llvm-project/llvm/tools/llvm2cpp/CppWriter.cpp

1352 lines
49 KiB
C++
Raw Normal View History

//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the writing of the LLVM IR as a set of C++ calls to the
// LLVM IR interface. The input module is assumed to be verified.
//
//===----------------------------------------------------------------------===//
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <iostream>
#include <set>
using namespace llvm;
static cl::opt<std::string>
ModName("modname", cl::desc("Specify the module name to use"),
cl::value_desc("module name"));
static cl::opt<std::string>
FuncName("funcname", cl::desc("Specify the name of the generated function"),
cl::value_desc("function name"));
static cl::opt<bool>
Fragment("fragment", cl::desc("Don't generate a complete program"));
namespace {
typedef std::vector<const Type*> TypeList;
typedef std::map<const Type*,std::string> TypeMap;
typedef std::map<const Value*,std::string> ValueMap;
typedef std::set<std::string> NameSet;
typedef std::set<const Type*> TypeSet;
typedef std::set<const Value*> ValueSet;
typedef std::map<const Value*,std::string> ForwardRefMap;
class CppWriter {
std::ostream &Out;
const Module *TheModule;
unsigned long uniqueNum;
TypeMap TypeNames;
ValueMap ValueNames;
TypeMap UnresolvedTypes;
TypeList TypeStack;
NameSet UsedNames;
TypeSet DefinedTypes;
ValueSet DefinedValues;
ForwardRefMap ForwardRefs;
public:
inline CppWriter(std::ostream &o, const Module *M)
: Out(o), TheModule(M), uniqueNum(0), TypeNames(),
ValueNames(), UnresolvedTypes(), TypeStack() { }
const Module* getModule() { return TheModule; }
void printModule(const Module *M);
private:
void printTypes(const Module* M);
void printConstants(const Module* M);
void printConstant(const Constant *CPV);
void printGlobalHead(const GlobalVariable *GV);
void printGlobalBody(const GlobalVariable *GV);
void printFunctionHead(const Function *F);
void printFunctionBody(const Function *F);
void printInstruction(const Instruction *I, const std::string& bbname);
void printSymbolTable(const SymbolTable &ST);
void printLinkageType(GlobalValue::LinkageTypes LT);
void printCallingConv(unsigned cc);
std::string getCppName(const Type* val);
std::string getCppName(const Value* val);
inline void printCppName(const Value* val);
inline void printCppName(const Type* val);
bool isOnStack(const Type*) const;
inline void printTypeDef(const Type* Ty);
bool printTypeDefInternal(const Type* Ty);
void printEscapedString(const std::string& str);
std::string getOpName(Value*);
void printCFP(const ConstantFP* CFP);
};
// printCFP - Print a floating point constant .. very carefully :)
// This makes sure that conversion to/from floating yields the same binary
// result so that we don't lose precision.
void
CppWriter::printCFP(const ConstantFP *CFP) {
#if HAVE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%A", CFP->getValue());
if ((!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3)) &&
(atof(Buffer) == CFP->getValue()))
Out << Buffer;
else {
#else
std::string StrVal = ftostr(CFP->getValue());
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
(atof(StrVal.c_str()) == CFP->getValue()))
Out << StrVal;
else if (CFP->getType() == Type::DoubleTy) {
Out << "0x" << std::hex << DoubleToBits(CFP->getValue()) << std::dec
<< "ULL /* " << StrVal << " */";
} else {
Out << "0x" << std::hex << FloatToBits(CFP->getValue()) << std::dec
<< "U /* " << StrVal << " */";
}
#endif
#if HAVE_PRINTF_A
}
#endif
}
std::string
CppWriter::getOpName(Value* V) {
if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
return getCppName(V);
// See if its alread in the map of forward references, if so just return the
// name we already set up for it
ForwardRefMap::const_iterator I = ForwardRefs.find(V);
if (I != ForwardRefs.end())
return I->second;
// This is a new forward reference. Generate a unique name for it
std::string result(std::string("fwdref_") + utostr(uniqueNum++));
// Yes, this is a hack. An Argument is the smallest instantiable value that
// we can make as a placeholder for the real value. We'll replace these
// Argument instances later.
Out << " Argument* " << result << " = new Argument("
<< getCppName(V->getType()) << ");\n";
ForwardRefs[V] = result;
return result;
}
// printEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
void
CppWriter::printEscapedString(const std::string &Str) {
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '"' && C != '\\') {
Out << C;
} else {
Out << "\\x"
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
}
inline void
sanitize(std::string& str) {
for (size_t i = 0; i < str.length(); ++i)
if (!isalnum(str[i]) && str[i] != '_')
str[i] = '_';
}
inline const char*
getTypePrefix(const Type* Ty ) {
const char* prefix;
switch (Ty->getTypeID()) {
case Type::VoidTyID: prefix = "void_"; break;
case Type::BoolTyID: prefix = "bool_"; break;
case Type::UByteTyID: prefix = "ubyte_"; break;
case Type::SByteTyID: prefix = "sbyte_"; break;
case Type::UShortTyID: prefix = "ushort_"; break;
case Type::ShortTyID: prefix = "short_"; break;
case Type::UIntTyID: prefix = "uint_"; break;
case Type::IntTyID: prefix = "int_"; break;
case Type::ULongTyID: prefix = "ulong_"; break;
case Type::LongTyID: prefix = "long_"; break;
case Type::FloatTyID: prefix = "float_"; break;
case Type::DoubleTyID: prefix = "double_"; break;
case Type::LabelTyID: prefix = "label_"; break;
case Type::FunctionTyID: prefix = "func_"; break;
case Type::StructTyID: prefix = "struct_"; break;
case Type::ArrayTyID: prefix = "array_"; break;
case Type::PointerTyID: prefix = "ptr_"; break;
case Type::PackedTyID: prefix = "packed_"; break;
case Type::OpaqueTyID: prefix = "opaque_"; break;
default: prefix = "other_"; break;
}
return prefix;
}
std::string
CppWriter::getCppName(const Value* val) {
std::string name;
ValueMap::iterator I = ValueNames.find(val);
if (I != ValueNames.end() && I->first == val)
return I->second;
if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
name = std::string("gvar_") +
getTypePrefix(GV->getType()->getElementType());
} else if (const Function* F = dyn_cast<Function>(val)) {
name = std::string("func_");
} else if (const Constant* C = dyn_cast<Constant>(val)) {
name = std::string("const_") + getTypePrefix(C->getType());
} else {
name = getTypePrefix(val->getType());
}
name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
sanitize(name);
NameSet::iterator NI = UsedNames.find(name);
if (NI != UsedNames.end())
name += std::string("_") + utostr(uniqueNum++);
UsedNames.insert(name);
return ValueNames[val] = name;
}
void
CppWriter::printCppName(const Value* val) {
printEscapedString(getCppName(val));
}
void
CppWriter::printCppName(const Type* Ty)
{
printEscapedString(getCppName(Ty));
}
// Gets the C++ name for a type. Returns true if we already saw the type,
// false otherwise.
//
inline const std::string*
findTypeName(const SymbolTable& ST, const Type* Ty)
{
SymbolTable::type_const_iterator TI = ST.type_begin();
SymbolTable::type_const_iterator TE = ST.type_end();
for (;TI != TE; ++TI)
if (TI->second == Ty)
return &(TI->first);
return 0;
}
std::string
CppWriter::getCppName(const Type* Ty)
{
// First, handle the primitive types .. easy
if (Ty->isPrimitiveType()) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return "Type::VoidTy";
case Type::BoolTyID: return "Type::BoolTy";
case Type::UByteTyID: return "Type::UByteTy";
case Type::SByteTyID: return "Type::SByteTy";
case Type::UShortTyID: return "Type::UShortTy";
case Type::ShortTyID: return "Type::ShortTy";
case Type::UIntTyID: return "Type::UIntTy";
case Type::IntTyID: return "Type::IntTy";
case Type::ULongTyID: return "Type::ULongTy";
case Type::LongTyID: return "Type::LongTy";
case Type::FloatTyID: return "Type::FloatTy";
case Type::DoubleTyID: return "Type::DoubleTy";
case Type::LabelTyID: return "Type::LabelTy";
default:
assert(!"Can't get here");
break;
}
return "Type::VoidTy"; // shouldn't be returned, but make it sensible
}
// Now, see if we've seen the type before and return that
TypeMap::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
// Okay, let's build a new name for this type. Start with a prefix
const char* prefix = 0;
switch (Ty->getTypeID()) {
case Type::FunctionTyID: prefix = "FuncTy_"; break;
case Type::StructTyID: prefix = "StructTy_"; break;
case Type::ArrayTyID: prefix = "ArrayTy_"; break;
case Type::PointerTyID: prefix = "PointerTy_"; break;
case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
case Type::PackedTyID: prefix = "PackedTy_"; break;
default: prefix = "OtherTy_"; break; // prevent breakage
}
// See if the type has a name in the symboltable and build accordingly
const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
std::string name;
if (tName)
name = std::string(prefix) + *tName;
else
name = std::string(prefix) + utostr(uniqueNum++);
sanitize(name);
// Save the name
return TypeNames[Ty] = name;
}
void CppWriter::printModule(const Module *M) {
Out << "\n// Module Construction\n";
Out << "Module* mod = new Module(\"";
if (!ModName.empty())
printEscapedString(ModName);
else if (M->getModuleIdentifier() == "-")
printEscapedString("<stdin>");
else
printEscapedString(M->getModuleIdentifier());
Out << "\");\n";
Out << "mod->setEndianness(";
switch (M->getEndianness()) {
case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
case Module::BigEndian: Out << "Module::BigEndian);\n"; break;
case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break;
}
Out << "mod->setPointerSize(";
switch (M->getPointerSize()) {
case Module::Pointer32: Out << "Module::Pointer32);\n"; break;
case Module::Pointer64: Out << "Module::Pointer64);\n"; break;
case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
}
if (!M->getTargetTriple().empty())
Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
if (!M->getModuleInlineAsm().empty()) {
Out << "mod->setModuleInlineAsm(\"";
printEscapedString(M->getModuleInlineAsm());
Out << "\");\n";
}
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
while (LI != LE) {
Out << "mod->addLibrary(\"" << *LI << "\");\n";
++LI;
}
// Print out all the type definitions
Out << "\n// Type Definitions\n";
printTypes(M);
// Functions can call each other and global variables can reference them so
// define all the functions first before emitting their function bodies.
Out << "\n// Function Declarations\n";
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunctionHead(I);
// Process the global variables declarations. We can't initialze them until
// after the constants are printed so just print a header for each global
Out << "\n// Global Variable Declarations\n";
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
printGlobalHead(I);
}
// Print out all the constants definitions. Constants don't recurse except
// through GlobalValues. All GlobalValues have been declared at this point
// so we can proceed to generate the constants.
Out << "\n// Constant Definitions\n";
printConstants(M);
// Process the global variables definitions now that all the constants have
// been emitted. These definitions just couple the gvars with their constant
// initializers.
Out << "\n// Global Variable Definitions\n";
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
printGlobalBody(I);
}
// Finally, we can safely put out all of the function bodies.
Out << "\n// Function Definitions\n";
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
if (!I->isExternal()) {
Out << "\n// Function: " << I->getName() << " (" << getCppName(I)
<< ")\n{\n";
printFunctionBody(I);
Out << "}\n";
}
}
}
void
CppWriter::printCallingConv(unsigned cc){
// Print the calling convention.
switch (cc) {
case CallingConv::C: Out << "CallingConv::C"; break;
case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
case CallingConv::Fast: Out << "CallingConv::Fast"; break;
case CallingConv::Cold: Out << "CallingConv::Cold"; break;
case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
default: Out << cc; break;
}
}
void
CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
switch (LT) {
case GlobalValue::InternalLinkage:
Out << "GlobalValue::InternalLinkage"; break;
case GlobalValue::LinkOnceLinkage:
Out << "GlobalValue::LinkOnceLinkage "; break;
case GlobalValue::WeakLinkage:
Out << "GlobalValue::WeakLinkage"; break;
case GlobalValue::AppendingLinkage:
Out << "GlobalValue::AppendingLinkage"; break;
case GlobalValue::ExternalLinkage:
Out << "GlobalValue::ExternalLinkage"; break;
case GlobalValue::GhostLinkage:
Out << "GlobalValue::GhostLinkage"; break;
}
}
void CppWriter::printGlobalHead(const GlobalVariable *GV) {
Out << "\n";
Out << "GlobalVariable* ";
printCppName(GV);
Out << " = new GlobalVariable(\n";
Out << " /*Type=*/";
printCppName(GV->getType()->getElementType());
Out << ",\n";
Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false")
<< ",\n /*Linkage=*/";
printLinkageType(GV->getLinkage());
Out << ",\n /*Initializer=*/0, ";
if (GV->hasInitializer()) {
Out << "// has initializer, specified below";
}
Out << "\n /*Name=*/\"";
printEscapedString(GV->getName());
Out << "\",\n mod);\n";
if (GV->hasSection()) {
printCppName(GV);
Out << "->setSection(\"";
printEscapedString(GV->getSection());
Out << "\");\n";
}
if (GV->getAlignment()) {
printCppName(GV);
Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n";
};
}
void
CppWriter::printGlobalBody(const GlobalVariable *GV) {
if (GV->hasInitializer()) {
printCppName(GV);
Out << "->setInitializer(";
//if (!isa<GlobalValue(GV->getInitializer()))
//else
Out << getCppName(GV->getInitializer()) << ");\n";
}
}
bool
CppWriter::isOnStack(const Type* Ty) const {
TypeList::const_iterator TI =
std::find(TypeStack.begin(),TypeStack.end(),Ty);
return TI != TypeStack.end();
}
// Prints a type definition. Returns true if it could not resolve all the types
// in the definition but had to use a forward reference.
void
CppWriter::printTypeDef(const Type* Ty) {
assert(TypeStack.empty());
TypeStack.clear();
printTypeDefInternal(Ty);
assert(TypeStack.empty());
}
bool
CppWriter::printTypeDefInternal(const Type* Ty) {
// We don't print definitions for primitive types
if (Ty->isPrimitiveType())
return false;
// If we already defined this type, we don't need to define it again.
if (DefinedTypes.find(Ty) != DefinedTypes.end())
return false;
// Everything below needs the name for the type so get it now.
std::string typeName(getCppName(Ty));
// Search the type stack for recursion. If we find it, then generate this
// as an OpaqueType, but make sure not to do this multiple times because
// the type could appear in multiple places on the stack. Once the opaque
// definition is issued, it must not be re-issued. Consequently we have to
// check the UnresolvedTypes list as well.
if (isOnStack(Ty)) {
TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
if (I == UnresolvedTypes.end()) {
Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n";
UnresolvedTypes[Ty] = typeName;
}
return true;
}
// We're going to print a derived type which, by definition, contains other
// types. So, push this one we're printing onto the type stack to assist with
// recursive definitions.
TypeStack.push_back(Ty);
// Print the type definition
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType* FT = cast<FunctionType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_args;\n";
FunctionType::param_iterator PI = FT->param_begin();
FunctionType::param_iterator PE = FT->param_end();
for (; PI != PE; ++PI) {
const Type* argTy = static_cast<const Type*>(*PI);
bool isForward = printTypeDefInternal(argTy);
std::string argName(getCppName(argTy));
Out << typeName << "_args.push_back(" << argName;
if (isForward)
Out << "_fwd";
Out << ");\n";
}
bool isForward = printTypeDefInternal(FT->getReturnType());
std::string retTypeName(getCppName(FT->getReturnType()));
Out << "FunctionType* " << typeName << " = FunctionType::get(\n"
<< " /*Result=*/" << retTypeName;
if (isForward)
Out << "_fwd";
Out << ",\n /*Params=*/" << typeName << "_args,\n /*isVarArg=*/"
<< (FT->isVarArg() ? "true" : "false") << ");\n";
break;
}
case Type::StructTyID: {
const StructType* ST = cast<StructType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_fields;\n";
StructType::element_iterator EI = ST->element_begin();
StructType::element_iterator EE = ST->element_end();
for (; EI != EE; ++EI) {
const Type* fieldTy = static_cast<const Type*>(*EI);
bool isForward = printTypeDefInternal(fieldTy);
std::string fieldName(getCppName(fieldTy));
Out << typeName << "_fields.push_back(" << fieldName;
if (isForward)
Out << "_fwd";
Out << ");\n";
}
Out << "StructType* " << typeName << " = StructType::get("
<< typeName << "_fields);\n";
break;
}
case Type::ArrayTyID: {
const ArrayType* AT = cast<ArrayType>(Ty);
const Type* ET = AT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "ArrayType* " << typeName << " = ArrayType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(AT->getNumElements()) << ");\n";
break;
}
case Type::PointerTyID: {
const PointerType* PT = cast<PointerType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "PointerType* " << typeName << " = PointerType::get("
<< elemName << (isForward ? "_fwd" : "") << ");\n";
break;
}
case Type::PackedTyID: {
const PackedType* PT = cast<PackedType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "PackedType* " << typeName << " = PackedType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(PT->getNumElements()) << ");\n";
break;
}
case Type::OpaqueTyID: {
const OpaqueType* OT = cast<OpaqueType>(Ty);
Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n";
break;
}
default:
assert(!"Invalid TypeID");
}
// If the type had a name, make sure we recreate it.
const std::string* progTypeName =
findTypeName(TheModule->getSymbolTable(),Ty);
if (progTypeName)
Out << "mod->addTypeName(\"" << *progTypeName << "\", "
<< typeName << ");\n";
// Pop us off the type stack
TypeStack.pop_back();
// Indicate that this type is now defined.
DefinedTypes.insert(Ty);
// Early resolve as many unresolved types as possible. Search the unresolved
// types map for the type we just printed. Now that its definition is complete
// we can resolve any previous references to it. This prevents a cascade of
// unresolved types.
TypeMap::iterator I = UnresolvedTypes.find(Ty);
if (I != UnresolvedTypes.end()) {
Out << "cast<OpaqueType>(" << I->second
<< "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n";
Out << I->second << " = cast<";
switch (Ty->getTypeID()) {
case Type::FunctionTyID: Out << "FunctionType"; break;
case Type::ArrayTyID: Out << "ArrayType"; break;
case Type::StructTyID: Out << "StructType"; break;
case Type::PackedTyID: Out << "PackedType"; break;
case Type::PointerTyID: Out << "PointerType"; break;
case Type::OpaqueTyID: Out << "OpaqueType"; break;
default: Out << "NoSuchDerivedType"; break;
}
Out << ">(" << I->second << "_fwd.get());\n\n";
UnresolvedTypes.erase(I);
}
// Finally, separate the type definition from other with a newline.
Out << "\n";
// We weren't a recursive type
return false;
}
void
CppWriter::printTypes(const Module* M) {
// Walk the symbol table and print out all its types
const SymbolTable& symtab = M->getSymbolTable();
for (SymbolTable::type_const_iterator TI = symtab.type_begin(),
TE = symtab.type_end(); TI != TE; ++TI) {
// For primitive types and types already defined, just add a name
TypeMap::const_iterator TNI = TypeNames.find(TI->second);
if (TI->second->isPrimitiveType() || TNI != TypeNames.end()) {
Out << "mod->addTypeName(\"";
printEscapedString(TI->first);
Out << "\", " << getCppName(TI->second) << ");\n";
// For everything else, define the type
} else {
printTypeDef(TI->second);
}
}
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
if (I->hasInitializer())
printTypeDef(I->getInitializer()->getType());
printTypeDef(I->getType());
}
// Add all the functions to the table
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
printTypeDef(FI->getReturnType());
printTypeDef(FI->getFunctionType());
// Add all the function arguments
for(Function::const_arg_iterator AI = FI->arg_begin(),
AE = FI->arg_end(); AI != AE; ++AI) {
printTypeDef(AI->getType());
}
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
printTypeDef(BB->getType());
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
printTypeDef(I->getType());
for (unsigned i = 0; i < I->getNumOperands(); ++i)
printTypeDef(I->getOperand(i)->getType());
}
}
}
}
void
CppWriter::printConstants(const Module* M) {
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (I->hasInitializer())
printConstant(I->getInitializer());
// Traverse the LLVM functions looking for constants
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
printConstant(C);
}
}
}
}
}
}
// printConstant - Print out a constant pool entry...
void CppWriter::printConstant(const Constant *CV) {
// First, if the constant is actually a GlobalValue (variable or function) or
// its already in the constant list then we've printed it already and we can
// just return.
if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
return;
const int IndentSize = 2;
static std::string Indent = "\n";
std::string constName(getCppName(CV));
std::string typeName(getCppName(CV->getType()));
if (CV->isNullValue()) {
Out << "Constant* " << constName << " = Constant::getNullValue("
<< typeName << ");\n";
return;
}
if (isa<GlobalValue>(CV)) {
// Skip variables and functions, we emit them elsewhere
return;
}
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << "ConstantBool* " << constName << " = ConstantBool::get("
<< (CB == ConstantBool::True ? "true" : "false")
<< ");";
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
Out << "ConstantSInt* " << constName << " = ConstantSInt::get("
<< typeName << ", " << CI->getValue() << ");";
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
Out << "ConstantUInt* " << constName << " = ConstantUInt::get("
<< typeName << ", " << CI->getValue() << ");";
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "ConstantAggregateZero* " << constName
<< " = ConstantAggregateZero::get(" << typeName << ");";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "ConstantPointerNull* " << constName
<< " = ConstanPointerNull::get(" << typeName << ");";
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
Out << "ConstantFP* " << constName << " = ConstantFP::get(" << typeName
<< ", ";
char buffer[64];
sprintf(buffer,"%A",CFP->getValue());
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
//
if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
(atof(StrVal.c_str()) == CFP->getValue()))
{
Out << StrVal;
} else {
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
Out << "0x" << std::hex << DoubleToBits(CFP->getValue()) << std::dec
<< "ULL /* " << StrVal << " */";
}
Out << ");";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
if (CA->isString() && CA->getType()->getElementType() == Type::SByteTy) {
Out << "Constant* " << constName << " = ConstantArray::get(\"";
printEscapedString(CA->getAsString());
// Determine if we want null termination or not.
if (CA->getType()->getNumElements() <= CA->getAsString().length())
Out << "\", false";// No null terminator
else
Out << "\", true"; // Indicate that the null terminator should be added.
Out << ");";
} else {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
unsigned N = CA->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CA->getOperand(i)); // recurse to print operands
Out << constName << "_elems.push_back("
<< getCppName(CA->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantArray::get("
<< typeName << ", " << constName << "_elems);";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
Out << "std::vector<Constant*> " << constName << "_fields;\n";
unsigned N = CS->getNumOperands();
for (unsigned i = 0; i < N; i++) {
printConstant(CS->getOperand(i));
Out << constName << "_fields.push_back("
<< getCppName(CS->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantStruct::get("
<< typeName << ", " << constName << "_fields);";
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
unsigned N = CP->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CP->getOperand(i));
Out << constName << "_elems.push_back("
<< getCppName(CP->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantPacked::get("
<< typeName << ", " << constName << "_elems);";
} else if (isa<UndefValue>(CV)) {
Out << "UndefValue* " << constName << " = UndefValue::get("
<< typeName << ");";
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
Out << "std::vector<Constant*> " << constName << "_indices;\n";
printConstant(CE->getOperand(0));
for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
printConstant(CE->getOperand(i));
Out << constName << "_indices.push_back("
<< getCppName(CE->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName
<< " = ConstantExpr::getGetElementPtr("
<< getCppName(CE->getOperand(0)) << ", "
<< constName << "_indices);";
} else if (CE->getOpcode() == Instruction::Cast) {
printConstant(CE->getOperand(0));
Out << "Constant* " << constName << " = ConstantExpr::getCast(";
Out << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType())
<< ");";
} else {
unsigned N = CE->getNumOperands();
for (unsigned i = 0; i < N; ++i ) {
printConstant(CE->getOperand(i));
}
Out << "Constant* " << constName << " = ConstantExpr::";
switch (CE->getOpcode()) {
case Instruction::Add: Out << "getAdd"; break;
case Instruction::Sub: Out << "getSub"; break;
case Instruction::Mul: Out << "getMul"; break;
case Instruction::Div: Out << "getDiv"; break;
case Instruction::Rem: Out << "getRem"; break;
case Instruction::And: Out << "getAnd"; break;
case Instruction::Or: Out << "getOr"; break;
case Instruction::Xor: Out << "getXor"; break;
case Instruction::SetEQ: Out << "getSetEQ"; break;
case Instruction::SetNE: Out << "getSetNE"; break;
case Instruction::SetLE: Out << "getSetLE"; break;
case Instruction::SetGE: Out << "getSetGE"; break;
case Instruction::SetLT: Out << "getSetLT"; break;
case Instruction::SetGT: Out << "getSetGT"; break;
case Instruction::Shl: Out << "getShl"; break;
case Instruction::Shr: Out << "getShr"; break;
case Instruction::Select: Out << "getSelect"; break;
case Instruction::ExtractElement: Out << "getExtractElement"; break;
case Instruction::InsertElement: Out << "getInsertElement"; break;
case Instruction::ShuffleVector: Out << "getShuffleVector"; break;
default:
assert(!"Invalid constant expression");
break;
}
Out << getCppName(CE->getOperand(0));
for (unsigned i = 1; i < CE->getNumOperands(); ++i)
Out << ", " << getCppName(CE->getOperand(i));
Out << ");";
}
} else {
assert(!"Bad Constant");
Out << "Constant* " << constName << " = 0; ";
}
Out << "\n";
}
void CppWriter::printFunctionHead(const Function* F) {
Out << "\nFunction* " << getCppName(F) << " = new Function(\n"
<< " /*Type=*/" << getCppName(F->getFunctionType()) << ",\n"
<< " /*Linkage=*/";
printLinkageType(F->getLinkage());
Out << ",\n /*Name=*/\"";
printEscapedString(F->getName());
Out << "\", mod); "
<< (F->isExternal()? "// (external, no body)" : "") << "\n";
printCppName(F);
Out << "->setCallingConv(";
printCallingConv(F->getCallingConv());
Out << ");\n";
if (F->hasSection()) {
printCppName(F);
Out << "->setSection(\"" << F->getSection() << "\");\n";
}
if (F->getAlignment()) {
printCppName(F);
Out << "->setAlignment(" << F->getAlignment() << ");\n";
}
}
void CppWriter::printFunctionBody(const Function *F) {
if (F->isExternal())
return; // external functions have no bodies.
// Clear the DefinedValues and ForwardRefs maps because we can't have
// cross-function forward refs
ForwardRefs.clear();
DefinedValues.clear();
// Create all the argument values
if (!F->arg_empty()) {
Out << " Function::arg_iterator args = " << getCppName(F)
<< "->arg_begin();\n";
}
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI) {
Out << " Value* " << getCppName(AI) << " = args++;\n";
if (AI->hasName())
Out << " " << getCppName(AI) << "->setName(\"" << AI->getName()
<< "\");\n";
}
// Create all the basic blocks
Out << "\n";
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
Out << " BasicBlock* " << bbname << " = new BasicBlock(\"";
if (BI->hasName())
printEscapedString(BI->getName());
Out << "\"," << getCppName(BI->getParent()) << ",0);\n";
}
// Output all of its basic blocks... for the function
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
Out << "\n // Block " << BI->getName() << " (" << bbname << ")\n";
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
I != E; ++I) {
printInstruction(I,bbname);
}
}
// Loop over the ForwardRefs and resolve them now that all instructions
// are generated.
if (!ForwardRefs.empty())
Out << "\n // Resolve Forward References\n";
while (!ForwardRefs.empty()) {
ForwardRefMap::iterator I = ForwardRefs.begin();
Out << " " << I->second << "->replaceAllUsesWith("
<< getCppName(I->first) << "); delete " << I->second << ";\n";
ForwardRefs.erase(I);
}
}
// printInstruction - This member is called for each Instruction in a function.
void
CppWriter::printInstruction(const Instruction *I, const std::string& bbname)
{
std::string iName(getCppName(I));
// Before we emit this instruction, we need to take care of generating any
// forward references. So, we get the names of all the operands in advance
std::string* opNames = new std::string[I->getNumOperands()];
for (unsigned i = 0; i < I->getNumOperands(); i++) {
opNames[i] = getOpName(I->getOperand(i));
}
switch (I->getOpcode()) {
case Instruction::Ret: {
const ReturnInst* ret = cast<ReturnInst>(I);
Out << " ReturnInst* " << iName << " = new ReturnInst("
<< (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
break;
}
case Instruction::Br: {
const BranchInst* br = cast<BranchInst>(I);
Out << " BranchInst* " << iName << " = new BranchInst(" ;
if (br->getNumOperands() == 3 ) {
Out << opNames[0] << ", "
<< opNames[1] << ", "
<< opNames[2] << ", ";
} else if (br->getNumOperands() == 1) {
Out << opNames[0] << ", ";
} else {
assert(!"branch with 2 operands?");
}
Out << bbname << ");";
break;
}
case Instruction::Switch: {
const SwitchInst* sw = cast<SwitchInst>(I);
Out << " SwitchInst* " << iName << " = new SwitchInst("
<< opNames[0] << ", "
<< opNames[1] << ", "
<< sw->getNumCases() << ", " << bbname << ");\n";
for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
Out << " " << iName << "->addCase("
<< opNames[i] << ", "
<< opNames[i+1] << ");\n";
}
break;
}
case Instruction::Invoke: {
const InvokeInst* inv = cast<InvokeInst>(I);
Out << " std::vector<Value*> " << iName << "_params;\n";
for (unsigned i = 3; i < inv->getNumOperands(); ++i)
Out << " " << iName << "_params.push_back("
<< opNames[i] << ");\n";
Out << " InvokeInst* " << iName << " = new InvokeInst("
<< opNames[0] << ", "
<< opNames[1] << ", "
<< opNames[2] << ", "
<< iName << "_params, \"";
printEscapedString(inv->getName());
Out << "\", " << bbname << ");\n";
Out << iName << "->setCallingConv(";
printCallingConv(inv->getCallingConv());
Out << ");";
break;
}
case Instruction::Unwind: {
Out << " UnwindInst* " << iName << " = new UnwindInst("
<< bbname << ");";
break;
}
case Instruction::Unreachable:{
Out << " UnreachableInst* " << iName << " = new UnreachableInst("
<< bbname << ");";
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Div:
case Instruction::Rem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::Shr:{
Out << " BinaryOperator* " << iName << " = BinaryOperator::create(";
switch (I->getOpcode()) {
case Instruction::Add: Out << "Instruction::Add"; break;
case Instruction::Sub: Out << "Instruction::Sub"; break;
case Instruction::Mul: Out << "Instruction::Mul"; break;
case Instruction::Div: Out << "Instruction::Div"; break;
case Instruction::Rem: Out << "Instruction::Rem"; break;
case Instruction::And: Out << "Instruction::And"; break;
case Instruction::Or: Out << "Instruction::Or"; break;
case Instruction::Xor: Out << "Instruction::Xor"; break;
case Instruction::Shl: Out << "Instruction::Shl"; break;
case Instruction::Shr: Out << "Instruction::Shr"; break;
default: Out << "Instruction::BadOpCode"; break;
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::SetEQ:
case Instruction::SetNE:
case Instruction::SetLE:
case Instruction::SetGE:
case Instruction::SetLT:
case Instruction::SetGT: {
Out << " SetCondInst* " << iName << " = new SetCondInst(";
switch (I->getOpcode()) {
case Instruction::SetEQ: Out << "Instruction::SetEQ"; break;
case Instruction::SetNE: Out << "Instruction::SetNE"; break;
case Instruction::SetLE: Out << "Instruction::SetLE"; break;
case Instruction::SetGE: Out << "Instruction::SetGE"; break;
case Instruction::SetLT: Out << "Instruction::SetLT"; break;
case Instruction::SetGT: Out << "Instruction::SetGT"; break;
default: Out << "Instruction::BadOpCode"; break;
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::Malloc: {
const MallocInst* mallocI = cast<MallocInst>(I);
Out << " MallocInst* " << iName << " = new MallocInst("
<< getCppName(mallocI->getAllocatedType()) << ", ";
if (mallocI->isArrayAllocation())
Out << opNames[0] << ", " ;
Out << "\"";
printEscapedString(mallocI->getName());
Out << "\", " << bbname << ");";
if (mallocI->getAlignment())
Out << "\n " << iName << "->setAlignment("
<< mallocI->getAlignment() << ");";
break;
}
case Instruction::Free: {
Out << " FreeInst* " << iName << " = new FreeInst("
<< getCppName(I->getOperand(0)) << ", " << bbname << ");";
break;
}
case Instruction::Alloca: {
const AllocaInst* allocaI = cast<AllocaInst>(I);
Out << " AllocaInst* " << iName << " = new AllocaInst("
<< getCppName(allocaI->getAllocatedType()) << ", ";
if (allocaI->isArrayAllocation())
Out << opNames[0] << ", ";
Out << "\"";
printEscapedString(allocaI->getName());
Out << "\", " << bbname << ");";
if (allocaI->getAlignment())
Out << "\n " << iName << "->setAlignment("
<< allocaI->getAlignment() << ");";
break;
}
case Instruction::Load:{
const LoadInst* load = cast<LoadInst>(I);
Out << " LoadInst* " << iName << " = new LoadInst("
<< opNames[0] << ", \"";
printEscapedString(load->getName());
Out << "\", " << (load->isVolatile() ? "true" : "false" )
<< ", " << bbname << ");\n";
break;
}
case Instruction::Store: {
const StoreInst* store = cast<StoreInst>(I);
Out << " StoreInst* " << iName << " = new StoreInst("
<< opNames[0] << ", "
<< opNames[1] << ", "
<< (store->isVolatile() ? "true" : "false")
<< ", " << bbname << ");\n";
break;
}
case Instruction::GetElementPtr: {
const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
if (gep->getNumOperands() <= 2) {
Out << " GetElementPtrInst* " << iName << " = new GetElementPtrInst("
<< opNames[0];
if (gep->getNumOperands() == 2)
Out << ", " << opNames[1];
} else {
Out << " std::vector<Value*> " << iName << "_indices;\n";
for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
Out << " " << iName << "_indices.push_back("
<< opNames[i] << ");\n";
}
Out << " Instruction* " << iName << " = new GetElementPtrInst("
<< opNames[0] << ", " << iName << "_indices";
}
Out << ", \"";
printEscapedString(gep->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::PHI: {
const PHINode* phi = cast<PHINode>(I);
Out << " PHINode* " << iName << " = new PHINode("
<< getCppName(phi->getType()) << ", \"";
printEscapedString(phi->getName());
Out << "\", " << bbname << ");\n";
Out << " " << iName << "->reserveOperandSpace("
<< phi->getNumIncomingValues()
<< ");\n";
for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
Out << " " << iName << "->addIncoming("
<< opNames[i] << ", " << opNames[i+1] << ");\n";
}
break;
}
case Instruction::Cast: {
const CastInst* cst = cast<CastInst>(I);
Out << " CastInst* " << iName << " = new CastInst("
<< opNames[0] << ", "
<< getCppName(cst->getType()) << ", \"";
printEscapedString(cst->getName());
Out << "\", " << bbname << ");\n";
break;
}
case Instruction::Call:{
const CallInst* call = cast<CallInst>(I);
if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) {
Out << " InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
<< getCppName(ila->getFunctionType()) << ", \""
<< ila->getAsmString() << "\", \""
<< ila->getConstraintString() << "\","
<< (ila->hasSideEffects() ? "true" : "false") << ");\n";
}
if (call->getNumOperands() > 3) {
Out << " std::vector<Value*> " << iName << "_params;\n";
for (unsigned i = 1; i < call->getNumOperands(); ++i)
Out << " " << iName << "_params.push_back(" << opNames[i] << ");\n";
Out << " CallInst* " << iName << " = new CallInst("
<< opNames[0] << ", " << iName << "_params, \"";
} else if (call->getNumOperands() == 3) {
Out << " CallInst* " << iName << " = new CallInst("
<< opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
} else if (call->getNumOperands() == 2) {
Out << " CallInst* " << iName << " = new CallInst("
<< opNames[0] << ", " << opNames[1] << ", \"";
} else {
Out << " CallInst* " << iName << " = new CallInst(" << opNames[0]
<< ", \"";
}
printEscapedString(call->getName());
Out << "\", " << bbname << ");\n";
Out << " " << iName << "->setCallingConv(";
printCallingConv(call->getCallingConv());
Out << ");\n";
Out << " " << iName << "->setTailCall("
<< (call->isTailCall() ? "true":"false");
Out << ");";
break;
}
case Instruction::Select: {
const SelectInst* sel = cast<SelectInst>(I);
Out << " SelectInst* " << getCppName(sel) << " = new SelectInst(";
Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
printEscapedString(sel->getName());
Out << "\", " << bbname << ");\n";
break;
}
case Instruction::UserOp1:
/// FALL THROUGH
case Instruction::UserOp2: {
/// FIXME: What should be done here?
break;
}
case Instruction::VAArg: {
const VAArgInst* va = cast<VAArgInst>(I);
Out << " VAArgInst* " << getCppName(va) << " = new VAArgInst("
<< opNames[0] << ", " << getCppName(va->getType()) << ", \"";
printEscapedString(va->getName());
Out << "\", " << bbname << ");\n";
break;
}
case Instruction::ExtractElement: {
const ExtractElementInst* eei = cast<ExtractElementInst>(I);
Out << " ExtractElementInst* " << getCppName(eei)
<< " = new ExtractElementInst(" << opNames[0]
<< ", " << opNames[1] << ", \"";
printEscapedString(eei->getName());
Out << "\", " << bbname << ");\n";
break;
}
case Instruction::InsertElement: {
const InsertElementInst* iei = cast<InsertElementInst>(I);
Out << " InsertElementInst* " << getCppName(iei)
<< " = new InsertElementInst(" << opNames[0]
<< ", " << opNames[1] << ", " << opNames[2] << ", \"";
printEscapedString(iei->getName());
Out << "\", " << bbname << ");\n";
break;
}
case Instruction::ShuffleVector: {
const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
Out << " ShuffleVectorInst* " << getCppName(svi)
<< " = new ShuffleVectorInst(" << opNames[0]
<< ", " << opNames[1] << ", " << opNames[2] << ", \"";
printEscapedString(svi->getName());
Out << "\", " << bbname << ");\n";
break;
}
}
Out << "\n";
delete [] opNames;
}
} // end anonymous llvm
namespace llvm {
void WriteModuleToCppFile(Module* mod, std::ostream& o) {
std::string fname = FuncName.getValue();
if (fname.empty())
fname = "makeLLVMModule";
if (Fragment) {
o << "Module* " << fname << "() {\n";
CppWriter W(o, mod);
W.printModule(mod);
o << "return mod;\n";
o << "}\n";
} else {
o << "#include <llvm/Module.h>\n";
o << "#include <llvm/DerivedTypes.h>\n";
o << "#include <llvm/Constants.h>\n";
o << "#include <llvm/GlobalVariable.h>\n";
o << "#include <llvm/Function.h>\n";
o << "#include <llvm/CallingConv.h>\n";
o << "#include <llvm/BasicBlock.h>\n";
o << "#include <llvm/Instructions.h>\n";
o << "#include <llvm/InlineAsm.h>\n";
o << "#include <llvm/Pass.h>\n";
o << "#include <llvm/PassManager.h>\n";
o << "#include <llvm/Analysis/Verifier.h>\n";
o << "#include <llvm/Assembly/PrintModulePass.h>\n";
o << "#include <algorithm>\n";
o << "#include <iostream>\n\n";
o << "using namespace llvm;\n\n";
o << "Module* " << fname << "();\n\n";
o << "int main(int argc, char**argv) {\n";
o << " Module* Mod = makeLLVMModule();\n";
o << " verifyModule(*Mod, PrintMessageAction);\n";
o << " std::cerr.flush();\n";
o << " std::cout.flush();\n";
o << " PassManager PM;\n";
o << " PM.add(new PrintModulePass(&std::cout));\n";
o << " PM.run(*Mod);\n";
o << " return 0;\n";
o << "}\n\n";
o << "Module* " << fname << "() {\n";
CppWriter W(o, mod);
W.printModule(mod);
o << "return mod;\n";
o << "}\n";
}
}
}