llvm-project/llvm/test/Transforms/InstSimplify/icmp-abs-nabs.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

421 lines
12 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instsimplify -S | FileCheck %s
; This is canonical form for this IR.
define i1 @abs_nsw_is_positive(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sgt i32 %abs, -1
ret i1 %r
}
; Test non-canonical predicate and non-canonical form of abs().
define i1 @abs_nsw_is_positive_sge(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_sge(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 1
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sge i32 %abs, 0
ret i1 %r
}
; This is a range-based analysis. Any negative constant works.
define i1 @abs_nsw_is_positive_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_reduced_range(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sgt i32 %abs, -42
ret i1 %r
}
; Negative test - we need 'nsw' in the abs().
define i1 @abs_is_positive_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_is_positive_reduced_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[ABS]], 42
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sgt i32 %abs, 42
ret i1 %r
}
; Negative test - range intersection is not subset.
define i1 @abs_nsw_is_positive_wrong_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_wrong_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT: [[NEGX:%.*]] = sub nsw i32 0, [[X]]
; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[ABS]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sgt i32 %abs, 0
ret i1 %r
}
; This is canonical form for this IR.
define i1 @abs_nsw_is_not_negative(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp slt i32 %abs, 0
ret i1 %r
}
; Test non-canonical predicate and non-canonical form of abs().
define i1 @abs_nsw_is_not_negative_sle(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_sle(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 1
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sle i32 %abs, -1
ret i1 %r
}
; This is a range-based analysis. Any negative constant works.
define i1 @abs_nsw_is_not_negative_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_reduced_range(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp slt i32 %abs, -24
ret i1 %r
}
; Negative test - we need 'nsw' in the abs().
define i1 @abs_is_not_negative_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_is_not_negative_reduced_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[ABS]], 42
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp slt i32 %abs, 42
ret i1 %r
}
; Negative test - range intersection is not empty.
define i1 @abs_nsw_is_not_negative_wrong_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_wrong_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT: [[NEGX:%.*]] = sub nsw i32 0, [[X]]
; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT: [[R:%.*]] = icmp sle i32 [[ABS]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sle i32 %abs, 0
ret i1 %r
}
; Even if we don't have nsw, the range is still limited in the unsigned domain.
define i1 @abs_positive_or_signed_min(i32 %x) {
; CHECK-LABEL: @abs_positive_or_signed_min(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp ult i32 %abs, 2147483649
ret i1 %r
}
define i1 @abs_positive_or_signed_min_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_positive_or_signed_min_reduced_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT: [[R:%.*]] = icmp ult i32 [[ABS]], -2147483648
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp ult i32 %abs, 2147483648
ret i1 %r
}
; This is canonical form for this IR. For nabs(), we don't require 'nsw'
define i1 @nabs_is_negative_or_0(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp slt i32 %nabs, 1
ret i1 %r
}
; Test non-canonical predicate and non-canonical form of nabs().
define i1 @nabs_is_negative_or_0_sle(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_sle(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 1
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp sle i32 %nabs, 0
ret i1 %r
}
; This is a range-based analysis. Any positive constant works.
define i1 @nabs_is_negative_or_0_reduced_range(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_reduced_range(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i32 %x, 1
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp slt i32 %nabs, 421
ret i1 %r
}
; Negative test - range intersection is not subset.
define i1 @nabs_is_negative_or_0_wrong_range(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_wrong_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 1
; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[NABS:%.*]] = select i1 [[CMP]], i32 [[X]], i32 [[NEGX]]
; CHECK-NEXT: [[R:%.*]] = icmp slt i32 [[NABS]], 0
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 1
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp slt i32 %nabs, 0
ret i1 %r
}
; This is canonical form for this IR. For nabs(), we don't require 'nsw'
define i1 @nabs_is_not_over_0(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp sgt i32 %nabs, 0
ret i1 %r
}
; Test non-canonical predicate and non-canonical form of nabs().
define i1 @nabs_is_not_over_0_sle(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0_sle(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 1
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp sge i32 %nabs, 1
ret i1 %r
}
; This is a range-based analysis. Any positive constant works.
define i1 @nabs_is_not_over_0_reduced_range(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0_reduced_range(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 1
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp sgt i32 %nabs, 4223
ret i1 %r
}
; Negative test - range intersection is not subset.
define i1 @nabs_is_not_over_0_wrong_range(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0_wrong_range(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 1
; CHECK-NEXT: [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[NABS:%.*]] = select i1 [[CMP]], i32 [[X]], i32 [[NEGX]]
; CHECK-NEXT: [[R:%.*]] = icmp sgt i32 [[NABS]], -1
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %x, 1
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp sgt i32 %nabs, -1
ret i1 %r
}
; More miscellaneous tests for predicates/types.
; Equality predicates are ok.
define i1 @abs_nsw_is_positive_eq(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_eq(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i32 %x, 1
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp eq i32 %abs, -8
ret i1 %r
}
; An unsigned compare may work.
define i1 @abs_nsw_is_positive_ult(i8 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_ult(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i8 %x, 0
%negx = sub nsw i8 0, %x
%abs = select i1 %cmp, i8 %negx, i8 %x
%r = icmp ult i8 %abs, 139
ret i1 %r
}
; An unsigned compare may work.
define i1 @abs_nsw_is_not_negative_ugt(i8 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_ugt(
; CHECK-NEXT: ret i1 false
;
%cmp = icmp slt i8 %x, 0
%negx = sub nsw i8 0, %x
%abs = select i1 %cmp, i8 %negx, i8 %x
%r = icmp ugt i8 %abs, 127
ret i1 %r
}
; Vector types are ok.
define <2 x i1> @abs_nsw_is_not_negative_vec_splat(<2 x i32> %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_vec_splat(
; CHECK-NEXT: ret <2 x i1> zeroinitializer
;
%cmp = icmp slt <2 x i32> %x, zeroinitializer
%negx = sub nsw <2 x i32> zeroinitializer, %x
%abs = select <2 x i1> %cmp, <2 x i32> %negx, <2 x i32> %x
%r = icmp slt <2 x i32> %abs, <i32 -8, i32 -8>
ret <2 x i1> %r
}
; Equality predicates are ok.
define i1 @nabs_is_negative_or_0_ne(i8 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_ne(
; CHECK-NEXT: ret i1 true
;
%cmp = icmp slt i8 %x, 0
%negx = sub i8 0, %x
%nabs = select i1 %cmp, i8 %x, i8 %negx
%r = icmp ne i8 %nabs, 12
ret i1 %r
}
; Vector types are ok.
define <3 x i1> @nabs_is_not_over_0_sle_vec_splat(<3 x i33> %x) {
; CHECK-LABEL: @nabs_is_not_over_0_sle_vec_splat(
; CHECK-NEXT: ret <3 x i1> zeroinitializer
;
%cmp = icmp slt <3 x i33> %x, <i33 1, i33 1, i33 1>
%negx = sub <3 x i33> zeroinitializer, %x
%nabs = select <3 x i1> %cmp, <3 x i33> %x, <3 x i33> %negx
%r = icmp sge <3 x i33> %nabs, <i33 1, i33 1, i33 1>
ret <3 x i1> %r
}
; Negative test - intersection does not equal absolute value range.
; PR39510 - https://bugs.llvm.org/show_bug.cgi?id=39510
define i1 @abs_no_intersection(i32 %a) {
; CHECK-LABEL: @abs_no_intersection(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[A:%.*]], 0
; CHECK-NEXT: [[SUB:%.*]] = sub nsw i32 0, [[A]]
; CHECK-NEXT: [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 [[A]]
; CHECK-NEXT: [[R:%.*]] = icmp ne i32 [[COND]], 2
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp slt i32 %a, 0
%sub = sub nsw i32 0, %a
%cond = select i1 %cmp, i32 %sub, i32 %a
%r = icmp ne i32 %cond, 2
ret i1 %r
}
; Negative test - intersection does not equal absolute value range.
define i1 @nabs_no_intersection(i32 %a) {
; CHECK-LABEL: @nabs_no_intersection(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[A:%.*]], 0
; CHECK-NEXT: [[SUB:%.*]] = sub i32 0, [[A]]
; CHECK-NEXT: [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 [[A]]
; CHECK-NEXT: [[R:%.*]] = icmp ne i32 [[COND]], -2
; CHECK-NEXT: ret i1 [[R]]
;
%cmp = icmp sgt i32 %a, 0
%sub = sub i32 0, %a
%cond = select i1 %cmp, i32 %sub, i32 %a
%r = icmp ne i32 %cond, -2
ret i1 %r
}
; We can't fold this to false unless both subs have nsw.
define i1 @abs_sub_sub_missing_nsw(i32 %x, i32 %y) {
; CHECK-LABEL: @abs_sub_sub_missing_nsw(
; CHECK-NEXT: [[A:%.*]] = sub i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[B:%.*]] = sub nsw i32 [[Y]], [[X]]
; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[A]], -1
; CHECK-NEXT: [[D:%.*]] = select i1 [[C]], i32 [[A]], i32 [[B]]
; CHECK-NEXT: [[E:%.*]] = icmp slt i32 [[D]], 0
; CHECK-NEXT: ret i1 [[E]]
;
%a = sub i32 %x, %y
%b = sub nsw i32 %y, %x
%c = icmp sgt i32 %a, -1
%d = select i1 %c, i32 %a, i32 %b
%e = icmp slt i32 %d, 0
ret i1 %e
}