llvm-project/mlir/lib/IR/BuiltinAttributes.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1417 lines
58 KiB
C++
Raw Normal View History

//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/BuiltinAttributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Types.h"
#include "mlir/Interfaces/DecodeAttributesInterfaces.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Endian.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
/// Tablegen Attribute Definitions
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/IR/BuiltinAttributes.cpp.inc"
//===----------------------------------------------------------------------===//
// BuiltinDialect
//===----------------------------------------------------------------------===//
void BuiltinDialect::registerAttributes() {
addAttributes<AffineMapAttr, ArrayAttr, DenseIntOrFPElementsAttr,
DenseStringElementsAttr, DictionaryAttr, FloatAttr,
SymbolRefAttr, IntegerAttr, IntegerSetAttr, OpaqueAttr,
OpaqueElementsAttr, SparseElementsAttr, StringAttr, TypeAttr,
UnitAttr>();
}
//===----------------------------------------------------------------------===//
// ArrayAttr
//===----------------------------------------------------------------------===//
void ArrayAttr::walkImmediateSubElements(
function_ref<void(Attribute)> walkAttrsFn,
function_ref<void(Type)> walkTypesFn) const {
for (Attribute attr : getValue())
walkAttrsFn(attr);
}
//===----------------------------------------------------------------------===//
// DictionaryAttr
//===----------------------------------------------------------------------===//
/// Helper function that does either an in place sort or sorts from source array
/// into destination. If inPlace then storage is both the source and the
/// destination, else value is the source and storage destination. Returns
/// whether source was sorted.
template <bool inPlace>
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
SmallVectorImpl<NamedAttribute> &storage) {
// Specialize for the common case.
switch (value.size()) {
case 0:
// Zero already sorted.
break;
case 1:
// One already sorted but may need to be copied.
if (!inPlace)
storage.assign({value[0]});
break;
case 2: {
bool isSorted = value[0] < value[1];
if (inPlace) {
if (!isSorted)
std::swap(storage[0], storage[1]);
} else if (isSorted) {
storage.assign({value[0], value[1]});
} else {
storage.assign({value[1], value[0]});
}
return !isSorted;
}
default:
if (!inPlace)
storage.assign(value.begin(), value.end());
// Check to see they are sorted already.
bool isSorted = llvm::is_sorted(value);
// If not, do a general sort.
if (!isSorted)
llvm::array_pod_sort(storage.begin(), storage.end());
return !isSorted;
}
return false;
}
/// Returns an entry with a duplicate name from the given sorted array of named
/// attributes. Returns llvm::None if all elements have unique names.
static Optional<NamedAttribute>
findDuplicateElement(ArrayRef<NamedAttribute> value) {
const Optional<NamedAttribute> none{llvm::None};
if (value.size() < 2)
return none;
if (value.size() == 2)
return value[0].first == value[1].first ? value[0] : none;
auto it = std::adjacent_find(
value.begin(), value.end(),
[](NamedAttribute l, NamedAttribute r) { return l.first == r.first; });
return it != value.end() ? *it : none;
}
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
SmallVectorImpl<NamedAttribute> &storage) {
bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage);
assert(!findDuplicateElement(storage) &&
"DictionaryAttr element names must be unique");
return isSorted;
}
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array);
assert(!findDuplicateElement(array) &&
"DictionaryAttr element names must be unique");
return isSorted;
}
Optional<NamedAttribute>
DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array,
bool isSorted) {
if (!isSorted)
dictionaryAttrSort</*inPlace=*/true>(array, array);
return findDuplicateElement(array);
}
DictionaryAttr DictionaryAttr::get(MLIRContext *context,
ArrayRef<NamedAttribute> value) {
if (value.empty())
return DictionaryAttr::getEmpty(context);
assert(llvm::all_of(value,
[](const NamedAttribute &attr) { return attr.second; }) &&
"value cannot have null entries");
// We need to sort the element list to canonicalize it.
SmallVector<NamedAttribute, 8> storage;
if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
value = storage;
assert(!findDuplicateElement(value) &&
"DictionaryAttr element names must be unique");
return Base::get(context, value);
}
/// Construct a dictionary with an array of values that is known to already be
/// sorted by name and uniqued.
DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context,
ArrayRef<NamedAttribute> value) {
if (value.empty())
return DictionaryAttr::getEmpty(context);
// Ensure that the attribute elements are unique and sorted.
assert(llvm::is_sorted(value,
[](NamedAttribute l, NamedAttribute r) {
return l.first.strref() < r.first.strref();
}) &&
"expected attribute values to be sorted");
assert(!findDuplicateElement(value) &&
"DictionaryAttr element names must be unique");
return Base::get(context, value);
}
/// Return the specified attribute if present, null otherwise.
Attribute DictionaryAttr::get(StringRef name) const {
Optional<NamedAttribute> attr = getNamed(name);
return attr ? attr->second : nullptr;
}
Attribute DictionaryAttr::get(Identifier name) const {
Optional<NamedAttribute> attr = getNamed(name);
return attr ? attr->second : nullptr;
}
/// Return the specified named attribute if present, None otherwise.
Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
ArrayRef<NamedAttribute> values = getValue();
const auto *it = llvm::lower_bound(values, name);
return it != values.end() && it->first == name ? *it
: Optional<NamedAttribute>();
}
Optional<NamedAttribute> DictionaryAttr::getNamed(Identifier name) const {
for (auto elt : getValue())
if (elt.first == name)
return elt;
return llvm::None;
}
DictionaryAttr::iterator DictionaryAttr::begin() const {
return getValue().begin();
}
DictionaryAttr::iterator DictionaryAttr::end() const {
return getValue().end();
}
size_t DictionaryAttr::size() const { return getValue().size(); }
DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
return Base::get(context, ArrayRef<NamedAttribute>());
}
void DictionaryAttr::walkImmediateSubElements(
function_ref<void(Attribute)> walkAttrsFn,
function_ref<void(Type)> walkTypesFn) const {
for (Attribute attr : llvm::make_second_range(getValue()))
walkAttrsFn(attr);
}
//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//
StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) {
return Base::get(context, "", NoneType::get(context));
}
/// Twine support for StringAttr.
StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) {
// Fast-path empty twine.
if (twine.isTriviallyEmpty())
return get(context);
SmallVector<char, 32> tempStr;
return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context));
}
/// Twine support for StringAttr.
StringAttr StringAttr::get(const Twine &twine, Type type) {
SmallVector<char, 32> tempStr;
return Base::get(type.getContext(), twine.toStringRef(tempStr), type);
}
//===----------------------------------------------------------------------===//
// FloatAttr
//===----------------------------------------------------------------------===//
double FloatAttr::getValueAsDouble() const {
return getValueAsDouble(getValue());
}
double FloatAttr::getValueAsDouble(APFloat value) {
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
bool losesInfo = false;
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
}
return value.convertToDouble();
}
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
LogicalResult FloatAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Type type, APFloat value) {
// Verify that the type is correct.
if (!type.isa<FloatType>())
return emitError() << "expected floating point type";
// Verify that the type semantics match that of the value.
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
return emitError()
<< "FloatAttr type doesn't match the type implied by its value";
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolRefAttr
//===----------------------------------------------------------------------===//
FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) {
return get(ctx, value, llvm::None).cast<FlatSymbolRefAttr>();
}
StringRef SymbolRefAttr::getLeafReference() const {
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue();
}
//===----------------------------------------------------------------------===//
// IntegerAttr
//===----------------------------------------------------------------------===//
int64_t IntegerAttr::getInt() const {
assert((getType().isIndex() || getType().isSignlessInteger()) &&
"must be signless integer");
return getValue().getSExtValue();
}
int64_t IntegerAttr::getSInt() const {
assert(getType().isSignedInteger() && "must be signed integer");
return getValue().getSExtValue();
}
uint64_t IntegerAttr::getUInt() const {
assert(getType().isUnsignedInteger() && "must be unsigned integer");
return getValue().getZExtValue();
}
/// Return the value as an APSInt which carries the signed from the type of
/// the attribute. This traps on signless integers types!
APSInt IntegerAttr::getAPSInt() const {
assert(!getType().isSignlessInteger() &&
"Signless integers don't carry a sign for APSInt");
return APSInt(getValue(), getType().isUnsignedInteger());
}
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
LogicalResult IntegerAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Type type, APInt value) {
if (IntegerType integerType = type.dyn_cast<IntegerType>()) {
if (integerType.getWidth() != value.getBitWidth())
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
return emitError() << "integer type bit width (" << integerType.getWidth()
<< ") doesn't match value bit width ("
<< value.getBitWidth() << ")";
return success();
}
if (type.isa<IndexType>())
return success();
return emitError() << "expected integer or index type";
}
BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) {
auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value));
return attr.cast<BoolAttr>();
}
//===----------------------------------------------------------------------===//
// BoolAttr
bool BoolAttr::getValue() const {
auto *storage = reinterpret_cast<IntegerAttrStorage *>(impl);
return storage->value.getBoolValue();
}
bool BoolAttr::classof(Attribute attr) {
IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
return intAttr && intAttr.getType().isSignlessInteger(1);
}
//===----------------------------------------------------------------------===//
// OpaqueAttr
//===----------------------------------------------------------------------===//
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
LogicalResult OpaqueAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Identifier dialect, StringRef attrData,
Type type) {
if (!Dialect::isValidNamespace(dialect.strref()))
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
return emitError() << "invalid dialect namespace '" << dialect << "'";
// Check that the dialect is actually registered.
MLIRContext *context = dialect.getContext();
if (!context->allowsUnregisteredDialects() &&
!context->getLoadedDialect(dialect.strref())) {
return emitError()
<< "#" << dialect << "<\"" << attrData << "\"> : " << type
<< " attribute created with unregistered dialect. If this is "
"intended, please call allowUnregisteredDialects() on the "
"MLIRContext, or use -allow-unregistered-dialect with "
"the MLIR opt tool used";
}
return success();
}
//===----------------------------------------------------------------------===//
// ElementsAttr
//===----------------------------------------------------------------------===//
ShapedType ElementsAttr::getType() const {
return Attribute::getType().cast<ShapedType>();
}
/// Returns the number of elements held by this attribute.
int64_t ElementsAttr::getNumElements() const {
return getType().getNumElements();
}
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const {
if (auto denseAttr = dyn_cast<DenseElementsAttr>())
return denseAttr.getValue(index);
if (auto opaqueAttr = dyn_cast<OpaqueElementsAttr>())
return opaqueAttr.getValue(index);
return cast<SparseElementsAttr>().getValue(index);
}
/// Return if the given 'index' refers to a valid element in this attribute.
bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const {
auto type = getType();
// Verify that the rank of the indices matches the held type.
auto rank = type.getRank();
if (rank == 0 && index.size() == 1 && index[0] == 0)
return true;
if (rank != static_cast<int64_t>(index.size()))
return false;
// Verify that all of the indices are within the shape dimensions.
auto shape = type.getShape();
return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) {
int64_t dim = static_cast<int64_t>(index[i]);
return 0 <= dim && dim < shape[i];
});
}
ElementsAttr
ElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
if (auto intOrFpAttr = dyn_cast<DenseElementsAttr>())
return intOrFpAttr.mapValues(newElementType, mapping);
llvm_unreachable("unsupported ElementsAttr subtype");
}
ElementsAttr
ElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APFloat &)> mapping) const {
if (auto intOrFpAttr = dyn_cast<DenseElementsAttr>())
return intOrFpAttr.mapValues(newElementType, mapping);
llvm_unreachable("unsupported ElementsAttr subtype");
}
/// Method for support type inquiry through isa, cast and dyn_cast.
bool ElementsAttr::classof(Attribute attr) {
return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr,
OpaqueElementsAttr, SparseElementsAttr>();
}
/// Returns the 1 dimensional flattened row-major index from the given
/// multi-dimensional index.
uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// Reduce the provided multidimensional index into a flattended 1D row-major
// index.
auto rank = type.getRank();
auto shape = type.getShape();
uint64_t valueIndex = 0;
uint64_t dimMultiplier = 1;
for (int i = rank - 1; i >= 0; --i) {
valueIndex += index[i] * dimMultiplier;
dimMultiplier *= shape[i];
}
return valueIndex;
}
//===----------------------------------------------------------------------===//
// DenseElementsAttr Utilities
//===----------------------------------------------------------------------===//
/// Get the bitwidth of a dense element type within the buffer.
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
static size_t getDenseElementStorageWidth(size_t origWidth) {
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
}
static size_t getDenseElementStorageWidth(Type elementType) {
return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
}
/// Set a bit to a specific value.
static void setBit(char *rawData, size_t bitPos, bool value) {
if (value)
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
else
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
}
/// Return the value of the specified bit.
static bool getBit(const char *rawData, size_t bitPos) {
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
}
/// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for
/// BE format.
static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes,
char *result) {
assert(llvm::support::endian::system_endianness() == // NOLINT
llvm::support::endianness::big); // NOLINT
assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
// Copy the words filled with data.
// For example, when `value` has 2 words, the first word is filled with data.
// `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--|
size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
numFilledWords, result);
// Convert last word of APInt to LE format and store it in char
// array(`valueLE`).
// ex. last word of `value` (BE): |------ij| ==> `valueLE` (LE): |ji------|
size_t lastWordPos = numFilledWords;
SmallVector<char, 8> valueLE(APInt::APINT_WORD_SIZE);
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
reinterpret_cast<const char *>(value.getRawData()) + lastWordPos,
valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1);
// Extract actual APInt data from `valueLE`, convert endianness to BE format,
// and store it in `result`.
// ex. `valueLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|ij|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
valueLE.begin(), result + lastWordPos,
(numBytes - lastWordPos) * CHAR_BIT, 1);
}
/// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE
/// format.
static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes,
APInt &result) {
assert(llvm::support::endian::system_endianness() == // NOLINT
llvm::support::endianness::big); // NOLINT
assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
// Copy the data that fills the word of `result` from `inArray`.
// For example, when `result` has 2 words, the first word will be filled with
// data. So, the first 8 bytes are copied from `inArray` here.
// `inArray` (10 bytes, BE): |abcdefgh|ij|
// ==> `result` (2 words, BE): |abcdefgh|--------|
size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
std::copy_n(
inArray, numFilledWords,
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
// Convert array data which will be last word of `result` to LE format, and
// store it in char array(`inArrayLE`).
// ex. `inArray` (last two bytes, BE): |ij| ==> `inArrayLE` (LE): |ji------|
size_t lastWordPos = numFilledWords;
SmallVector<char, 8> inArrayLE(APInt::APINT_WORD_SIZE);
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
inArray + lastWordPos, inArrayLE.begin(),
(numBytes - lastWordPos) * CHAR_BIT, 1);
// Convert `inArrayLE` to BE format, and store it in last word of `result`.
// ex. `inArrayLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|------ij|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
inArrayLE.begin(),
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())) +
lastWordPos,
APInt::APINT_BITS_PER_WORD, 1);
}
/// Writes value to the bit position `bitPos` in array `rawData`.
static void writeBits(char *rawData, size_t bitPos, APInt value) {
size_t bitWidth = value.getBitWidth();
// If the bitwidth is 1 we just toggle the specific bit.
if (bitWidth == 1)
return setBit(rawData, bitPos, value.isOneValue());
// Otherwise, the bit position is guaranteed to be byte aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big) {
// Copy from `value` to `rawData + (bitPos / CHAR_BIT)`.
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
// work correctly in BE format.
// ex. `value` (2 words including 10 bytes)
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------|
copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT),
rawData + (bitPos / CHAR_BIT));
} else {
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
llvm::divideCeil(bitWidth, CHAR_BIT),
rawData + (bitPos / CHAR_BIT));
}
}
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`.
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
// Handle a boolean bit position.
if (bitWidth == 1)
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
// Otherwise, the bit position must be 8-bit aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
APInt result(bitWidth, 0);
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big) {
// Copy from `rawData + (bitPos / CHAR_BIT)` to `result`.
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
// work correctly in BE format.
// ex. `result` (2 words including 10 bytes)
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| This function
copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT),
llvm::divideCeil(bitWidth, CHAR_BIT), result);
} else {
std::copy_n(rawData + (bitPos / CHAR_BIT),
llvm::divideCeil(bitWidth, CHAR_BIT),
const_cast<char *>(
reinterpret_cast<const char *>(result.getRawData())));
}
return result;
}
/// Returns true if 'values' corresponds to a splat, i.e. one element, or has
/// the same element count as 'type'.
template <typename Values>
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
return (values.size() == 1) ||
(type.getNumElements() == static_cast<int64_t>(values.size()));
}
//===----------------------------------------------------------------------===//
// DenseElementsAttr Iterators
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// AttributeElementIterator
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
DenseElementsAttr attr, size_t index)
: llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
Attribute, Attribute, Attribute>(
attr.getAsOpaquePointer(), index) {}
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
Type eltTy = owner.getType().getElementType();
if (auto intEltTy = eltTy.dyn_cast<IntegerType>())
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
if (eltTy.isa<IndexType>())
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
IntElementIterator intIt(owner, index);
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
return FloatAttr::get(eltTy, *floatIt);
}
if (auto complexTy = eltTy.dyn_cast<ComplexType>()) {
auto complexEltTy = complexTy.getElementType();
ComplexIntElementIterator complexIntIt(owner, index);
if (complexEltTy.isa<IntegerType>()) {
auto value = *complexIntIt;
auto real = IntegerAttr::get(complexEltTy, value.real());
auto imag = IntegerAttr::get(complexEltTy, value.imag());
return ArrayAttr::get(complexTy.getContext(),
ArrayRef<Attribute>{real, imag});
}
ComplexFloatElementIterator complexFloatIt(
complexEltTy.cast<FloatType>().getFloatSemantics(), complexIntIt);
auto value = *complexFloatIt;
auto real = FloatAttr::get(complexEltTy, value.real());
auto imag = FloatAttr::get(complexEltTy, value.imag());
return ArrayAttr::get(complexTy.getContext(),
ArrayRef<Attribute>{real, imag});
}
if (owner.isa<DenseStringElementsAttr>()) {
ArrayRef<StringRef> vals = owner.getRawStringData();
return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
}
llvm_unreachable("unexpected element type");
}
//===----------------------------------------------------------------------===//
// BoolElementIterator
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
bool DenseElementsAttr::BoolElementIterator::operator*() const {
return getBit(getData(), getDataIndex());
}
//===----------------------------------------------------------------------===//
// IntElementIterator
DenseElementsAttr::IntElementIterator::IntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
attr.getRawData().data(), attr.isSplat(), dataIndex),
bitWidth(getDenseElementBitWidth(attr.getType().getElementType())) {}
APInt DenseElementsAttr::IntElementIterator::operator*() const {
return readBits(getData(),
getDataIndex() * getDenseElementStorageWidth(bitWidth),
bitWidth);
}
//===----------------------------------------------------------------------===//
// ComplexIntElementIterator
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
std::complex<APInt>, std::complex<APInt>,
std::complex<APInt>>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {
auto complexType = attr.getType().getElementType().cast<ComplexType>();
bitWidth = getDenseElementBitWidth(complexType.getElementType());
}
std::complex<APInt>
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
size_t storageWidth = getDenseElementStorageWidth(bitWidth);
size_t offset = getDataIndex() * storageWidth * 2;
return {readBits(getData(), offset, bitWidth),
readBits(getData(), offset + storageWidth, bitWidth)};
}
//===----------------------------------------------------------------------===//
// FloatElementIterator
DenseElementsAttr::FloatElementIterator::FloatElementIterator(
const llvm::fltSemantics &smt, IntElementIterator it)
: llvm::mapped_iterator<IntElementIterator,
std::function<APFloat(const APInt &)>>(
it, [&](const APInt &val) { return APFloat(smt, val); }) {}
//===----------------------------------------------------------------------===//
// ComplexFloatElementIterator
DenseElementsAttr::ComplexFloatElementIterator::ComplexFloatElementIterator(
const llvm::fltSemantics &smt, ComplexIntElementIterator it)
: llvm::mapped_iterator<
ComplexIntElementIterator,
std::function<std::complex<APFloat>(const std::complex<APInt> &)>>(
it, [&](const std::complex<APInt> &val) -> std::complex<APFloat> {
return {APFloat(smt, val.real()), APFloat(smt, val.imag())};
}) {}
//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//
/// Method for support type inquiry through isa, cast and dyn_cast.
bool DenseElementsAttr::classof(Attribute attr) {
return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>();
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<Attribute> values) {
assert(hasSameElementsOrSplat(type, values));
// If the element type is not based on int/float/index, assume it is a string
// type.
auto eltType = type.getElementType();
if (!type.getElementType().isIntOrIndexOrFloat()) {
SmallVector<StringRef, 8> stringValues;
stringValues.reserve(values.size());
for (Attribute attr : values) {
assert(attr.isa<StringAttr>() &&
"expected string value for non integer/index/float element");
stringValues.push_back(attr.cast<StringAttr>().getValue());
}
return get(type, stringValues);
}
// Otherwise, get the raw storage width to use for the allocation.
size_t bitWidth = getDenseElementBitWidth(eltType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
// Compress the attribute values into a character buffer.
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
APInt intVal;
for (unsigned i = 0, e = values.size(); i < e; ++i) {
assert(eltType == values[i].getType() &&
"expected attribute value to have element type");
if (eltType.isa<FloatType>())
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
else if (eltType.isa<IntegerType, IndexType>())
intVal = values[i].cast<IntegerAttr>().getValue();
else
llvm_unreachable("unexpected element type");
assert(intVal.getBitWidth() == bitWidth &&
"expected value to have same bitwidth as element type");
writeBits(data.data(), i * storageBitWidth, intVal);
}
return DenseIntOrFPElementsAttr::getRaw(type, data,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<bool> values) {
assert(hasSameElementsOrSplat(type, values));
assert(type.getElementType().isInteger(1));
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
for (int i = 0, e = values.size(); i != e; ++i)
setBit(buff.data(), i, values[i]);
return DenseIntOrFPElementsAttr::getRaw(type, buff,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<StringRef> values) {
assert(!type.getElementType().isIntOrFloat());
return DenseStringElementsAttr::get(type, values);
}
/// Constructs a dense integer elements attribute from an array of APInt
/// values. Each APInt value is expected to have the same bitwidth as the
/// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APInt> values) {
assert(type.getElementType().isIntOrIndex());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<std::complex<APInt>> values) {
ComplexType complex = type.getElementType().cast<ComplexType>();
assert(complex.getElementType().isa<IntegerType>());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
values.size() * 2);
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
/*isSplat=*/(values.size() == 1));
}
// Constructs a dense float elements attribute from an array of APFloat
// values. Each APFloat value is expected to have the same bitwidth as the
// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APFloat> values) {
assert(type.getElementType().isa<FloatType>());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr
DenseElementsAttr::get(ShapedType type,
ArrayRef<std::complex<APFloat>> values) {
ComplexType complex = type.getElementType().cast<ComplexType>();
assert(complex.getElementType().isa<FloatType>());
assert(hasSameElementsOrSplat(type, values));
ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
values.size() * 2);
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
/*isSplat=*/(values.size() == 1));
}
/// Construct a dense elements attribute from a raw buffer representing the
/// data for this attribute. Users should generally not use this methods as
/// the expected buffer format may not be a form the user expects.
DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
ArrayRef<char> rawBuffer,
bool isSplatBuffer) {
return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
}
/// Returns true if the given buffer is a valid raw buffer for the given type.
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
ArrayRef<char> rawBuffer,
bool &detectedSplat) {
size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
// Storage width of 1 is special as it is packed by the bit.
if (storageWidth == 1) {
// Check for a splat, or a buffer equal to the number of elements.
if ((detectedSplat = rawBuffer.size() == 1))
return true;
return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
}
// All other types are 8-bit aligned.
if ((detectedSplat = rawBufferWidth == storageWidth))
return true;
return rawBufferWidth == (storageWidth * type.getNumElements());
}
/// Check the information for a C++ data type, check if this type is valid for
/// the current attribute. This method is used to verify specific type
/// invariants that the templatized 'getValues' method cannot.
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
bool isSigned) {
// Make sure that the data element size is the same as the type element width.
if (getDenseElementBitWidth(type) !=
static_cast<size_t>(dataEltSize * CHAR_BIT))
return false;
// Check that the element type is either float or integer or index.
if (!isInt)
return type.isa<FloatType>();
if (type.isIndex())
return true;
auto intType = type.dyn_cast<IntegerType>();
if (!intType)
return false;
// Make sure signedness semantics is consistent.
if (intType.isSignless())
return true;
return intType.isSigned() ? isSigned : !isSigned;
}
/// Defaults down the subclass implementation.
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt, bool isSigned) {
return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
isSigned);
}
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt,
bool isSigned) {
return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
isInt, isSigned);
}
/// A method used to verify specific type invariants that the templatized 'get'
/// method cannot.
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
bool isSigned) const {
return ::isValidIntOrFloat(getType().getElementType(), dataEltSize, isInt,
isSigned);
}
/// Check the information for a C++ data type, check if this type is valid for
/// the current attribute.
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
bool isSigned) const {
return ::isValidIntOrFloat(
getType().getElementType().cast<ComplexType>().getElementType(),
dataEltSize / 2, isInt, isSigned);
}
/// Returns true if this attribute corresponds to a splat, i.e. if all element
/// values are the same.
bool DenseElementsAttr::isSplat() const {
return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
}
/// Return the held element values as a range of Attributes.
auto DenseElementsAttr::getAttributeValues() const
-> llvm::iterator_range<AttributeElementIterator> {
return {attr_value_begin(), attr_value_end()};
}
auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator {
return AttributeElementIterator(*this, 0);
}
auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator {
return AttributeElementIterator(*this, getNumElements());
}
/// Return the held element values as a range of bool. The element type of
/// this attribute must be of integer type of bitwidth 1.
auto DenseElementsAttr::getBoolValues() const
-> llvm::iterator_range<BoolElementIterator> {
auto eltType = getType().getElementType().dyn_cast<IntegerType>();
assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type");
(void)eltType;
return {BoolElementIterator(*this, 0),
BoolElementIterator(*this, getNumElements())};
}
/// Return the held element values as a range of APInts. The element type of
/// this attribute must be of integer type.
auto DenseElementsAttr::getIntValues() const
-> llvm::iterator_range<IntElementIterator> {
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
return {raw_int_begin(), raw_int_end()};
}
auto DenseElementsAttr::int_value_begin() const -> IntElementIterator {
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
return raw_int_begin();
}
auto DenseElementsAttr::int_value_end() const -> IntElementIterator {
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
return raw_int_end();
}
auto DenseElementsAttr::getComplexIntValues() const
-> llvm::iterator_range<ComplexIntElementIterator> {
Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
(void)eltTy;
assert(eltTy.isa<IntegerType>() && "expected complex integral type");
return {ComplexIntElementIterator(*this, 0),
ComplexIntElementIterator(*this, getNumElements())};
}
/// Return the held element values as a range of APFloat. The element type of
/// this attribute must be of float type.
auto DenseElementsAttr::getFloatValues() const
-> llvm::iterator_range<FloatElementIterator> {
auto elementType = getType().getElementType().cast<FloatType>();
const auto &elementSemantics = elementType.getFloatSemantics();
return {FloatElementIterator(elementSemantics, raw_int_begin()),
FloatElementIterator(elementSemantics, raw_int_end())};
}
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
return getFloatValues().begin();
}
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
return getFloatValues().end();
}
auto DenseElementsAttr::getComplexFloatValues() const
-> llvm::iterator_range<ComplexFloatElementIterator> {
Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
assert(eltTy.isa<FloatType>() && "expected complex float type");
const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
return {{semantics, {*this, 0}},
{semantics, {*this, static_cast<size_t>(getNumElements())}}};
}
/// Return the raw storage data held by this attribute.
ArrayRef<char> DenseElementsAttr::getRawData() const {
return static_cast<DenseIntOrFPElementsAttrStorage *>(impl)->data;
}
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
return static_cast<DenseStringElementsAttrStorage *>(impl)->data;
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has been reshaped to 'newType'. The new type must have the
/// same total number of elements as well as element type.
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
ShapedType curType = getType();
if (curType == newType)
return *this;
assert(newType.getElementType() == curType.getElementType() &&
"expected the same element type");
assert(newType.getNumElements() == curType.getNumElements() &&
"expected the same number of elements");
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has bitcast elements such that it is now 'newType'. The new
/// type must have the same shape and element types of the same bitwidth as the
/// current type.
DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) {
ShapedType curType = getType();
Type curElType = curType.getElementType();
if (curElType == newElType)
return *this;
assert(getDenseElementBitWidth(newElType) ==
getDenseElementBitWidth(curElType) &&
"expected element types with the same bitwidth");
return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType),
getRawData(), isSplat());
}
DenseElementsAttr
DenseElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
}
DenseElementsAttr DenseElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
}
//===----------------------------------------------------------------------===//
// DenseIntOrFPElementsAttr
//===----------------------------------------------------------------------===//
/// Utility method to write a range of APInt values to a buffer.
template <typename APRangeT>
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
APRangeT &&values) {
data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
size_t offset = 0;
for (auto it = values.begin(), e = values.end(); it != e;
++it, offset += storageWidth) {
assert((*it).getBitWidth() <= storageWidth);
writeBits(data.data(), offset, *it);
}
}
/// Constructs a dense elements attribute from an array of raw APFloat values.
/// Each APFloat value is expected to have the same bitwidth as the element
/// type of 'type'. 'type' must be a vector or tensor with static shape.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
size_t storageWidth,
ArrayRef<APFloat> values,
bool isSplat) {
std::vector<char> data;
auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
}
/// Constructs a dense elements attribute from an array of raw APInt values.
/// Each APInt value is expected to have the same bitwidth as the element type
/// of 'type'.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
size_t storageWidth,
ArrayRef<APInt> values,
bool isSplat) {
std::vector<char> data;
writeAPIntsToBuffer(storageWidth, data, values);
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
}
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
ArrayRef<char> data,
bool isSplat) {
assert((type.isa<RankedTensorType, VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), type, data, isSplat);
}
/// Overload of the raw 'get' method that asserts that the given type is of
/// complex type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt,
bool isSigned) {
assert(::isValidIntOrFloat(
type.getElementType().cast<ComplexType>().getElementType(),
dataEltSize / 2, isInt, isSigned));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
/// Overload of the 'getRaw' method that asserts that the given type is of
/// integer type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
int64_t dataEltSize, bool isInt,
bool isSigned) {
assert(
::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
const char *inRawData, char *outRawData, size_t elementBitWidth,
size_t numElements) {
using llvm::support::ulittle16_t;
using llvm::support::ulittle32_t;
using llvm::support::ulittle64_t;
assert(llvm::support::endian::system_endianness() == // NOLINT
llvm::support::endianness::big); // NOLINT
// NOLINT to avoid warning message about replacing by static_assert()
// Following std::copy_n always converts endianness on BE machine.
switch (elementBitWidth) {
case 16: {
const ulittle16_t *inRawDataPos =
reinterpret_cast<const ulittle16_t *>(inRawData);
uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData);
std::copy_n(inRawDataPos, numElements, outDataPos);
break;
}
case 32: {
const ulittle32_t *inRawDataPos =
reinterpret_cast<const ulittle32_t *>(inRawData);
uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData);
std::copy_n(inRawDataPos, numElements, outDataPos);
break;
}
case 64: {
const ulittle64_t *inRawDataPos =
reinterpret_cast<const ulittle64_t *>(inRawData);
uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData);
std::copy_n(inRawDataPos, numElements, outDataPos);
break;
}
default: {
size_t nBytes = elementBitWidth / CHAR_BIT;
for (size_t i = 0; i < nBytes; i++)
std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i);
break;
}
}
}
void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
ArrayRef<char> inRawData, MutableArrayRef<char> outRawData,
ShapedType type) {
size_t numElements = type.getNumElements();
Type elementType = type.getElementType();
if (ComplexType complexTy = elementType.dyn_cast<ComplexType>()) {
elementType = complexTy.getElementType();
numElements = numElements * 2;
}
size_t elementBitWidth = getDenseElementStorageWidth(elementType);
assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT &&
inRawData.size() <= outRawData.size());
convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(),
elementBitWidth, numElements);
}
//===----------------------------------------------------------------------===//
// DenseFPElementsAttr
//===----------------------------------------------------------------------===//
template <typename Fn, typename Attr>
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
Type newElementType,
llvm::SmallVectorImpl<char> &data) {
size_t bitWidth = getDenseElementBitWidth(newElementType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
ShapedType newArrayType;
if (inType.isa<RankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<UnrankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<VectorType>())
newArrayType = VectorType::get(inType.getShape(), newElementType);
else
assert(newArrayType && "Unhandled tensor type");
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
// Functor used to process a single element value of the attribute.
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
auto newInt = mapping(value);
assert(newInt.getBitWidth() == bitWidth);
writeBits(data.data(), index * storageBitWidth, newInt);
};
// Check for the splat case.
if (attr.isSplat()) {
processElt(*attr.begin(), /*index=*/0);
return newArrayType;
}
// Otherwise, process all of the element values.
uint64_t elementIdx = 0;
for (auto value : attr)
processElt(value, elementIdx++);
return newArrayType;
}
DenseElementsAttr DenseFPElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseFPElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// DenseIntElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseIntElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseIntElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
}
//===----------------------------------------------------------------------===//
// OpaqueElementsAttr
//===----------------------------------------------------------------------===//
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
return Attribute();
}
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
Dialect *dialect = getDialect().getDialect();
if (!dialect)
return true;
auto *interface =
dialect->getRegisteredInterface<DialectDecodeAttributesInterface>();
if (!interface)
return true;
return failed(interface->decode(*this, result));
}
LogicalResult
OpaqueElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Identifier dialect, StringRef value,
ShapedType type) {
if (!Dialect::isValidNamespace(dialect.strref()))
return emitError() << "invalid dialect namespace '" << dialect << "'";
return success();
}
//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//
/// Return the value of the element at the given index.
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
// Check to see if the indices are a splat.
if (sparseIndices.isSplat()) {
// If the index is also not a splat of the index value, we know that the
// value is zero.
auto splatIndex = *sparseIndexValues.begin();
if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; }))
return getZeroAttr();
// If the indices are a splat, we also expect the values to be a splat.
assert(getValues().isSplat() && "expected splat values");
return getValues().getSplatValue();
}
// Build a mapping between known indices and the offset of the stored element.
llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = type.getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
mappedIndices.try_emplace(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}, i);
// Look for the provided index key within the mapped indices. If the provided
// index is not found, then return a zero attribute.
auto it = mappedIndices.find(index);
if (it == mappedIndices.end())
return getZeroAttr();
// Otherwise, return the held sparse value element.
return getValues().getValue(it->second);
}
/// Get a zero APFloat for the given sparse attribute.
APFloat SparseElementsAttr::getZeroAPFloat() const {
auto eltType = getType().getElementType().cast<FloatType>();
return APFloat(eltType.getFloatSemantics());
}
/// Get a zero APInt for the given sparse attribute.
APInt SparseElementsAttr::getZeroAPInt() const {
auto eltType = getType().getElementType().cast<IntegerType>();
return APInt::getNullValue(eltType.getWidth());
}
/// Get a zero attribute for the given attribute type.
Attribute SparseElementsAttr::getZeroAttr() const {
auto eltType = getType().getElementType();
// Handle floating point elements.
if (eltType.isa<FloatType>())
return FloatAttr::get(eltType, 0);
// Otherwise, this is an integer.
// TODO: Handle StringAttr here.
return IntegerAttr::get(eltType, 0);
}
/// Flatten, and return, all of the sparse indices in this attribute in
/// row-major order.
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
std::vector<ptrdiff_t> flatSparseIndices;
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
if (sparseIndices.isSplat()) {
SmallVector<uint64_t, 8> indices(getType().getRank(),
*sparseIndexValues.begin());
flatSparseIndices.push_back(getFlattenedIndex(indices));
return flatSparseIndices;
}
// Otherwise, reinterpret each index as an ArrayRef when flattening.
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = getType().getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
flatSparseIndices.push_back(getFlattenedIndex(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
return flatSparseIndices;
}
//===----------------------------------------------------------------------===//
// TypeAttr
//===----------------------------------------------------------------------===//
void TypeAttr::walkImmediateSubElements(
function_ref<void(Attribute)> walkAttrsFn,
function_ref<void(Type)> walkTypesFn) const {
walkTypesFn(getValue());
}