llvm-project/compiler-rt/lib/msan/tests/msan_test.cc

2175 lines
57 KiB
C++
Raw Normal View History

//===-- msan_test.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer unit tests.
//===----------------------------------------------------------------------===//
#ifndef MSAN_EXTERNAL_TEST_CONFIG
#include "msan_test_config.h"
#endif // MSAN_EXTERNAL_TEST_CONFIG
#include "sanitizer/msan_interface.h"
#include "msandr_test_so.h"
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <assert.h>
#include <wchar.h>
#include <math.h>
#include <arpa/inet.h>
#include <dlfcn.h>
#include <grp.h>
#include <unistd.h>
#include <limits.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/ioctl.h>
#include <sys/utsname.h>
#include <sys/mman.h>
#include <sys/vfs.h>
#include <sys/types.h>
#include <dirent.h>
#include <pwd.h>
#include <sys/socket.h>
#if defined(__i386__) || defined(__x86_64__)
# include <emmintrin.h>
# define MSAN_HAS_M128 1
#else
# define MSAN_HAS_M128 0
#endif
typedef unsigned char U1;
typedef unsigned short U2; // NOLINT
typedef unsigned int U4;
typedef unsigned long long U8; // NOLINT
typedef signed char S1;
typedef signed short S2; // NOLINT
typedef signed int S4;
typedef signed long long S8; // NOLINT
#define NOINLINE __attribute__((noinline))
#define INLINE __attribute__((always_inline))
static bool TrackingOrigins() {
S8 x;
__msan_set_origin(&x, sizeof(x), 0x1234);
U4 origin = __msan_get_origin(&x);
__msan_set_origin(&x, sizeof(x), 0);
return origin == 0x1234;
}
#define EXPECT_UMR(action) \
do { \
__msan_set_expect_umr(1); \
action; \
__msan_set_expect_umr(0); \
} while (0)
#define EXPECT_UMR_O(action, origin) \
do { \
__msan_set_expect_umr(1); \
action; \
__msan_set_expect_umr(0); \
if (TrackingOrigins()) \
EXPECT_EQ(origin, __msan_get_umr_origin()); \
} while (0)
#define EXPECT_UMR_S(action, stack_origin) \
do { \
__msan_set_expect_umr(1); \
action; \
__msan_set_expect_umr(0); \
U4 id = __msan_get_umr_origin(); \
const char *str = __msan_get_origin_descr_if_stack(id); \
if (!str || strcmp(str, stack_origin)) { \
fprintf(stderr, "EXPECT_POISONED_S: id=%u %s, %s", \
id, stack_origin, str); \
EXPECT_EQ(1, 0); \
} \
} while (0)
#define EXPECT_POISONED(x) ExpectPoisoned(x)
template<typename T>
void ExpectPoisoned(const T& t) {
EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t)));
}
#define EXPECT_POISONED_O(x, origin) \
ExpectPoisonedWithOrigin(x, origin)
template<typename T>
void ExpectPoisonedWithOrigin(const T& t, unsigned origin) {
EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t)));
if (TrackingOrigins())
EXPECT_EQ(origin, __msan_get_origin((void*)&t));
}
#define EXPECT_POISONED_S(x, stack_origin) \
ExpectPoisonedWithStackOrigin(x, stack_origin)
template<typename T>
void ExpectPoisonedWithStackOrigin(const T& t, const char *stack_origin) {
EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t)));
U4 id = __msan_get_origin((void*)&t);
const char *str = __msan_get_origin_descr_if_stack(id);
if (!str || strcmp(str, stack_origin)) {
fprintf(stderr, "EXPECT_POISONED_S: id=%u %s, %s",
id, stack_origin, str);
EXPECT_EQ(1, 0);
}
}
#define EXPECT_NOT_POISONED(x) ExpectNotPoisoned(x)
template<typename T>
void ExpectNotPoisoned(const T& t) {
EXPECT_EQ(-1, __msan_test_shadow((void*)&t, sizeof(t)));
}
static U8 poisoned_array[100];
template<class T>
T *GetPoisoned(int i = 0, T val = 0) {
T *res = (T*)&poisoned_array[i];
*res = val;
__msan_poison(&poisoned_array[i], sizeof(T));
return res;
}
template<class T>
T *GetPoisonedO(int i, U4 origin, T val = 0) {
T *res = (T*)&poisoned_array[i];
*res = val;
__msan_poison(&poisoned_array[i], sizeof(T));
__msan_set_origin(&poisoned_array[i], sizeof(T), origin);
return res;
}
// This function returns its parameter but in such a way that compiler
// can not prove it.
template<class T>
NOINLINE
static T Ident(T t) {
volatile T ret = t;
return ret;
}
template<class T> NOINLINE T ReturnPoisoned() { return *GetPoisoned<T>(); }
static volatile int g_one = 1;
static volatile int g_zero = 0;
static volatile int g_0 = 0;
static volatile int g_1 = 1;
S4 a_s4[100];
S8 a_s8[100];
// Check that malloc poisons memory.
// A lot of tests below depend on this.
TEST(MemorySanitizerSanity, PoisonInMalloc) {
int *x = (int*)malloc(sizeof(int));
EXPECT_POISONED(*x);
free(x);
}
TEST(MemorySanitizer, NegativeTest1) {
S4 *x = GetPoisoned<S4>();
if (g_one)
*x = 0;
EXPECT_NOT_POISONED(*x);
}
TEST(MemorySanitizer, PositiveTest1) {
// Load to store.
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S8>());
// S->S conversions.
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S8>());
EXPECT_POISONED(*GetPoisoned<S8>());
EXPECT_POISONED(*GetPoisoned<S8>());
// ZExt
EXPECT_POISONED(*GetPoisoned<U1>());
EXPECT_POISONED(*GetPoisoned<U1>());
EXPECT_POISONED(*GetPoisoned<U1>());
EXPECT_POISONED(*GetPoisoned<U2>());
EXPECT_POISONED(*GetPoisoned<U2>());
EXPECT_POISONED(*GetPoisoned<U4>());
// Unary ops.
EXPECT_POISONED(- *GetPoisoned<S4>());
EXPECT_UMR(a_s4[g_zero] = 100 / *GetPoisoned<S4>(0, 1));
a_s4[g_zero] = 1 - *GetPoisoned<S4>();
a_s4[g_zero] = 1 + *GetPoisoned<S4>();
}
TEST(MemorySanitizer, Phi1) {
S4 c;
if (g_one) {
c = *GetPoisoned<S4>();
} else {
break_optimization(0);
c = 0;
}
EXPECT_POISONED(c);
}
TEST(MemorySanitizer, Phi2) {
S4 i = *GetPoisoned<S4>();
S4 n = g_one;
EXPECT_UMR(for (; i < g_one; i++););
EXPECT_POISONED(i);
}
NOINLINE void Arg1ExpectUMR(S4 a1) { EXPECT_POISONED(a1); }
NOINLINE void Arg2ExpectUMR(S4 a1, S4 a2) { EXPECT_POISONED(a2); }
NOINLINE void Arg3ExpectUMR(S1 a1, S4 a2, S8 a3) { EXPECT_POISONED(a3); }
TEST(MemorySanitizer, ArgTest) {
Arg1ExpectUMR(*GetPoisoned<S4>());
Arg2ExpectUMR(0, *GetPoisoned<S4>());
Arg3ExpectUMR(0, 1, *GetPoisoned<S8>());
}
TEST(MemorySanitizer, CallAndRet) {
if (!__msan_has_dynamic_component()) return;
ReturnPoisoned<S1>();
ReturnPoisoned<S2>();
ReturnPoisoned<S4>();
ReturnPoisoned<S8>();
EXPECT_POISONED(ReturnPoisoned<S1>());
EXPECT_POISONED(ReturnPoisoned<S2>());
EXPECT_POISONED(ReturnPoisoned<S4>());
EXPECT_POISONED(ReturnPoisoned<S8>());
}
// malloc() in the following test may be optimized to produce a compile-time
// undef value. Check that we trap on the volatile assignment anyway.
TEST(MemorySanitizer, DISABLED_MallocNoIdent) {
S4 *x = (int*)malloc(sizeof(S4));
EXPECT_POISONED(*x);
free(x);
}
TEST(MemorySanitizer, Malloc) {
S4 *x = (int*)Ident(malloc(sizeof(S4)));
EXPECT_POISONED(*x);
free(x);
}
TEST(MemorySanitizer, Realloc) {
S4 *x = (int*)Ident(realloc(0, sizeof(S4)));
EXPECT_POISONED(x[0]);
x[0] = 1;
x = (int*)Ident(realloc(x, 2 * sizeof(S4)));
EXPECT_NOT_POISONED(x[0]); // Ok, was inited before.
EXPECT_POISONED(x[1]);
x = (int*)Ident(realloc(x, 3 * sizeof(S4)));
EXPECT_NOT_POISONED(x[0]); // Ok, was inited before.
EXPECT_POISONED(x[2]);
EXPECT_POISONED(x[1]);
x[2] = 1; // Init this here. Check that after realloc it is poisoned again.
x = (int*)Ident(realloc(x, 2 * sizeof(S4)));
EXPECT_NOT_POISONED(x[0]); // Ok, was inited before.
EXPECT_POISONED(x[1]);
x = (int*)Ident(realloc(x, 3 * sizeof(S4)));
EXPECT_POISONED(x[1]);
EXPECT_POISONED(x[2]);
free(x);
}
TEST(MemorySanitizer, Calloc) {
S4 *x = (int*)Ident(calloc(1, sizeof(S4)));
EXPECT_NOT_POISONED(*x); // Should not be poisoned.
// EXPECT_EQ(0, *x);
free(x);
}
TEST(MemorySanitizer, AndOr) {
U4 *p = GetPoisoned<U4>();
// We poison two bytes in the midle of a 4-byte word to make the test
// correct regardless of endianness.
((U1*)p)[1] = 0;
((U1*)p)[2] = 0xff;
EXPECT_NOT_POISONED(*p & 0x00ffff00);
EXPECT_NOT_POISONED(*p & 0x00ff0000);
EXPECT_NOT_POISONED(*p & 0x0000ff00);
EXPECT_POISONED(*p & 0xff000000);
EXPECT_POISONED(*p & 0x000000ff);
EXPECT_POISONED(*p & 0x0000ffff);
EXPECT_POISONED(*p & 0xffff0000);
EXPECT_NOT_POISONED(*p | 0xff0000ff);
EXPECT_NOT_POISONED(*p | 0xff00ffff);
EXPECT_NOT_POISONED(*p | 0xffff00ff);
EXPECT_POISONED(*p | 0xff000000);
EXPECT_POISONED(*p | 0x000000ff);
EXPECT_POISONED(*p | 0x0000ffff);
EXPECT_POISONED(*p | 0xffff0000);
EXPECT_POISONED(*GetPoisoned<bool>() & *GetPoisoned<bool>());
}
template<class T>
static bool applyNot(T value, T shadow) {
__msan_partial_poison(&value, &shadow, sizeof(T));
return !value;
}
TEST(MemorySanitizer, Not) {
EXPECT_NOT_POISONED(applyNot<U4>(0x0, 0x0));
EXPECT_NOT_POISONED(applyNot<U4>(0xFFFFFFFF, 0x0));
EXPECT_POISONED(applyNot<U4>(0xFFFFFFFF, 0xFFFFFFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x0FFFFFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x00FFFFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x0000FFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x00000000));
EXPECT_POISONED(applyNot<U4>(0xFF000000, 0xFF000000));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF800000, 0xFF000000));
EXPECT_POISONED(applyNot<U4>(0x00008000, 0x00008000));
EXPECT_NOT_POISONED(applyNot<U1>(0x0, 0x0));
EXPECT_NOT_POISONED(applyNot<U1>(0xFF, 0xFE));
EXPECT_NOT_POISONED(applyNot<U1>(0xFF, 0x0));
EXPECT_POISONED(applyNot<U1>(0xFF, 0xFF));
EXPECT_POISONED(applyNot<void*>((void*)0xFFFFFF, (void*)(-1)));
EXPECT_NOT_POISONED(applyNot<void*>((void*)0xFFFFFF, (void*)(-2)));
}
TEST(MemorySanitizer, Shift) {
U4 *up = GetPoisoned<U4>();
((U1*)up)[0] = 0;
((U1*)up)[3] = 0xff;
EXPECT_NOT_POISONED(*up >> 30);
EXPECT_NOT_POISONED(*up >> 24);
EXPECT_POISONED(*up >> 23);
EXPECT_POISONED(*up >> 10);
EXPECT_NOT_POISONED(*up << 30);
EXPECT_NOT_POISONED(*up << 24);
EXPECT_POISONED(*up << 23);
EXPECT_POISONED(*up << 10);
S4 *sp = (S4*)up;
EXPECT_NOT_POISONED(*sp >> 30);
EXPECT_NOT_POISONED(*sp >> 24);
EXPECT_POISONED(*sp >> 23);
EXPECT_POISONED(*sp >> 10);
sp = GetPoisoned<S4>();
((S1*)sp)[1] = 0;
((S1*)sp)[2] = 0;
EXPECT_POISONED(*sp >> 31);
EXPECT_POISONED(100 >> *GetPoisoned<S4>());
EXPECT_POISONED(100U >> *GetPoisoned<S4>());
}
NOINLINE static int GetPoisonedZero() {
int *zero = new int;
*zero = 0;
__msan_poison(zero, sizeof(*zero));
int res = *zero;
delete zero;
return res;
}
TEST(MemorySanitizer, LoadFromDirtyAddress) {
int *a = new int;
*a = 0;
EXPECT_UMR(break_optimization((void*)(U8)a[GetPoisonedZero()]));
delete a;
}
TEST(MemorySanitizer, StoreToDirtyAddress) {
int *a = new int;
EXPECT_UMR(a[GetPoisonedZero()] = 0);
break_optimization(a);
delete a;
}
NOINLINE void StackTestFunc() {
S4 p4;
S4 ok4 = 1;
S2 p2;
S2 ok2 = 1;
S1 p1;
S1 ok1 = 1;
break_optimization(&p4);
break_optimization(&ok4);
break_optimization(&p2);
break_optimization(&ok2);
break_optimization(&p1);
break_optimization(&ok1);
EXPECT_POISONED(p4);
EXPECT_POISONED(p2);
EXPECT_POISONED(p1);
EXPECT_NOT_POISONED(ok1);
EXPECT_NOT_POISONED(ok2);
EXPECT_NOT_POISONED(ok4);
}
TEST(MemorySanitizer, StackTest) {
StackTestFunc();
}
NOINLINE void StackStressFunc() {
int foo[10000];
break_optimization(foo);
}
TEST(MemorySanitizer, DISABLED_StackStressTest) {
for (int i = 0; i < 1000000; i++)
StackStressFunc();
}
template<class T>
void TestFloatingPoint() {
static volatile T v;
static T g[100];
break_optimization(&g);
T *x = GetPoisoned<T>();
T *y = GetPoisoned<T>(1);
EXPECT_POISONED(*x);
EXPECT_POISONED((long long)*x);
EXPECT_POISONED((int)*x);
g[0] = *x;
g[1] = *x + *y;
g[2] = *x - *y;
g[3] = *x * *y;
}
TEST(MemorySanitizer, FloatingPointTest) {
TestFloatingPoint<float>();
TestFloatingPoint<double>();
}
TEST(MemorySanitizer, DynMem) {
S4 x = 0;
S4 *y = GetPoisoned<S4>();
memcpy(y, &x, g_one * sizeof(S4));
EXPECT_NOT_POISONED(*y);
}
static char *DynRetTestStr;
TEST(MemorySanitizer, DynRet) {
if (!__msan_has_dynamic_component()) return;
ReturnPoisoned<S8>();
EXPECT_NOT_POISONED(clearenv());
}
TEST(MemorySanitizer, DynRet1) {
if (!__msan_has_dynamic_component()) return;
ReturnPoisoned<S8>();
}
struct LargeStruct {
S4 x[10];
};
NOINLINE
LargeStruct LargeRetTest() {
LargeStruct res;
res.x[0] = *GetPoisoned<S4>();
res.x[1] = *GetPoisoned<S4>();
res.x[2] = *GetPoisoned<S4>();
res.x[3] = *GetPoisoned<S4>();
res.x[4] = *GetPoisoned<S4>();
res.x[5] = *GetPoisoned<S4>();
res.x[6] = *GetPoisoned<S4>();
res.x[7] = *GetPoisoned<S4>();
res.x[8] = *GetPoisoned<S4>();
res.x[9] = *GetPoisoned<S4>();
return res;
}
TEST(MemorySanitizer, LargeRet) {
LargeStruct a = LargeRetTest();
EXPECT_POISONED(a.x[0]);
EXPECT_POISONED(a.x[9]);
}
TEST(MemorySanitizer, fread) {
char *x = new char[32];
FILE *f = fopen("/proc/self/stat", "r");
assert(f);
fread(x, 1, 32, f);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[16]);
EXPECT_NOT_POISONED(x[31]);
fclose(f);
delete x;
}
TEST(MemorySanitizer, read) {
char *x = new char[32];
int fd = open("/proc/self/stat", O_RDONLY);
assert(fd > 0);
int sz = read(fd, x, 32);
assert(sz == 32);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[16]);
EXPECT_NOT_POISONED(x[31]);
close(fd);
delete x;
}
TEST(MemorySanitizer, pread) {
char *x = new char[32];
int fd = open("/proc/self/stat", O_RDONLY);
assert(fd > 0);
int sz = pread(fd, x, 32, 0);
assert(sz == 32);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[16]);
EXPECT_NOT_POISONED(x[31]);
close(fd);
delete x;
}
// FIXME: fails now.
TEST(MemorySanitizer, DISABLED_ioctl) {
struct winsize ws;
EXPECT_EQ(ioctl(2, TIOCGWINSZ, &ws), 0);
EXPECT_NOT_POISONED(ws.ws_col);
}
TEST(MemorySanitizer, readlink) {
char *x = new char[1000];
readlink("/proc/self/exe", x, 1000);
EXPECT_NOT_POISONED(x[0]);
delete [] x;
}
TEST(MemorySanitizer, stat) {
struct stat* st = new struct stat;
int res = stat("/proc/self/stat", st);
assert(!res);
EXPECT_NOT_POISONED(st->st_dev);
EXPECT_NOT_POISONED(st->st_mode);
EXPECT_NOT_POISONED(st->st_size);
}
TEST(MemorySanitizer, statfs) {
struct statfs* st = new struct statfs;
int res = statfs("/", st);
assert(!res);
EXPECT_NOT_POISONED(st->f_type);
EXPECT_NOT_POISONED(st->f_bfree);
EXPECT_NOT_POISONED(st->f_namelen);
}
TEST(MemorySanitizer, pipe) {
int* pipefd = new int[2];
int res = pipe(pipefd);
assert(!res);
EXPECT_NOT_POISONED(pipefd[0]);
EXPECT_NOT_POISONED(pipefd[1]);
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, pipe2) {
int* pipefd = new int[2];
int res = pipe2(pipefd, O_NONBLOCK);
assert(!res);
EXPECT_NOT_POISONED(pipefd[0]);
EXPECT_NOT_POISONED(pipefd[1]);
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, socketpair) {
int sv[2];
int res = socketpair(AF_UNIX, SOCK_STREAM, 0, sv);
assert(!res);
EXPECT_NOT_POISONED(sv[0]);
EXPECT_NOT_POISONED(sv[1]);
close(sv[0]);
close(sv[1]);
}
TEST(MemorySanitizer, getcwd) {
char path[PATH_MAX + 1];
char* res = getcwd(path, sizeof(path));
assert(res);
EXPECT_NOT_POISONED(path[0]);
}
TEST(MemorySanitizer, getcwd_gnu) {
char* res = getcwd(NULL, 0);
assert(res);
EXPECT_NOT_POISONED(res[0]);
free(res);
}
TEST(MemorySanitizer, readdir) {
DIR *dir = opendir(".");
struct dirent *d = readdir(dir);
assert(d);
EXPECT_NOT_POISONED(d->d_name[0]);
closedir(dir);
}
TEST(MemorySanitizer, realpath) {
const char* relpath = ".";
char path[PATH_MAX + 1];
char* res = realpath(relpath, path);
assert(res);
EXPECT_NOT_POISONED(path[0]);
}
TEST(MemorySanitizer, memcpy) {
char* x = new char[2];
char* y = new char[2];
x[0] = 1;
x[1] = *GetPoisoned<char>();
memcpy(y, x, 2);
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
}
TEST(MemorySanitizer, memmove) {
char* x = new char[2];
char* y = new char[2];
x[0] = 1;
x[1] = *GetPoisoned<char>();
memmove(y, x, 2);
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
}
TEST(MemorySanitizer, strdup) {
char buf[4] = "abc";
__msan_poison(buf + 2, sizeof(*buf));
char *x = strdup(buf);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[1]);
EXPECT_POISONED(x[2]);
EXPECT_NOT_POISONED(x[3]);
free(x);
}
TEST(MemorySanitizer, strndup) {
char buf[4] = "abc";
__msan_poison(buf + 2, sizeof(*buf));
char *x = strndup(buf, 3);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[1]);
EXPECT_POISONED(x[2]);
EXPECT_NOT_POISONED(x[3]);
free(x);
}
TEST(MemorySanitizer, strndup_short) {
char buf[4] = "abc";
__msan_poison(buf + 1, sizeof(*buf));
__msan_poison(buf + 2, sizeof(*buf));
char *x = strndup(buf, 2);
EXPECT_NOT_POISONED(x[0]);
EXPECT_POISONED(x[1]);
EXPECT_NOT_POISONED(x[2]);
free(x);
}
template<class T, int size>
void TestOverlapMemmove() {
T *x = new T[size];
assert(size >= 3);
x[2] = 0;
memmove(x, x + 1, (size - 1) * sizeof(T));
EXPECT_NOT_POISONED(x[1]);
if (!__msan_has_dynamic_component()) {
// FIXME: under DR we will lose this information
// because accesses in memmove will unpoisin the shadow.
// We need to use our own memove implementation instead of libc's.
EXPECT_POISONED(x[0]);
EXPECT_POISONED(x[2]);
}
delete [] x;
}
TEST(MemorySanitizer, overlap_memmove) {
TestOverlapMemmove<U1, 10>();
TestOverlapMemmove<U1, 1000>();
TestOverlapMemmove<U8, 4>();
TestOverlapMemmove<U8, 1000>();
}
TEST(MemorySanitizer, strcpy) { // NOLINT
char* x = new char[3];
char* y = new char[3];
x[0] = 'a';
x[1] = *GetPoisoned<char>(1, 1);
x[2] = 0;
strcpy(y, x); // NOLINT
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
EXPECT_NOT_POISONED(y[2]);
}
TEST(MemorySanitizer, strncpy) { // NOLINT
char* x = new char[3];
char* y = new char[3];
x[0] = 'a';
x[1] = *GetPoisoned<char>(1, 1);
x[2] = 0;
strncpy(y, x, 2); // NOLINT
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
EXPECT_POISONED(y[2]);
}
TEST(MemorySanitizer, strtol) {
char *e;
assert(1 == strtol("1", &e, 10));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, strtoll) {
char *e;
assert(1 == strtoll("1", &e, 10));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, strtoul) {
char *e;
assert(1 == strtoul("1", &e, 10));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, strtoull) {
char *e;
assert(1 == strtoull("1", &e, 10));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, strtod) {
char *e;
assert(0 != strtod("1.5", &e));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, strtof) {
char *e;
assert(0 != strtof("1.5", &e));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, strtold) {
char *e;
assert(0 != strtold("1.5", &e));
EXPECT_NOT_POISONED((S8) e);
}
TEST(MemorySanitizer, sprintf) { // NOLINT
char buff[10];
break_optimization(buff);
EXPECT_POISONED(buff[0]);
int res = sprintf(buff, "%d", 1234567); // NOLINT
assert(res == 7);
assert(buff[0] == '1');
assert(buff[1] == '2');
assert(buff[2] == '3');
assert(buff[6] == '7');
assert(buff[7] == 0);
EXPECT_POISONED(buff[8]);
}
TEST(MemorySanitizer, snprintf) {
char buff[10];
break_optimization(buff);
EXPECT_POISONED(buff[0]);
int res = snprintf(buff, sizeof(buff), "%d", 1234567);
assert(res == 7);
assert(buff[0] == '1');
assert(buff[1] == '2');
assert(buff[2] == '3');
assert(buff[6] == '7');
assert(buff[7] == 0);
EXPECT_POISONED(buff[8]);
}
TEST(MemorySanitizer, swprintf) {
wchar_t buff[10];
assert(sizeof(wchar_t) == 4);
break_optimization(buff);
EXPECT_POISONED(buff[0]);
int res = swprintf(buff, 9, L"%d", 1234567);
assert(res == 7);
assert(buff[0] == '1');
assert(buff[1] == '2');
assert(buff[2] == '3');
assert(buff[6] == '7');
assert(buff[7] == 0);
EXPECT_POISONED(buff[8]);
}
TEST(MemorySanitizer, wcstombs) {
const wchar_t *x = L"abc";
char buff[10];
int res = wcstombs(buff, x, 4);
EXPECT_EQ(res, 3);
EXPECT_EQ(buff[0], 'a');
EXPECT_EQ(buff[1], 'b');
EXPECT_EQ(buff[2], 'c');
}
TEST(MemorySanitizer, gettimeofday) {
struct timeval tv;
struct timezone tz;
break_optimization(&tv);
break_optimization(&tz);
assert(sizeof(tv) == 16);
assert(sizeof(tz) == 8);
EXPECT_POISONED(tv.tv_sec);
EXPECT_POISONED(tv.tv_usec);
EXPECT_POISONED(tz.tz_minuteswest);
EXPECT_POISONED(tz.tz_dsttime);
assert(0 == gettimeofday(&tv, &tz));
EXPECT_NOT_POISONED(tv.tv_sec);
EXPECT_NOT_POISONED(tv.tv_usec);
EXPECT_NOT_POISONED(tz.tz_minuteswest);
EXPECT_NOT_POISONED(tz.tz_dsttime);
}
TEST(MemorySanitizer, clock_gettime) {
struct timespec tp;
EXPECT_POISONED(tp.tv_sec);
EXPECT_POISONED(tp.tv_nsec);
assert(0 == clock_gettime(CLOCK_REALTIME, &tp));
EXPECT_NOT_POISONED(tp.tv_sec);
EXPECT_NOT_POISONED(tp.tv_nsec);
}
TEST(MemorySanitizer, clock_getres) {
struct timespec tp;
EXPECT_POISONED(tp.tv_sec);
EXPECT_POISONED(tp.tv_nsec);
assert(0 == clock_getres(CLOCK_REALTIME, 0));
EXPECT_POISONED(tp.tv_sec);
EXPECT_POISONED(tp.tv_nsec);
assert(0 == clock_getres(CLOCK_REALTIME, &tp));
EXPECT_NOT_POISONED(tp.tv_sec);
EXPECT_NOT_POISONED(tp.tv_nsec);
}
TEST(MemorySanitizer, getitimer) {
struct itimerval it1, it2;
int res;
EXPECT_POISONED(it1.it_interval.tv_sec);
EXPECT_POISONED(it1.it_interval.tv_usec);
EXPECT_POISONED(it1.it_value.tv_sec);
EXPECT_POISONED(it1.it_value.tv_usec);
res = getitimer(ITIMER_VIRTUAL, &it1);
assert(!res);
EXPECT_NOT_POISONED(it1.it_interval.tv_sec);
EXPECT_NOT_POISONED(it1.it_interval.tv_usec);
EXPECT_NOT_POISONED(it1.it_value.tv_sec);
EXPECT_NOT_POISONED(it1.it_value.tv_usec);
it1.it_interval.tv_sec = it1.it_value.tv_sec = 10000;
it1.it_interval.tv_usec = it1.it_value.tv_usec = 0;
res = setitimer(ITIMER_VIRTUAL, &it1, &it2);
assert(!res);
EXPECT_NOT_POISONED(it2.it_interval.tv_sec);
EXPECT_NOT_POISONED(it2.it_interval.tv_usec);
EXPECT_NOT_POISONED(it2.it_value.tv_sec);
EXPECT_NOT_POISONED(it2.it_value.tv_usec);
// Check that old_value can be 0, and disable the timer.
memset(&it1, 0, sizeof(it1));
res = setitimer(ITIMER_VIRTUAL, &it1, 0);
assert(!res);
}
TEST(MemorySanitizer, time) {
time_t t;
EXPECT_POISONED(t);
time_t t2 = time(&t);
assert(t2 != (time_t)-1);
EXPECT_NOT_POISONED(t);
}
TEST(MemorySanitizer, localtime) {
time_t t = 123;
struct tm *time = localtime(&t);
assert(time != 0);
EXPECT_NOT_POISONED(time->tm_sec);
EXPECT_NOT_POISONED(time->tm_hour);
EXPECT_NOT_POISONED(time->tm_year);
EXPECT_NOT_POISONED(time->tm_isdst);
}
TEST(MemorySanitizer, localtime_r) {
time_t t = 123;
struct tm time;
struct tm *res = localtime_r(&t, &time);
assert(res != 0);
EXPECT_NOT_POISONED(time.tm_sec);
EXPECT_NOT_POISONED(time.tm_hour);
EXPECT_NOT_POISONED(time.tm_year);
EXPECT_NOT_POISONED(time.tm_isdst);
}
TEST(MemorySanitizer, mmap) {
const int size = 4096;
void *p1, *p2;
p1 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
__msan_poison(p1, size);
munmap(p1, size);
for (int i = 0; i < 1000; i++) {
p2 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
if (p2 == p1)
break;
else
munmap(p2, size);
}
if (p1 == p2) {
EXPECT_NOT_POISONED(*(char*)p2);
munmap(p2, size);
}
}
// FIXME: enable and add ecvt.
// FIXME: check why msandr does nt handle fcvt.
TEST(MemorySanitizer, fcvt) {
int a, b;
break_optimization(&a);
break_optimization(&b);
EXPECT_POISONED(a);
EXPECT_POISONED(b);
char *str = fcvt(12345.6789, 10, &a, &b);
EXPECT_NOT_POISONED(a);
EXPECT_NOT_POISONED(b);
}
TEST(MemorySanitizer, frexp) {
int x;
x = *GetPoisoned<int>();
double r = frexp(1.1, &x);
EXPECT_NOT_POISONED(r);
EXPECT_NOT_POISONED(x);
x = *GetPoisoned<int>();
float rf = frexpf(1.1, &x);
EXPECT_NOT_POISONED(rf);
EXPECT_NOT_POISONED(x);
x = *GetPoisoned<int>();
double rl = frexpl(1.1, &x);
EXPECT_NOT_POISONED(rl);
EXPECT_NOT_POISONED(x);
}
namespace {
static int cnt;
void SigactionHandler(int signo, siginfo_t* si, void* uc) {
assert(signo == SIGPROF);
assert(si);
EXPECT_NOT_POISONED(si->si_errno);
EXPECT_NOT_POISONED(si->si_pid);
#if __linux__
# if defined(__x86_64__)
EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_RIP]);
# elif defined(__i386__)
EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_EIP]);
# endif
#endif
++cnt;
}
TEST(MemorySanitizer, sigaction) {
struct sigaction act = {};
struct sigaction oldact = {};
struct sigaction origact = {};
sigaction(SIGPROF, 0, &origact);
act.sa_flags |= SA_SIGINFO;
act.sa_sigaction = &SigactionHandler;
sigaction(SIGPROF, &act, 0);
kill(getpid(), SIGPROF);
act.sa_flags &= ~SA_SIGINFO;
act.sa_handler = SIG_DFL;
sigaction(SIGPROF, &act, 0);
act.sa_flags &= ~SA_SIGINFO;
act.sa_handler = SIG_IGN;
sigaction(SIGPROF, &act, &oldact);
EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO);
EXPECT_EQ(SIG_DFL, oldact.sa_handler);
kill(getpid(), SIGPROF);
act.sa_flags |= SA_SIGINFO;
act.sa_sigaction = &SigactionHandler;
sigaction(SIGPROF, &act, &oldact);
EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO);
EXPECT_EQ(SIG_IGN, oldact.sa_handler);
kill(getpid(), SIGPROF);
act.sa_flags &= ~SA_SIGINFO;
act.sa_handler = SIG_DFL;
sigaction(SIGPROF, &act, &oldact);
EXPECT_TRUE(oldact.sa_flags & SA_SIGINFO);
EXPECT_EQ(&SigactionHandler, oldact.sa_sigaction);
EXPECT_EQ(2, cnt);
sigaction(SIGPROF, &origact, 0);
}
} // namespace
struct StructWithDtor {
~StructWithDtor();
};
NOINLINE StructWithDtor::~StructWithDtor() {
break_optimization(0);
}
TEST(MemorySanitizer, Invoke) {
StructWithDtor s; // Will cause the calls to become invokes.
EXPECT_NOT_POISONED(0);
EXPECT_POISONED(*GetPoisoned<int>());
EXPECT_NOT_POISONED(0);
EXPECT_POISONED(*GetPoisoned<int>());
EXPECT_POISONED(ReturnPoisoned<S4>());
}
TEST(MemorySanitizer, ptrtoint) {
// Test that shadow is propagated through pointer-to-integer conversion.
void* p = (void*)0xABCD;
__msan_poison(((char*)&p) + 1, sizeof(p));
EXPECT_NOT_POISONED((((uintptr_t)p) & 0xFF) == 0);
void* q = (void*)0xABCD;
__msan_poison(&q, sizeof(q) - 1);
EXPECT_POISONED((((uintptr_t)q) & 0xFF) == 0);
}
static void vaargsfn2(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, double));
va_end(vl);
}
static void vaargsfn(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
// The following call will overwrite __msan_param_tls.
// Checks after it test that arg shadow was somehow saved across the call.
vaargsfn2(1, 2, 3, 4, *GetPoisoned<double>());
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgTest) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn(1, 13, *x, 42, *y);
}
static void vaargsfn_many(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgManyTest) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn_many(1, 2, *x, 3, 4, 5, 6, 7, 8, 9, *y);
}
static void vaargsfn_pass2(va_list vl) {
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
}
static void vaargsfn_pass(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_POISONED(va_arg(vl, int));
vaargsfn_pass2(vl);
va_end(vl);
}
TEST(MemorySanitizer, VAArgPass) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn_pass(1, *x, 2, 3, *y);
}
static void vaargsfn_copy2(va_list vl) {
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
}
static void vaargsfn_copy(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_list vl2;
va_copy(vl2, vl);
vaargsfn_copy2(vl2);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgCopy) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn_copy(1, 2, *x, 3, *y);
}
static void vaargsfn_ptr(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int*));
EXPECT_POISONED(va_arg(vl, int*));
EXPECT_NOT_POISONED(va_arg(vl, int*));
EXPECT_POISONED(va_arg(vl, double*));
va_end(vl);
}
TEST(MemorySanitizer, VAArgPtr) {
int** x = GetPoisoned<int*>();
double** y = GetPoisoned<double*>(8);
int z;
vaargsfn_ptr(1, &z, *x, &z, *y);
}
static void vaargsfn_overflow(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int*));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int*));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, int*));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int*));
va_end(vl);
}
TEST(MemorySanitizer, VAArgOverflow) {
int* x = GetPoisoned<int>();
double* y = GetPoisoned<double>(8);
int** p = GetPoisoned<int*>(16);
int z;
vaargsfn_overflow(1,
1, 2, *x, 4, 5, 6,
1.1, 2.2, 3.3, *y, 5.5, *p, 7.7, 8.8,
// the following args will overflow for sure
*x, *y, *p,
7, 9.9, &z,
*x, *y, *p);
}
static void vaargsfn_tlsoverwrite2(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
va_end(vl);
}
static void vaargsfn_tlsoverwrite(int guard, ...) {
// This call will overwrite TLS contents unless it's backed up somewhere.
vaargsfn_tlsoverwrite2(2, 42);
va_list vl;
va_start(vl, guard);
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgTLSOverwrite) {
int* x = GetPoisoned<int>();
vaargsfn_tlsoverwrite(1, *x);
}
struct StructByVal {
int a, b, c, d, e, f;
};
NOINLINE void StructByValTestFunc(struct StructByVal s) {
EXPECT_NOT_POISONED(s.a);
EXPECT_POISONED(s.b);
EXPECT_NOT_POISONED(s.c);
EXPECT_POISONED(s.d);
EXPECT_NOT_POISONED(s.e);
EXPECT_POISONED(s.f);
}
NOINLINE void StructByValTestFunc1(struct StructByVal s) {
StructByValTestFunc(s);
}
NOINLINE void StructByValTestFunc2(int z, struct StructByVal s) {
StructByValTestFunc(s);
}
TEST(MemorySanitizer, StructByVal) {
// Large aggregates are passed as "byval" pointer argument in LLVM.
struct StructByVal s;
s.a = 1;
s.b = *GetPoisoned<int>();
s.c = 2;
s.d = *GetPoisoned<int>();
s.e = 3;
s.f = *GetPoisoned<int>();
StructByValTestFunc(s);
StructByValTestFunc1(s);
StructByValTestFunc2(0, s);
}
#if MSAN_HAS_M128
NOINLINE __m128i m128Eq(__m128i *a, __m128i *b) { return _mm_cmpeq_epi16(*a, *b); }
NOINLINE __m128i m128Lt(__m128i *a, __m128i *b) { return _mm_cmplt_epi16(*a, *b); }
TEST(MemorySanitizer, m128) {
__m128i a = _mm_set1_epi16(0x1234);
__m128i b = _mm_set1_epi16(0x7890);
EXPECT_NOT_POISONED(m128Eq(&a, &b));
EXPECT_NOT_POISONED(m128Lt(&a, &b));
}
// FIXME: add more tests for __m128i.
#endif // MSAN_HAS_M128
// We should not complain when copying this poisoned hole.
struct StructWithHole {
U4 a;
// 4-byte hole.
U8 b;
};
NOINLINE StructWithHole ReturnStructWithHole() {
StructWithHole res;
__msan_poison(&res, sizeof(res));
res.a = 1;
res.b = 2;
return res;
}
TEST(MemorySanitizer, StructWithHole) {
StructWithHole a = ReturnStructWithHole();
break_optimization(&a);
}
template <class T>
NOINLINE T ReturnStruct() {
T res;
__msan_poison(&res, sizeof(res));
res.a = 1;
return res;
}
template <class T>
NOINLINE void TestReturnStruct() {
T s1 = ReturnStruct<T>();
EXPECT_NOT_POISONED(s1.a);
EXPECT_POISONED(s1.b);
}
struct SSS1 {
int a, b, c;
};
struct SSS2 {
int b, a, c;
};
struct SSS3 {
int b, c, a;
};
struct SSS4 {
int c, b, a;
};
struct SSS5 {
int a;
float b;
};
struct SSS6 {
int a;
double b;
};
struct SSS7 {
S8 b;
int a;
};
struct SSS8 {
S2 b;
S8 a;
};
TEST(MemorySanitizer, IntStruct3) {
TestReturnStruct<SSS1>();
TestReturnStruct<SSS2>();
TestReturnStruct<SSS3>();
TestReturnStruct<SSS4>();
TestReturnStruct<SSS5>();
TestReturnStruct<SSS6>();
TestReturnStruct<SSS7>();
TestReturnStruct<SSS8>();
}
struct LongStruct {
U1 a1, b1;
U2 a2, b2;
U4 a4, b4;
U8 a8, b8;
};
NOINLINE LongStruct ReturnLongStruct1() {
LongStruct res;
__msan_poison(&res, sizeof(res));
res.a1 = res.a2 = res.a4 = res.a8 = 111;
// leaves b1, .., b8 poisoned.
return res;
}
NOINLINE LongStruct ReturnLongStruct2() {
LongStruct res;
__msan_poison(&res, sizeof(res));
res.b1 = res.b2 = res.b4 = res.b8 = 111;
// leaves a1, .., a8 poisoned.
return res;
}
TEST(MemorySanitizer, LongStruct) {
LongStruct s1 = ReturnLongStruct1();
__msan_print_shadow(&s1, sizeof(s1));
EXPECT_NOT_POISONED(s1.a1);
EXPECT_NOT_POISONED(s1.a2);
EXPECT_NOT_POISONED(s1.a4);
EXPECT_NOT_POISONED(s1.a8);
EXPECT_POISONED(s1.b1);
EXPECT_POISONED(s1.b2);
EXPECT_POISONED(s1.b4);
EXPECT_POISONED(s1.b8);
LongStruct s2 = ReturnLongStruct2();
__msan_print_shadow(&s2, sizeof(s2));
EXPECT_NOT_POISONED(s2.b1);
EXPECT_NOT_POISONED(s2.b2);
EXPECT_NOT_POISONED(s2.b4);
EXPECT_NOT_POISONED(s2.b8);
EXPECT_POISONED(s2.a1);
EXPECT_POISONED(s2.a2);
EXPECT_POISONED(s2.a4);
EXPECT_POISONED(s2.a8);
}
TEST(MemorySanitizer, getrlimit) {
struct rlimit limit;
__msan_poison(&limit, sizeof(limit));
int result = getrlimit(RLIMIT_DATA, &limit);
assert(result == 0);
volatile rlim_t t;
t = limit.rlim_cur;
t = limit.rlim_max;
}
TEST(MemorySanitizer, getrusage) {
struct rusage usage;
__msan_poison(&usage, sizeof(usage));
int result = getrusage(RUSAGE_SELF, &usage);
assert(result == 0);
volatile struct timeval t;
EXPECT_NOT_POISONED(usage.ru_utime.tv_sec);
EXPECT_NOT_POISONED(usage.ru_utime.tv_usec);
EXPECT_NOT_POISONED(usage.ru_stime.tv_sec);
EXPECT_NOT_POISONED(usage.ru_stime.tv_usec);
EXPECT_NOT_POISONED(usage.ru_maxrss);
EXPECT_NOT_POISONED(usage.ru_minflt);
EXPECT_NOT_POISONED(usage.ru_majflt);
EXPECT_NOT_POISONED(usage.ru_inblock);
EXPECT_NOT_POISONED(usage.ru_oublock);
EXPECT_NOT_POISONED(usage.ru_nvcsw);
EXPECT_NOT_POISONED(usage.ru_nivcsw);
}
static void dladdr_testfn() {}
TEST(MemorySanitizer, dladdr) {
Dl_info info;
__msan_poison(&info, sizeof(info));
int result = dladdr((const void*)dladdr_testfn, &info);
assert(result != 0);
EXPECT_NOT_POISONED((unsigned long)info.dli_fname);
if (info.dli_fname)
EXPECT_NOT_POISONED(strlen(info.dli_fname));
EXPECT_NOT_POISONED((unsigned long)info.dli_fbase);
EXPECT_NOT_POISONED((unsigned long)info.dli_sname);
if (info.dli_sname)
EXPECT_NOT_POISONED(strlen(info.dli_sname));
EXPECT_NOT_POISONED((unsigned long)info.dli_saddr);
}
namespace {
#ifdef __GLIBC__
extern "C" {
extern void *__libc_stack_end;
}
static char **GetArgv(void) {
uintptr_t *stack_end = (uintptr_t *)__libc_stack_end;
return (char**)(stack_end + 1);
}
#else // __GLIBC__
# error "TODO: port this"
#endif
TEST(MemorySanitizer, dlopen) {
// Compute the path to our loadable DSO. We assume it's in the same
// directory. Only use string routines that we intercept so far to do this.
char **argv = GetArgv();
const char *basename = "libmsan_loadable.x86_64.so";
size_t path_max = strlen(argv[0]) + 1 + strlen(basename) + 1;
char *path = new char[path_max];
char *last_slash = strrchr(argv[0], '/');
assert(last_slash);
snprintf(path, path_max, "%.*s/%s", int(last_slash - argv[0]),
argv[0], basename);
// We need to clear shadow for globals when doing dlopen. In order to test
// this, we have to poison the shadow for the DSO before we load it. In
// general this is difficult, but the loader tends to reload things in the
// same place, so we open, close, and then reopen. The global should always
// start out clean after dlopen.
for (int i = 0; i < 2; i++) {
void *lib = dlopen(path, RTLD_LAZY);
if (lib == NULL) {
printf("dlerror: %s\n", dlerror());
assert(lib != NULL);
}
void **(*get_dso_global)() = (void **(*)())dlsym(lib, "get_dso_global");
assert(get_dso_global);
void **dso_global = get_dso_global();
EXPECT_NOT_POISONED(*dso_global);
__msan_poison(dso_global, sizeof(*dso_global));
EXPECT_POISONED(*dso_global);
dlclose(lib);
}
delete[] path;
}
// Regression test for a crash in dlopen() interceptor.
TEST(MemorySanitizer, dlopenFailed) {
const char *path = "/libmsan_loadable_does_not_exist.x86_64.so";
void *lib = dlopen(path, RTLD_LAZY);
ASSERT_EQ(0, lib);
}
} // namespace
TEST(MemorySanitizer, scanf) {
const char *input = "42 hello";
int* d = new int;
char* s = new char[7];
int res = sscanf(input, "%d %5s", d, s);
printf("res %d\n", res);
assert(res == 2);
EXPECT_NOT_POISONED(*d);
EXPECT_NOT_POISONED(s[0]);
EXPECT_NOT_POISONED(s[1]);
EXPECT_NOT_POISONED(s[2]);
EXPECT_NOT_POISONED(s[3]);
EXPECT_NOT_POISONED(s[4]);
EXPECT_NOT_POISONED(s[5]);
EXPECT_POISONED(s[6]);
delete s;
delete d;
}
static void *SimpleThread_threadfn(void* data) {
return new int;
}
TEST(MemorySanitizer, SimpleThread) {
pthread_t t;
void *p;
int res = pthread_create(&t, NULL, SimpleThread_threadfn, NULL);
assert(!res);
EXPECT_NOT_POISONED(t);
res = pthread_join(t, &p);
assert(!res);
if (!__msan_has_dynamic_component()) // FIXME: intercept pthread_join (?).
__msan_unpoison(&p, sizeof(p));
delete (int*)p;
}
static void *SmallStackThread_threadfn(void* data) {
return 0;
}
TEST(MemorySanitizer, SmallStackThread) {
pthread_attr_t attr;
pthread_t t;
void *p;
int res;
res = pthread_attr_init(&attr);
ASSERT_EQ(0, res);
res = pthread_attr_setstacksize(&attr, 64 * 1024);
ASSERT_EQ(0, res);
res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL);
ASSERT_EQ(0, res);
res = pthread_join(t, &p);
ASSERT_EQ(0, res);
res = pthread_attr_destroy(&attr);
ASSERT_EQ(0, res);
}
TEST(MemorySanitizer, PreAllocatedStackThread) {
pthread_attr_t attr;
pthread_t t;
int res;
res = pthread_attr_init(&attr);
ASSERT_EQ(0, res);
void *stack;
const size_t kStackSize = 64 * 1024;
res = posix_memalign(&stack, 4096, kStackSize);
ASSERT_EQ(0, res);
res = pthread_attr_setstack(&attr, stack, kStackSize);
ASSERT_EQ(0, res);
// A small self-allocated stack can not be extended by the tool.
// In this case pthread_create is expected to fail.
res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL);
EXPECT_NE(0, res);
res = pthread_attr_destroy(&attr);
ASSERT_EQ(0, res);
}
TEST(MemorySanitizer, posix_memalign) {
void *p;
EXPECT_POISONED(p);
int res = posix_memalign(&p, 4096, 13);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(p);
free(p);
}
TEST(MemorySanitizer, inet_pton) {
const char *s = "1:0:0:0:0:0:0:8";
unsigned char buf[sizeof(struct in6_addr)];
int res = inet_pton(AF_INET6, s, buf);
ASSERT_EQ(1, res);
EXPECT_NOT_POISONED(buf[0]);
EXPECT_NOT_POISONED(buf[sizeof(struct in6_addr) - 1]);
char s_out[INET6_ADDRSTRLEN];
EXPECT_POISONED(s_out[3]);
const char *q = inet_ntop(AF_INET6, buf, s_out, INET6_ADDRSTRLEN);
ASSERT_NE((void*)0, q);
EXPECT_NOT_POISONED(s_out[3]);
}
TEST(MemorySanitizer, uname) {
struct utsname u;
int res = uname(&u);
assert(!res);
EXPECT_NOT_POISONED(strlen(u.sysname));
EXPECT_NOT_POISONED(strlen(u.nodename));
EXPECT_NOT_POISONED(strlen(u.release));
EXPECT_NOT_POISONED(strlen(u.version));
EXPECT_NOT_POISONED(strlen(u.machine));
}
TEST(MemorySanitizer, gethostname) {
char buf[100];
int res = gethostname(buf, 100);
assert(!res);
EXPECT_NOT_POISONED(strlen(buf));
}
TEST(MemorySanitizer, getpwuid) {
struct passwd *p = getpwuid(0); // root
assert(p);
EXPECT_NOT_POISONED(p->pw_name);
assert(p->pw_name);
EXPECT_NOT_POISONED(p->pw_name[0]);
EXPECT_NOT_POISONED(p->pw_uid);
assert(p->pw_uid == 0);
}
TEST(MemorySanitizer, getpwnam_r) {
struct passwd pwd;
struct passwd *pwdres;
char buf[10000];
int res = getpwnam_r("root", &pwd, buf, sizeof(buf), &pwdres);
assert(!res);
EXPECT_NOT_POISONED(pwd.pw_name);
assert(pwd.pw_name);
EXPECT_NOT_POISONED(pwd.pw_name[0]);
EXPECT_NOT_POISONED(pwd.pw_uid);
assert(pwd.pw_uid == 0);
}
TEST(MemorySanitizer, getpwnam_r_positive) {
struct passwd pwd;
struct passwd *pwdres;
char s[5];
strncpy(s, "abcd", 5);
__msan_poison(s, 5);
char buf[10000];
int res;
EXPECT_UMR(res = getpwnam_r(s, &pwd, buf, sizeof(buf), &pwdres));
}
TEST(MemorySanitizer, getgrnam_r) {
struct group grp;
struct group *grpres;
char buf[10000];
int res = getgrnam_r("root", &grp, buf, sizeof(buf), &grpres);
assert(!res);
EXPECT_NOT_POISONED(grp.gr_name);
assert(grp.gr_name);
EXPECT_NOT_POISONED(grp.gr_name[0]);
EXPECT_NOT_POISONED(grp.gr_gid);
}
template<class T>
static bool applySlt(T value, T shadow) {
__msan_partial_poison(&value, &shadow, sizeof(T));
volatile bool zzz = true;
// This "|| zzz" trick somehow makes LLVM emit "icmp slt" instead of
// a shift-and-trunc to get at the highest bit.
volatile bool v = value < 0 || zzz;
return v;
}
TEST(MemorySanitizer, SignedCompareWithZero) {
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0xF));
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0xFF));
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0xFFFFFF));
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0x7FFFFFF));
EXPECT_UMR(applySlt<S4>(0xF, 0x80FFFFFF));
EXPECT_UMR(applySlt<S4>(0xF, 0xFFFFFFFF));
}
template <class T, class S>
static T poisoned(T Va, S Sa) {
char SIZE_CHECK1[(ssize_t)sizeof(T) - (ssize_t)sizeof(S)];
char SIZE_CHECK2[(ssize_t)sizeof(S) - (ssize_t)sizeof(T)];
T a;
a = Va;
__msan_partial_poison(&a, &Sa, sizeof(T));
return a;
}
TEST(MemorySanitizer, ICmpRelational) {
EXPECT_NOT_POISONED(poisoned(0, 0) < poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) < poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) < poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) < poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) < poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) <
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) <
poisoned(-1, 0xFFFFFFFFU));
EXPECT_NOT_POISONED(poisoned(0, 0) <= poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) <= poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) <= poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) <= poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) <= poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) <=
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) <=
poisoned(-1, 0xFFFFFFFFU));
EXPECT_NOT_POISONED(poisoned(0, 0) > poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) > poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) > poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) > poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) > poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) >
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) >
poisoned(-1, 0xFFFFFFFFU));
EXPECT_NOT_POISONED(poisoned(0, 0) >= poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) >= poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) >= poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) >= poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) >= poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) >=
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) >=
poisoned(-1, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(6, 0xF) > poisoned(7, 0));
EXPECT_POISONED(poisoned(0xF, 0xF) > poisoned(7, 0));
EXPECT_NOT_POISONED(poisoned(-1, 0x80000000U) >= poisoned(-1, 0U));
}
#if MSAN_HAS_M128
TEST(MemorySanitizer, ICmpVectorRelational) {
EXPECT_NOT_POISONED(
_mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0)),
poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0))));
EXPECT_NOT_POISONED(
_mm_cmplt_epi16(poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0)),
poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0))));
EXPECT_POISONED(
_mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF)),
poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF))));
EXPECT_POISONED(_mm_cmpgt_epi16(poisoned(_mm_set1_epi16(6), _mm_set1_epi16(0xF)),
poisoned(_mm_set1_epi16(7), _mm_set1_epi16(0))));
}
#endif
// Volatile bitfield store is implemented as load-mask-store
// Test that we don't warn on the store of (uninitialized) padding.
struct VolatileBitfieldStruct {
volatile unsigned x : 1;
unsigned y : 1;
};
TEST(MemorySanitizer, VolatileBitfield) {
VolatileBitfieldStruct *S = new VolatileBitfieldStruct;
S->x = 1;
EXPECT_NOT_POISONED((unsigned)S->x);
EXPECT_POISONED((unsigned)S->y);
}
TEST(MemorySanitizerDr, StoreInDSOTest) {
if (!__msan_has_dynamic_component()) return;
char* s = new char[10];
dso_memfill(s, 9);
EXPECT_NOT_POISONED(s[5]);
EXPECT_POISONED(s[9]);
}
int return_poisoned_int() {
return ReturnPoisoned<U8>();
}
TEST(MemorySanitizerDr, ReturnFromDSOTest) {
if (!__msan_has_dynamic_component()) return;
EXPECT_NOT_POISONED(dso_callfn(return_poisoned_int));
}
NOINLINE int TrashParamTLS(long long x, long long y, long long z) { //NOLINT
EXPECT_POISONED(x);
EXPECT_POISONED(y);
EXPECT_POISONED(z);
return 0;
}
static int CheckParamTLS(long long x, long long y, long long z) { //NOLINT
EXPECT_NOT_POISONED(x);
EXPECT_NOT_POISONED(y);
EXPECT_NOT_POISONED(z);
return 0;
}
TEST(MemorySanitizerDr, CallFromDSOTest) {
if (!__msan_has_dynamic_component()) return;
S8* x = GetPoisoned<S8>();
S8* y = GetPoisoned<S8>();
S8* z = GetPoisoned<S8>();
EXPECT_NOT_POISONED(TrashParamTLS(*x, *y, *z));
EXPECT_NOT_POISONED(dso_callfn1(CheckParamTLS));
}
static void StackStoreInDSOFn(int* x, int* y) {
EXPECT_NOT_POISONED(*x);
EXPECT_NOT_POISONED(*y);
}
TEST(MemorySanitizerDr, StackStoreInDSOTest) {
if (!__msan_has_dynamic_component()) return;
dso_stack_store(StackStoreInDSOFn, 1);
}
TEST(MemorySanitizerOrigins, SetGet) {
EXPECT_EQ(TrackingOrigins(), __msan_get_track_origins());
if (!TrackingOrigins()) return;
int x;
__msan_set_origin(&x, sizeof(x), 1234);
EXPECT_EQ(1234, __msan_get_origin(&x));
__msan_set_origin(&x, sizeof(x), 5678);
EXPECT_EQ(5678, __msan_get_origin(&x));
__msan_set_origin(&x, sizeof(x), 0);
EXPECT_EQ(0, __msan_get_origin(&x));
}
namespace {
struct S {
U4 dummy;
U2 a;
U2 b;
};
// http://code.google.com/p/memory-sanitizer/issues/detail?id=6
TEST(MemorySanitizerOrigins, DISABLED_InitializedStoreDoesNotChangeOrigin) {
if (!TrackingOrigins()) return;
S s;
U4 origin = rand(); // NOLINT
s.a = *GetPoisonedO<U2>(0, origin);
EXPECT_EQ(origin, __msan_get_origin(&s.a));
EXPECT_EQ(origin, __msan_get_origin(&s.b));
s.b = 42;
EXPECT_EQ(origin, __msan_get_origin(&s.a));
EXPECT_EQ(origin, __msan_get_origin(&s.b));
}
} // namespace
template<class T, class BinaryOp>
INLINE
void BinaryOpOriginTest(BinaryOp op) {
U4 ox = rand(); //NOLINT
U4 oy = rand(); //NOLINT
T *x = GetPoisonedO<T>(0, ox, 0);
T *y = GetPoisonedO<T>(1, oy, 0);
T *z = GetPoisonedO<T>(2, 0, 0);
*z = op(*x, *y);
U4 origin = __msan_get_origin(z);
EXPECT_POISONED_O(*z, origin);
EXPECT_EQ(true, origin == ox || origin == oy);
// y is poisoned, x is not.
*x = 10101;
*y = *GetPoisonedO<T>(1, oy);
break_optimization(x);
__msan_set_origin(z, sizeof(*z), 0);
*z = op(*x, *y);
EXPECT_POISONED_O(*z, oy);
EXPECT_EQ(__msan_get_origin(z), oy);
// x is poisoned, y is not.
*x = *GetPoisonedO<T>(0, ox);
*y = 10101010;
break_optimization(y);
__msan_set_origin(z, sizeof(*z), 0);
*z = op(*x, *y);
EXPECT_POISONED_O(*z, ox);
EXPECT_EQ(__msan_get_origin(z), ox);
}
template<class T> INLINE T XOR(const T &a, const T&b) { return a ^ b; }
template<class T> INLINE T ADD(const T &a, const T&b) { return a + b; }
template<class T> INLINE T SUB(const T &a, const T&b) { return a - b; }
template<class T> INLINE T MUL(const T &a, const T&b) { return a * b; }
template<class T> INLINE T AND(const T &a, const T&b) { return a & b; }
template<class T> INLINE T OR (const T &a, const T&b) { return a | b; }
TEST(MemorySanitizerOrigins, BinaryOp) {
if (!TrackingOrigins()) return;
BinaryOpOriginTest<S8>(XOR<S8>);
BinaryOpOriginTest<U8>(ADD<U8>);
BinaryOpOriginTest<S4>(SUB<S4>);
BinaryOpOriginTest<S4>(MUL<S4>);
BinaryOpOriginTest<U4>(OR<U4>);
BinaryOpOriginTest<U4>(AND<U4>);
BinaryOpOriginTest<double>(ADD<U4>);
BinaryOpOriginTest<float>(ADD<S4>);
BinaryOpOriginTest<double>(ADD<double>);
BinaryOpOriginTest<float>(ADD<double>);
}
TEST(MemorySanitizerOrigins, Unary) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O((void*)*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O((U8)*GetPoisonedO<void*>(0, __LINE__), __LINE__);
}
TEST(MemorySanitizerOrigins, EQ) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__) <= 11, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__) == 11, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<float>(0, __LINE__) == 1.1, __LINE__);
}
TEST(MemorySanitizerOrigins, DIV) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<U8>(0, __LINE__) / 100, __LINE__);
unsigned o = __LINE__;
EXPECT_UMR_O(volatile unsigned y = 100 / *GetPoisonedO<S4>(0, o, 1), o);
}
TEST(MemorySanitizerOrigins, SHIFT) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<U8>(0, __LINE__) >> 10, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__) >> 10, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__) << 10, __LINE__);
EXPECT_POISONED_O(10U << *GetPoisonedO<U8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(-10 >> *GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(-10 << *GetPoisonedO<S8>(0, __LINE__), __LINE__);
}
template<class T, int N>
void MemCpyTest() {
int ox = __LINE__;
T *x = new T[N];
T *y = new T[N];
T *z = new T[N];
__msan_poison(x, N * sizeof(T));
__msan_set_origin(x, N * sizeof(T), ox);
__msan_set_origin(y, N * sizeof(T), 777777);
__msan_set_origin(z, N * sizeof(T), 888888);
EXPECT_NOT_POISONED(x);
memcpy(y, x, N * sizeof(T));
EXPECT_POISONED_O(y[0], ox);
EXPECT_POISONED_O(y[N/2], ox);
EXPECT_POISONED_O(y[N-1], ox);
EXPECT_NOT_POISONED(x);
memmove(z, x, N * sizeof(T));
EXPECT_POISONED_O(z[0], ox);
EXPECT_POISONED_O(z[N/2], ox);
EXPECT_POISONED_O(z[N-1], ox);
}
TEST(MemorySanitizerOrigins, LargeMemCpy) {
if (!TrackingOrigins()) return;
MemCpyTest<U1, 10000>();
MemCpyTest<U8, 10000>();
}
TEST(MemorySanitizerOrigins, SmallMemCpy) {
if (!TrackingOrigins()) return;
MemCpyTest<U8, 1>();
MemCpyTest<U8, 2>();
MemCpyTest<U8, 3>();
}
TEST(MemorySanitizerOrigins, Select) {
if (!TrackingOrigins()) return;
EXPECT_NOT_POISONED(g_one ? 1 : *GetPoisonedO<S4>(0, __LINE__));
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
S4 x;
break_optimization(&x);
x = g_1 ? *GetPoisonedO<S4>(0, __LINE__) : 0;
EXPECT_POISONED_O(g_1 ? *GetPoisonedO<S4>(0, __LINE__) : 1, __LINE__);
EXPECT_POISONED_O(g_0 ? 1 : *GetPoisonedO<S4>(0, __LINE__), __LINE__);
}
extern "C"
NOINLINE char AllocaTO() {
int ar[100];
break_optimization(ar);
return ar[10];
// fprintf(stderr, "Descr: %s\n",
// __msan_get_origin_descr_if_stack(__msan_get_origin_tls()));
}
TEST(MemorySanitizerOrigins, Alloca) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
}
// FIXME: replace with a lit-like test.
TEST(MemorySanitizerOrigins, DISABLED_AllocaDeath) {
if (!TrackingOrigins()) return;
EXPECT_DEATH(AllocaTO(), "ORIGIN: stack allocation: ar@AllocaTO");
}
NOINLINE int RetvalOriginTest(U4 origin) {
int *a = new int;
break_optimization(a);
__msan_set_origin(a, sizeof(*a), origin);
int res = *a;
delete a;
return res;
}
TEST(MemorySanitizerOrigins, Retval) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__);
}
NOINLINE void ParamOriginTest(int param, U4 origin) {
EXPECT_POISONED_O(param, origin);
}
TEST(MemorySanitizerOrigins, Param) {
if (!TrackingOrigins()) return;
int *a = new int;
U4 origin = __LINE__;
break_optimization(a);
__msan_set_origin(a, sizeof(*a), origin);
ParamOriginTest(*a, origin);
delete a;
}
TEST(MemorySanitizerOrigins, Invoke) {
if (!TrackingOrigins()) return;
StructWithDtor s; // Will cause the calls to become invokes.
EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__);
}
TEST(MemorySanitizerOrigins, strlen) {
S8 alignment;
break_optimization(&alignment);
char x[4] = {'a', 'b', 0, 0};
__msan_poison(&x[2], 1);
U4 origin = __LINE__;
__msan_set_origin(x, sizeof(x), origin);
EXPECT_UMR_O(volatile unsigned y = strlen(x), origin);
}
TEST(MemorySanitizerOrigins, wcslen) {
wchar_t w[3] = {'a', 'b', 0};
U4 origin = __LINE__;
__msan_set_origin(w, sizeof(w), origin);
__msan_poison(&w[2], sizeof(wchar_t));
EXPECT_UMR_O(volatile unsigned y = wcslen(w), origin);
}
#if MSAN_HAS_M128
TEST(MemorySanitizerOrigins, StoreIntrinsic) {
__m128 x, y;
U4 origin = __LINE__;
__msan_set_origin(&x, sizeof(x), origin);
__msan_poison(&x, sizeof(x));
__builtin_ia32_storeups((float*)&y, x);
EXPECT_POISONED_O(y, origin);
}
#endif
NOINLINE void RecursiveMalloc(int depth) {
static int count;
count++;
if ((count % (1024 * 1024)) == 0)
printf("RecursiveMalloc: %d\n", count);
int *x1 = new int;
int *x2 = new int;
break_optimization(x1);
break_optimization(x2);
if (depth > 0) {
RecursiveMalloc(depth-1);
RecursiveMalloc(depth-1);
}
delete x1;
delete x2;
}
TEST(MemorySanitizer, CallocOverflow) {
size_t kArraySize = 4096;
volatile size_t kMaxSizeT = std::numeric_limits<size_t>::max();
volatile size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
void *p = calloc(kArraySize, kArraySize2); // Should return 0.
EXPECT_EQ(0L, Ident(p));
}
TEST(MemorySanitizerStress, DISABLED_MallocStackTrace) {
RecursiveMalloc(22);
}