llvm-project/clang/lib/ASTMatchers/ASTMatchFinder.cpp

557 lines
20 KiB
C++
Raw Normal View History

//===--- ASTMatchFinder.cpp - Structural query framework ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements an algorithm to efficiently search for matches on AST nodes.
// Uses memoization to support recursive matches like HasDescendant.
//
// The general idea is to visit all AST nodes with a RecursiveASTVisitor,
// calling the Matches(...) method of each matcher we are running on each
// AST node. The matcher can recurse via the ASTMatchFinder interface.
//
//===----------------------------------------------------------------------===//
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include <set>
namespace clang {
namespace ast_matchers {
namespace internal {
namespace {
// Returns the value that 'AMap' maps 'Key' to, or NULL if 'Key' is
// not in 'AMap'.
template <typename Map>
static const typename Map::mapped_type *
find(const Map &AMap, const typename Map::key_type &Key) {
typename Map::const_iterator It = AMap.find(Key);
return It == AMap.end() ? NULL : &It->second;
}
// We use memoization to avoid running the same matcher on the same
// AST node twice. This pair is the key for looking up match
// result. It consists of an ID of the MatcherInterface (for
// identifying the matcher) and a pointer to the AST node.
typedef std::pair<uint64_t, const void*> UntypedMatchInput;
// Used to store the result of a match and possibly bound nodes.
struct MemoizedMatchResult {
bool ResultOfMatch;
BoundNodesTree Nodes;
};
// A RecursiveASTVisitor that traverses all children or all descendants of
// a node.
class MatchChildASTVisitor
: public clang::RecursiveASTVisitor<MatchChildASTVisitor> {
public:
typedef clang::RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase;
// Creates an AST visitor that matches 'matcher' on all children or
// descendants of a traversed node. max_depth is the maximum depth
// to traverse: use 1 for matching the children and INT_MAX for
// matching the descendants.
MatchChildASTVisitor(const UntypedBaseMatcher *BaseMatcher,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
int MaxDepth,
ASTMatchFinder::TraversalKind Traversal,
ASTMatchFinder::BindKind Bind)
: BaseMatcher(BaseMatcher),
Finder(Finder),
Builder(Builder),
CurrentDepth(-1),
MaxDepth(MaxDepth),
Traversal(Traversal),
Bind(Bind),
Matches(false) {}
// Returns true if a match is found in the subtree rooted at the
// given AST node. This is done via a set of mutually recursive
// functions. Here's how the recursion is done (the *wildcard can
// actually be Decl, Stmt, or Type):
//
// - Traverse(node) calls BaseTraverse(node) when it needs
// to visit the descendants of node.
// - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node))
// Traverse*(c) for each child c of 'node'.
// - Traverse*(c) in turn calls Traverse(c), completing the
// recursion.
template <typename T>
bool findMatch(const T &Node) {
reset();
traverse(Node);
return Matches;
}
// The following are overriding methods from the base visitor class.
// They are public only to allow CRTP to work. They are *not *part
// of the public API of this class.
bool TraverseDecl(clang::Decl *DeclNode) {
return (DeclNode == NULL) || traverse(*DeclNode);
}
bool TraverseStmt(clang::Stmt *StmtNode) {
const clang::Stmt *StmtToTraverse = StmtNode;
if (Traversal ==
ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses) {
const clang::Expr *ExprNode = dyn_cast_or_null<clang::Expr>(StmtNode);
if (ExprNode != NULL) {
StmtToTraverse = ExprNode->IgnoreParenImpCasts();
}
}
return (StmtToTraverse == NULL) || traverse(*StmtToTraverse);
}
bool TraverseType(clang::QualType TypeNode) {
return traverse(TypeNode);
}
bool shouldVisitTemplateInstantiations() const { return true; }
bool shouldVisitImplicitCode() const { return true; }
private:
// Used for updating the depth during traversal.
struct ScopedIncrement {
explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); }
~ScopedIncrement() { --(*Depth); }
private:
int *Depth;
};
// Resets the state of this object.
void reset() {
Matches = false;
CurrentDepth = -1;
}
// Forwards the call to the corresponding Traverse*() method in the
// base visitor class.
bool baseTraverse(const clang::Decl &DeclNode) {
return VisitorBase::TraverseDecl(const_cast<clang::Decl*>(&DeclNode));
}
bool baseTraverse(const clang::Stmt &StmtNode) {
return VisitorBase::TraverseStmt(const_cast<clang::Stmt*>(&StmtNode));
}
bool baseTraverse(clang::QualType TypeNode) {
return VisitorBase::TraverseType(TypeNode);
}
// Traverses the subtree rooted at 'node'; returns true if the
// traversal should continue after this function returns; also sets
// matched_ to true if a match is found during the traversal.
template <typename T>
bool traverse(const T &Node) {
TOOLING_COMPILE_ASSERT(IsBaseType<T>::value,
traverse_can_only_be_instantiated_with_base_type);
ScopedIncrement ScopedDepth(&CurrentDepth);
if (CurrentDepth == 0) {
// We don't want to match the root node, so just recurse.
return baseTraverse(Node);
}
if (Bind != ASTMatchFinder::BK_All) {
if (BaseMatcher->matches(Node, Finder, Builder)) {
Matches = true;
return false; // Abort as soon as a match is found.
}
if (CurrentDepth < MaxDepth) {
// The current node doesn't match, and we haven't reached the
// maximum depth yet, so recurse.
return baseTraverse(Node);
}
// The current node doesn't match, and we have reached the
// maximum depth, so don't recurse (but continue the traversal
// such that other nodes at the current level can be visited).
return true;
} else {
BoundNodesTreeBuilder RecursiveBuilder;
if (BaseMatcher->matches(Node, Finder, &RecursiveBuilder)) {
// After the first match the matcher succeeds.
Matches = true;
Builder->addMatch(RecursiveBuilder.build());
}
if (CurrentDepth < MaxDepth) {
baseTraverse(Node);
}
// In kBindAll mode we always search for more matches.
return true;
}
}
const UntypedBaseMatcher *const BaseMatcher;
ASTMatchFinder *const Finder;
BoundNodesTreeBuilder *const Builder;
int CurrentDepth;
const int MaxDepth;
const ASTMatchFinder::TraversalKind Traversal;
const ASTMatchFinder::BindKind Bind;
bool Matches;
};
// Controls the outermost traversal of the AST and allows to match multiple
// matchers.
class MatchASTVisitor : public clang::RecursiveASTVisitor<MatchASTVisitor>,
public ASTMatchFinder {
public:
MatchASTVisitor(std::vector< std::pair<const UntypedBaseMatcher*,
MatchFinder::MatchCallback*> > *Triggers)
: Triggers(Triggers),
ActiveASTContext(NULL) {
}
void set_active_ast_context(clang::ASTContext *NewActiveASTContext) {
ActiveASTContext = NewActiveASTContext;
}
// The following Visit*() and Traverse*() functions "override"
// methods in RecursiveASTVisitor.
bool VisitTypedefDecl(clang::TypedefDecl *DeclNode) {
// When we see 'typedef A B', we add name 'B' to the set of names
// A's canonical type maps to. This is necessary for implementing
// IsDerivedFrom(x) properly, where x can be the name of the base
// class or any of its aliases.
//
// In general, the is-alias-of (as defined by typedefs) relation
// is tree-shaped, as you can typedef a type more than once. For
// example,
//
// typedef A B;
// typedef A C;
// typedef C D;
// typedef C E;
//
// gives you
//
// A
// |- B
// `- C
// |- D
// `- E
//
// It is wrong to assume that the relation is a chain. A correct
// implementation of IsDerivedFrom() needs to recognize that B and
// E are aliases, even though neither is a typedef of the other.
// Therefore, we cannot simply walk through one typedef chain to
// find out whether the type name matches.
const clang::Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr();
const clang::Type *CanonicalType = // root of the typedef tree
ActiveASTContext->getCanonicalType(TypeNode);
TypeToUnqualifiedAliases[CanonicalType].insert(
DeclNode->getName().str());
return true;
}
bool TraverseDecl(clang::Decl *DeclNode);
bool TraverseStmt(clang::Stmt *StmtNode);
bool TraverseType(clang::QualType TypeNode);
bool TraverseTypeLoc(clang::TypeLoc TypeNode);
// Matches children or descendants of 'Node' with 'BaseMatcher'.
template <typename T>
bool memoizedMatchesRecursively(const T &Node,
const UntypedBaseMatcher &BaseMatcher,
BoundNodesTreeBuilder *Builder, int MaxDepth,
TraversalKind Traversal, BindKind Bind) {
TOOLING_COMPILE_ASSERT((llvm::is_same<T, clang::Decl>::value) ||
(llvm::is_same<T, clang::Stmt>::value),
type_does_not_support_memoization);
const UntypedMatchInput input(BaseMatcher.getID(), &Node);
std::pair<MemoizationMap::iterator, bool> InsertResult
= ResultCache.insert(std::make_pair(input, MemoizedMatchResult()));
if (InsertResult.second) {
BoundNodesTreeBuilder DescendantBoundNodesBuilder;
InsertResult.first->second.ResultOfMatch =
matchesRecursively(Node, BaseMatcher, &DescendantBoundNodesBuilder,
MaxDepth, Traversal, Bind);
InsertResult.first->second.Nodes =
DescendantBoundNodesBuilder.build();
}
InsertResult.first->second.Nodes.copyTo(Builder);
return InsertResult.first->second.ResultOfMatch;
}
// Matches children or descendants of 'Node' with 'BaseMatcher'.
template <typename T>
bool matchesRecursively(const T &Node, const UntypedBaseMatcher &BaseMatcher,
BoundNodesTreeBuilder *Builder, int MaxDepth,
TraversalKind Traversal, BindKind Bind) {
MatchChildASTVisitor Visitor(
&BaseMatcher, this, Builder, MaxDepth, Traversal, Bind);
return Visitor.findMatch(Node);
}
virtual bool classIsDerivedFrom(const clang::CXXRecordDecl *Declaration,
StringRef BaseName) const;
// Implements ASTMatchFinder::MatchesChildOf.
virtual bool matchesChildOf(const clang::Decl &DeclNode,
const UntypedBaseMatcher &BaseMatcher,
BoundNodesTreeBuilder *Builder,
TraversalKind Traversal,
BindKind Bind) {
return matchesRecursively(DeclNode, BaseMatcher, Builder, 1, Traversal,
Bind);
}
virtual bool matchesChildOf(const clang::Stmt &StmtNode,
const UntypedBaseMatcher &BaseMatcher,
BoundNodesTreeBuilder *Builder,
TraversalKind Traversal,
BindKind Bind) {
return matchesRecursively(StmtNode, BaseMatcher, Builder, 1, Traversal,
Bind);
}
// Implements ASTMatchFinder::MatchesDescendantOf.
virtual bool matchesDescendantOf(const clang::Decl &DeclNode,
const UntypedBaseMatcher &BaseMatcher,
BoundNodesTreeBuilder *Builder,
BindKind Bind) {
return memoizedMatchesRecursively(DeclNode, BaseMatcher, Builder, INT_MAX,
TK_AsIs, Bind);
}
virtual bool matchesDescendantOf(const clang::Stmt &StmtNode,
const UntypedBaseMatcher &BaseMatcher,
BoundNodesTreeBuilder *Builder,
BindKind Bind) {
return memoizedMatchesRecursively(StmtNode, BaseMatcher, Builder, INT_MAX,
TK_AsIs, Bind);
}
bool shouldVisitTemplateInstantiations() const { return true; }
bool shouldVisitImplicitCode() const { return true; }
private:
// Implements a BoundNodesTree::Visitor that calls a MatchCallback with
// the aggregated bound nodes for each match.
class MatchVisitor : public BoundNodesTree::Visitor {
public:
MatchVisitor(clang::ASTContext* Context,
MatchFinder::MatchCallback* Callback)
: Context(Context),
Callback(Callback) {}
virtual void visitMatch(const BoundNodes& BoundNodesView) {
Callback->run(MatchFinder::MatchResult(BoundNodesView, Context));
}
private:
clang::ASTContext* Context;
MatchFinder::MatchCallback* Callback;
};
// Returns true if 'TypeNode' is also known by the name 'Name'. In other
// words, there is a type (including typedef) with the name 'Name'
// that is equal to 'TypeNode'.
bool typeHasAlias(const clang::Type *TypeNode,
StringRef Name) const {
const clang::Type *const CanonicalType =
ActiveASTContext->getCanonicalType(TypeNode);
const std::set<std::string> *UnqualifiedAlias =
find(TypeToUnqualifiedAliases, CanonicalType);
return UnqualifiedAlias != NULL && UnqualifiedAlias->count(Name) > 0;
}
// Matches all registered matchers on the given node and calls the
// result callback for every node that matches.
template <typename T>
void match(const T &node) {
for (std::vector< std::pair<const UntypedBaseMatcher*,
MatchFinder::MatchCallback*> >::const_iterator
It = Triggers->begin(), End = Triggers->end();
It != End; ++It) {
BoundNodesTreeBuilder Builder;
if (It->first->matches(node, this, &Builder)) {
BoundNodesTree BoundNodes = Builder.build();
MatchVisitor Visitor(ActiveASTContext, It->second);
BoundNodes.visitMatches(&Visitor);
}
}
}
std::vector< std::pair<const UntypedBaseMatcher*,
MatchFinder::MatchCallback*> > *const Triggers;
clang::ASTContext *ActiveASTContext;
// Maps a canonical type to the names of its typedefs.
llvm::DenseMap<const clang::Type*, std::set<std::string> >
TypeToUnqualifiedAliases;
// Maps (matcher, node) -> the match result for memoization.
typedef llvm::DenseMap<UntypedMatchInput, MemoizedMatchResult> MemoizationMap;
MemoizationMap ResultCache;
};
// Returns true if the given class is directly or indirectly derived
// from a base type with the given name. A class is considered to be
// also derived from itself.
bool
MatchASTVisitor::classIsDerivedFrom(const clang::CXXRecordDecl *Declaration,
StringRef BaseName) const {
if (Declaration->getName() == BaseName) {
return true;
}
if (!Declaration->hasDefinition()) {
return false;
}
typedef clang::CXXRecordDecl::base_class_const_iterator BaseIterator;
for (BaseIterator It = Declaration->bases_begin(),
End = Declaration->bases_end(); It != End; ++It) {
const clang::Type *TypeNode = It->getType().getTypePtr();
if (typeHasAlias(TypeNode, BaseName))
return true;
// clang::Type::getAs<...>() drills through typedefs.
if (TypeNode->getAs<clang::DependentNameType>() != NULL ||
TypeNode->getAs<clang::TemplateTypeParmType>() != NULL) {
// Dependent names and template TypeNode parameters will be matched when
// the template is instantiated.
continue;
}
clang::CXXRecordDecl *ClassDecl = NULL;
clang::TemplateSpecializationType const *TemplateType =
TypeNode->getAs<clang::TemplateSpecializationType>();
if (TemplateType != NULL) {
if (TemplateType->getTemplateName().isDependent()) {
// Dependent template specializations will be matched when the
// template is instantiated.
continue;
}
// For template specialization types which are specializing a template
// declaration which is an explicit or partial specialization of another
// template declaration, getAsCXXRecordDecl() returns the corresponding
// ClassTemplateSpecializationDecl.
//
// For template specialization types which are specializing a template
// declaration which is neither an explicit nor partial specialization of
// another template declaration, getAsCXXRecordDecl() returns NULL and
// we get the CXXRecordDecl of the templated declaration.
clang::CXXRecordDecl *SpecializationDecl =
TemplateType->getAsCXXRecordDecl();
if (SpecializationDecl != NULL) {
ClassDecl = SpecializationDecl;
} else {
ClassDecl = llvm::dyn_cast<clang::CXXRecordDecl>(
TemplateType->getTemplateName()
.getAsTemplateDecl()->getTemplatedDecl());
}
} else {
ClassDecl = TypeNode->getAsCXXRecordDecl();
}
assert(ClassDecl != NULL);
assert(ClassDecl != Declaration);
if (classIsDerivedFrom(ClassDecl, BaseName)) {
return true;
}
}
return false;
}
bool MatchASTVisitor::TraverseDecl(clang::Decl *DeclNode) {
if (DeclNode == NULL) {
return true;
}
match(*DeclNode);
return clang::RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode);
}
bool MatchASTVisitor::TraverseStmt(clang::Stmt *StmtNode) {
if (StmtNode == NULL) {
return true;
}
match(*StmtNode);
return clang::RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode);
}
bool MatchASTVisitor::TraverseType(clang::QualType TypeNode) {
match(TypeNode);
return clang::RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode);
}
bool MatchASTVisitor::TraverseTypeLoc(clang::TypeLoc TypeLoc) {
return clang::RecursiveASTVisitor<MatchASTVisitor>::
TraverseType(TypeLoc.getType());
}
class MatchASTConsumer : public clang::ASTConsumer {
public:
MatchASTConsumer(std::vector< std::pair<const UntypedBaseMatcher*,
MatchFinder::MatchCallback*> > *Triggers,
MatchFinder::ParsingDoneTestCallback *ParsingDone)
: Visitor(Triggers),
ParsingDone(ParsingDone) {}
private:
virtual void HandleTranslationUnit(clang::ASTContext &Context) {
if (ParsingDone != NULL) {
ParsingDone->run();
}
Visitor.set_active_ast_context(&Context);
Visitor.TraverseDecl(Context.getTranslationUnitDecl());
Visitor.set_active_ast_context(NULL);
}
MatchASTVisitor Visitor;
MatchFinder::ParsingDoneTestCallback *ParsingDone;
};
} // end namespace
} // end namespace internal
MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes,
clang::ASTContext *Context)
: Nodes(Nodes), Context(Context),
SourceManager(&Context->getSourceManager()) {}
MatchFinder::MatchCallback::~MatchCallback() {}
MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {}
MatchFinder::MatchFinder() : ParsingDone(NULL) {}
MatchFinder::~MatchFinder() {
for (std::vector< std::pair<const internal::UntypedBaseMatcher*,
MatchFinder::MatchCallback*> >::const_iterator
It = Triggers.begin(), End = Triggers.end();
It != End; ++It) {
delete It->first;
}
}
void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch,
MatchCallback *Action) {
Triggers.push_back(std::make_pair(
new internal::TypedBaseMatcher<clang::Decl>(NodeMatch), Action));
}
void MatchFinder::addMatcher(const TypeMatcher &NodeMatch,
MatchCallback *Action) {
Triggers.push_back(std::make_pair(
new internal::TypedBaseMatcher<clang::QualType>(NodeMatch), Action));
}
void MatchFinder::addMatcher(const StatementMatcher &NodeMatch,
MatchCallback *Action) {
Triggers.push_back(std::make_pair(
new internal::TypedBaseMatcher<clang::Stmt>(NodeMatch), Action));
}
clang::ASTConsumer *MatchFinder::newASTConsumer() {
return new internal::MatchASTConsumer(&Triggers, ParsingDone);
}
void MatchFinder::registerTestCallbackAfterParsing(
MatchFinder::ParsingDoneTestCallback *NewParsingDone) {
ParsingDone = NewParsingDone;
}
} // end namespace ast_matchers
} // end namespace clang