear, but I have at least one existing codebase that assumes this will work, in part because it has syscall macros like this: ({ \ register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \ register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \ register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \ register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \ __asm__ __volatile__ \ ("sc" \ : "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \ : "0"(r0), "1"(r3), "2"(r4), "3"(r5) \ : "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \ r3; \ }) Furthermore, with register aliases and subregister relationships that only the backend knows about, rejecting this in the frontend seems like a difficult proposition (if we wanted to do so). However, keeping the early-clobber flag on the INLINEASM MI does not work for us, because it will cause the register's live interval to end to soon (so it will not appear defined to be used as an input). Fortunately, fixing this does not seem hard: When forming the INLINEASM MI, check to see if any of the early-clobber outputs are also inputs, and if so, remove the early-clobber flag. llvm-svn: 235283
2015-04-20 08:01:30 +08:00
ECRegs.push_back(Reg);
}
break;
case InlineAsm::Kind_RegUse: // Use of register.
case InlineAsm::Kind_Imm: // Immediate.
case InlineAsm::Kind_Mem: // Addressing mode.
// The addressing mode has been selected, just add all of the
// operands to the machine instruction.
for (unsigned j = 0; j != NumVals; ++j, ++i)
AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
/*IsDebug=*/false, IsClone, IsCloned);
// Manually set isTied bits.
if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
unsigned DefGroup = 0;
if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
unsigned DefIdx = GroupIdx[DefGroup] + 1;
unsigned UseIdx = GroupIdx.back() + 1;
for (unsigned j = 0; j != NumVals; ++j)
MIB->tieOperands(DefIdx + j, UseIdx + j);
}
}
break;
}
}
2011-09-20 11:06:13 +08:00
[InlineAsm] Remove EarlyClobber on registers that are also inputs When an inline asm call has an output register marked as early-clobber, but that same register is also an input operand, what should we do? GCC accepts this, and is documented to accept this for read/write operands saying, "Furthermore, if the earlyclobber operand is also a read/write operand, then that operand is written only after it's used." For write-only operands, the situation seems less clear, but I have at least one existing codebase that assumes this will work, in part because it has syscall macros like this: ({ \ register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \ register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \ register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \ register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \ __asm__ __volatile__ \ ("sc" \ : "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \ : "0"(r0), "1"(r3), "2"(r4), "3"(r5) \ : "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \ r3; \ }) Furthermore, with register aliases and subregister relationships that only the backend knows about, rejecting this in the frontend seems like a difficult proposition (if we wanted to do so). However, keeping the early-clobber flag on the INLINEASM MI does not work for us, because it will cause the register's live interval to end to soon (so it will not appear defined to be used as an input). Fortunately, fixing this does not seem hard: When forming the INLINEASM MI, check to see if any of the early-clobber outputs are also inputs, and if so, remove the early-clobber flag. llvm-svn: 235283
2015-04-20 08:01:30 +08:00
// GCC inline assembly allows input operands to also be early-clobber
// output operands (so long as the operand is written only after it's
// used), but this does not match the semantics of our early-clobber flag.
// If an early-clobber operand register is also an input operand register,
// then remove the early-clobber flag.
for (unsigned Reg : ECRegs) {
if (MIB->readsRegister(Reg, TRI)) {
MachineOperand *MO =
MIB->findRegisterDefOperand(Reg, false, false, TRI);
[InlineAsm] Remove EarlyClobber on registers that are also inputs When an inline asm call has an output register marked as early-clobber, but that same register is also an input operand, what should we do? GCC accepts this, and is documented to accept this for read/write operands saying, "Furthermore, if the earlyclobber operand is also a read/write operand, then that operand is written only after it's used." For write-only operands, the situation seems less clear, but I have at least one existing codebase that assumes this will work, in part because it has syscall macros like this: ({ \ register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \ register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \ register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \ register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \ __asm__ __volatile__ \ ("sc" \ : "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \ : "0"(r0), "1"(r3), "2"(r4), "3"(r5) \ : "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \ r3; \ }) Furthermore, with register aliases and subregister relationships that only the backend knows about, rejecting this in the frontend seems like a difficult proposition (if we wanted to do so). However, keeping the early-clobber flag on the INLINEASM MI does not work for us, because it will cause the register's live interval to end to soon (so it will not appear defined to be used as an input). Fortunately, fixing this does not seem hard: When forming the INLINEASM MI, check to see if any of the early-clobber outputs are also inputs, and if so, remove the early-clobber flag. llvm-svn: 235283
2015-04-20 08:01:30 +08:00
assert(MO && "No def operand for clobbered register?");
MO->setIsEarlyClobber(false);
}
}
// Get the mdnode from the asm if it exists and add it to the instruction.
SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
if (MD)
MIB.addMetadata(MD);
2011-09-20 11:06:13 +08:00
MBB->insert(InsertPos, MIB);
break;
}
}
}
/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
/// at the given position in the given block.
InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
MachineBasicBlock::iterator insertpos)
: MF(mbb->getParent()), MRI(&MF->getRegInfo()),
TII(MF->getSubtarget().getInstrInfo()),
TRI(MF->getSubtarget().getRegisterInfo()),
TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
InsertPos(insertpos) {}