llvm-project/llvm/test/CodeGen/X86/movtopush.ll

417 lines
12 KiB
LLVM
Raw Normal View History

; RUN: llc < %s -mtriple=i686-windows | FileCheck %s -check-prefix=NORMAL
; RUN: llc < %s -mtriple=i686-windows -no-x86-call-frame-opt | FileCheck %s -check-prefix=NOPUSH
; RUN: llc < %s -mtriple=x86_64-windows | FileCheck %s -check-prefix=X64
; RUN: llc < %s -mtriple=i686-windows -stackrealign -stack-alignment=32 | FileCheck %s -check-prefix=ALIGNED
; RUN: llc < %s -mtriple=i686-pc-linux | FileCheck %s -check-prefix=LINUX
%class.Class = type { i32 }
%struct.s = type { i64 }
declare void @good(i32 %a, i32 %b, i32 %c, i32 %d)
declare void @inreg(i32 %a, i32 inreg %b, i32 %c, i32 %d)
declare x86_thiscallcc void @thiscall(%class.Class* %class, i32 %a, i32 %b, i32 %c, i32 %d)
declare void @oneparam(i32 %a)
declare void @eightparams(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h)
declare void @struct(%struct.s* byval %a, i32 %b, i32 %c, i32 %d)
declare void @inalloca(<{ %struct.s }>* inalloca)
declare i8* @llvm.stacksave()
declare void @llvm.stackrestore(i8*)
; We should get pushes for x86, even though there is a reserved call frame.
; Make sure we don't touch x86-64, and that turning it off works.
; NORMAL-LABEL: test1:
; NORMAL-NOT: subl {{.*}} %esp
; NORMAL: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $16, %esp
; X64-LABEL: test1:
; X64: movl $1, %ecx
; X64-NEXT: movl $2, %edx
; X64-NEXT: movl $3, %r8d
; X64-NEXT: movl $4, %r9d
; X64-NEXT: callq good
; NOPUSH-LABEL: test1:
; NOPUSH: subl $16, %esp
; NOPUSH-NEXT: movl $4, 12(%esp)
; NOPUSH-NEXT: movl $3, 8(%esp)
; NOPUSH-NEXT: movl $2, 4(%esp)
; NOPUSH-NEXT: movl $1, (%esp)
; NOPUSH-NEXT: call
; NOPUSH-NEXT: addl $16, %esp
define void @test1() {
entry:
call void @good(i32 1, i32 2, i32 3, i32 4)
ret void
}
; If we have a reserved frame, we should have pushes
; NORMAL-LABEL: test2:
; NORMAL-NOT: subl {{.*}} %esp
; NORMAL: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
define void @test2(i32 %k) {
entry:
%a = alloca i32, i32 %k
call void @good(i32 1, i32 2, i32 3, i32 4)
ret void
}
; Again, we expect a sequence of 4 immediate pushes
; Checks that we generate the right pushes for >8bit immediates
; NORMAL-LABEL: test2b:
; NORMAL-NOT: subl {{.*}} %esp
; NORMAL: pushl $4096
; NORMAL-NEXT: pushl $3072
; NORMAL-NEXT: pushl $2048
; NORMAL-NEXT: pushl $1024
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $16, %esp
define void @test2b() optsize {
entry:
call void @good(i32 1024, i32 2048, i32 3072, i32 4096)
ret void
}
; The first push should push a register
; NORMAL-LABEL: test3:
; NORMAL-NOT: subl {{.*}} %esp
; NORMAL: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl %e{{..}}
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $16, %esp
define void @test3(i32 %k) optsize {
entry:
%f = add i32 %k, 1
call void @good(i32 %f, i32 2, i32 3, i32 4)
ret void
}
; We support weird calling conventions
; NORMAL-LABEL: test4:
; NORMAL: movl $2, %eax
; NORMAL-NEXT: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $12, %esp
define void @test4() optsize {
entry:
call void @inreg(i32 1, i32 2, i32 3, i32 4)
ret void
}
; NORMAL-LABEL: test4b:
; NORMAL: movl 4(%esp), %ecx
; NORMAL-NEXT: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
; NORMAL-NEXT: ret
define void @test4b(%class.Class* %f) optsize {
entry:
call x86_thiscallcc void @thiscall(%class.Class* %f, i32 1, i32 2, i32 3, i32 4)
ret void
}
; When there is no reserved call frame, check that additional alignment
; is added when the pushes don't add up to the required alignment.
; ALIGNED-LABEL: test5:
; ALIGNED: subl $16, %esp
; ALIGNED-NEXT: pushl $4
; ALIGNED-NEXT: pushl $3
; ALIGNED-NEXT: pushl $2
; ALIGNED-NEXT: pushl $1
; ALIGNED-NEXT: call
define void @test5(i32 %k) {
entry:
%a = alloca i32, i32 %k
call void @good(i32 1, i32 2, i32 3, i32 4)
ret void
}
; When the alignment adds up, do the transformation
; ALIGNED-LABEL: test5b:
; ALIGNED: pushl $8
; ALIGNED-NEXT: pushl $7
; ALIGNED-NEXT: pushl $6
; ALIGNED-NEXT: pushl $5
; ALIGNED-NEXT: pushl $4
; ALIGNED-NEXT: pushl $3
; ALIGNED-NEXT: pushl $2
; ALIGNED-NEXT: pushl $1
; ALIGNED-NEXT: call
define void @test5b() optsize {
entry:
call void @eightparams(i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7, i32 8)
ret void
}
; When having to compensate for the alignment isn't worth it,
; don't use pushes.
; ALIGNED-LABEL: test5c:
; ALIGNED: movl $1, (%esp)
; ALIGNED-NEXT: call
define void @test5c() optsize {
entry:
call void @oneparam(i32 1)
ret void
}
; Check that pushing the addresses of globals (Or generally, things that
; aren't exactly immediates) isn't broken.
; Fixes PR21878.
; NORMAL-LABEL: test6:
; NORMAL: pushl $_ext
; NORMAL-NEXT: call
declare void @f(i8*)
@ext = external constant i8
define void @test6() {
call void @f(i8* @ext)
br label %bb
bb:
alloca i32
ret void
}
; Check that we fold simple cases into the push
; NORMAL-LABEL: test7:
; NORMAL-NOT: subl {{.*}} %esp
; NORMAL: movl 4(%esp), [[EAX:%e..]]
; NORMAL-NEXT: pushl $4
; NORMAL-NEXT: pushl ([[EAX]])
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $16, %esp
define void @test7(i32* %ptr) optsize {
entry:
%val = load i32, i32* %ptr
call void @good(i32 1, i32 2, i32 %val, i32 4)
ret void
}
; Fold stack-relative loads into the push, with correct offset
; In particular, at the second push, %b was at 12(%esp) and
; %a wast at 8(%esp), but the second push bumped %esp, so %a
; is now it at 12(%esp)
; NORMAL-LABEL: test8:
; NORMAL: pushl $4
; NORMAL-NEXT: pushl 12(%esp)
; NORMAL-NEXT: pushl 12(%esp)
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $16, %esp
define void @test8(i32 %a, i32 %b) optsize {
entry:
call void @good(i32 1, i32 %a, i32 %b, i32 4)
ret void
}
; If one function is using push instructions, and the other isn't
; (because it has frame-index references), then we must resolve
; these references correctly.
; NORMAL-LABEL: test9:
; NORMAL-NOT: leal (%esp),
; NORMAL: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: call
; NORMAL-NEXT: subl $4, %esp
; NORMAL-NEXT: movl 20(%esp), [[E1:%e..]]
; NORMAL-NEXT: movl 24(%esp), [[E2:%e..]]
; NORMAL-NEXT: movl [[E2]], 4(%esp)
; NORMAL-NEXT: movl [[E1]], (%esp)
; NORMAL-NEXT: leal 32(%esp), [[E3:%e..]]
; NORMAL-NEXT: movl [[E3]], 16(%esp)
; NORMAL-NEXT: leal 28(%esp), [[E4:%e..]]
; NORMAL-NEXT: movl [[E4]], 12(%esp)
; NORMAL-NEXT: movl $6, 8(%esp)
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $20, %esp
define void @test9() optsize {
entry:
%p = alloca i32, align 4
%q = alloca i32, align 4
%s = alloca %struct.s, align 4
call void @good(i32 1, i32 2, i32 3, i32 4)
%pv = ptrtoint i32* %p to i32
%qv = ptrtoint i32* %q to i32
call void @struct(%struct.s* byval %s, i32 6, i32 %qv, i32 %pv)
ret void
}
; We can end up with an indirect call which gets reloaded on the spot.
; Make sure we reference the correct stack slot - we spill into (%esp)
; and reload from 16(%esp) due to the pushes.
; NORMAL-LABEL: test10:
; NORMAL: movl $_good, [[ALLOC:.*]]
; NORMAL-NEXT: movl [[ALLOC]], [[EAX:%e..]]
; NORMAL-NEXT: movl [[EAX]], (%esp) # 4-byte Spill
; NORMAL: nop
; NORMAL: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: calll *16(%esp)
; NORMAL-NEXT: addl $24, %esp
define void @test10() optsize {
%stack_fptr = alloca void (i32, i32, i32, i32)*
store void (i32, i32, i32, i32)* @good, void (i32, i32, i32, i32)** %stack_fptr
%good_ptr = load volatile void (i32, i32, i32, i32)*, void (i32, i32, i32, i32)** %stack_fptr
call void asm sideeffect "nop", "~{ax},~{bx},~{cx},~{dx},~{bp},~{si},~{di}"()
[opaque pointer type] Add textual IR support for explicit type parameter to the call instruction See r230786 and r230794 for similar changes to gep and load respectively. Call is a bit different because it often doesn't have a single explicit type - usually the type is deduced from the arguments, and just the return type is explicit. In those cases there's no need to change the IR. When that's not the case, the IR usually contains the pointer type of the first operand - but since typed pointers are going away, that representation is insufficient so I'm just stripping the "pointerness" of the explicit type away. This does make the IR a bit weird - it /sort of/ reads like the type of the first operand: "call void () %x(" but %x is actually of type "void ()*" and will eventually be just of type "ptr". But this seems not too bad and I don't think it would benefit from repeating the type ("void (), void () * %x(" and then eventually "void (), ptr %x(") as has been done with gep and load. This also has a side benefit: since the explicit type is no longer a pointer, there's no ambiguity between an explicit type and a function that returns a function pointer. Previously this case needed an explicit type (eg: a function returning a void() function was written as "call void () () * @x(" rather than "call void () * @x(" because of the ambiguity between a function returning a pointer to a void() function and a function returning void). No ambiguity means even function pointer return types can just be written alone, without writing the whole function's type. This leaves /only/ the varargs case where the explicit type is required. Given the special type syntax in call instructions, the regex-fu used for migration was a bit more involved in its own unique way (as every one of these is) so here it is. Use it in conjunction with the apply.sh script and associated find/xargs commands I've provided in rr230786 to migrate your out of tree tests. Do let me know if any of this doesn't cover your cases & we can iterate on a more general script/regexes to help others with out of tree tests. About 9 test cases couldn't be automatically migrated - half of those were functions returning function pointers, where I just had to manually delete the function argument types now that we didn't need an explicit function type there. The other half were typedefs of function types used in calls - just had to manually drop the * from those. import fileinput import sys import re pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)') addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$") func_end = re.compile("(?:void.*|\)\s*)\*$") def conv(match, line): if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)): return line return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():] for line in sys.stdin: sys.stdout.write(conv(re.search(pat, line), line)) llvm-svn: 235145
2015-04-17 07:24:18 +08:00
call void (i32, i32, i32, i32) %good_ptr(i32 1, i32 2, i32 3, i32 4)
ret void
}
; We can't fold the load from the global into the push because of
; interference from the store
; NORMAL-LABEL: test11:
; NORMAL: movl _the_global, [[EAX:%e..]]
; NORMAL-NEXT: movl $42, _the_global
; NORMAL-NEXT: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl [[EAX]]
; NORMAL-NEXT: call
; NORMAL-NEXT: addl $16, %esp
@the_global = external global i32
define void @test11() optsize {
%myload = load i32, i32* @the_global
store i32 42, i32* @the_global
call void @good(i32 %myload, i32 2, i32 3, i32 4)
ret void
}
; Converting one mov into a push isn't worth it when
; doing so forces too much overhead for other calls.
; NORMAL-LABEL: test12:
; NORMAL: movl $8, 12(%esp)
; NORMAL-NEXT: movl $7, 8(%esp)
; NORMAL-NEXT: movl $6, 4(%esp)
; NORMAL-NEXT: movl $5, (%esp)
; NORMAL-NEXT: calll _good
define void @test12() optsize {
entry:
%s = alloca %struct.s, align 4
call void @struct(%struct.s* %s, i32 2, i32 3, i32 4)
call void @good(i32 5, i32 6, i32 7, i32 8)
call void @struct(%struct.s* %s, i32 10, i32 11, i32 12)
ret void
}
; But if the gains outweigh the overhead, we should do it
; NORMAL-LABEL: test12b:
; NORMAL: pushl $4
; NORMAL-NEXT: pushl $3
; NORMAL-NEXT: pushl $2
; NORMAL-NEXT: pushl $1
; NORMAL-NEXT: calll _good
; NORMAL-NEXT: subl $4, %esp
; NORMAL: movl $8, 16(%esp)
; NORMAL-NEXT: movl $7, 12(%esp)
; NORMAL-NEXT: movl $6, 8(%esp)
; NORMAL-NEXT: calll _struct
; NORMAL-NEXT: addl $20, %esp
; NORMAL-NEXT: pushl $12
; NORMAL-NEXT: pushl $11
; NORMAL-NEXT: pushl $10
; NORMAL-NEXT: pushl $9
; NORMAL-NEXT: calll _good
; NORMAL-NEXT: addl $16, %esp
define void @test12b() optsize {
entry:
%s = alloca %struct.s, align 4
call void @good(i32 1, i32 2, i32 3, i32 4)
call void @struct(%struct.s* %s, i32 6, i32 7, i32 8)
call void @good(i32 9, i32 10, i32 11, i32 12)
ret void
}
; Make sure the add does not prevent folding loads into pushes.
; val1 and val2 will not be folded into pushes since they have
; an additional use, but val3 should be.
; NORMAL-LABEL: test13:
; NORMAL: movl ([[P1:%e..]]), [[V1:%e..]]
; NORMAL-NEXT: movl ([[P2:%e..]]), [[V2:%e..]]
; NORMAL-NEXT: , [[ADD:%e..]]
; NORMAL-NEXT: pushl [[ADD]]
; NORMAL-NEXT: pushl ([[P3:%e..]])
; NORMAL-NEXT: pushl [[V2]]
; NORMAL-NEXT: pushl [[V1]]
; NORMAL-NEXT: calll _good
; NORMAL: movl [[P3]], %eax
define i32* @test13(i32* inreg %ptr1, i32* inreg %ptr2, i32* inreg %ptr3) optsize {
entry:
%val1 = load i32, i32* %ptr1
%val2 = load i32, i32* %ptr2
%val3 = load i32, i32* %ptr3
%add = add i32 %val1, %val2
call void @good(i32 %val1, i32 %val2, i32 %val3, i32 %add)
ret i32* %ptr3
}
; Make sure to fold adjacent stack adjustments.
; LINUX-LABEL: pr27140:
; LINUX: subl $12, %esp
; LINUX: .cfi_def_cfa_offset 16
; LINUX-NOT: sub
; LINUX: pushl $4
; LINUX: .cfi_adjust_cfa_offset 4
; LINUX: pushl $3
; LINUX: .cfi_adjust_cfa_offset 4
; LINUX: pushl $2
; LINUX: .cfi_adjust_cfa_offset 4
; LINUX: pushl $1
; LINUX: .cfi_adjust_cfa_offset 4
; LINUX: calll good
[X86] Correct dwarf unwind information in function epilogue CFI instructions that set appropriate cfa offset and cfa register are now inserted in emitEpilogue() in X86FrameLowering. Majority of the changes in this patch: 1. Ensure that CFI instructions do not affect code generation. 2. Enable maintaining correct information about cfa offset and cfa register in a function when basic blocks are reordered, merged, split, duplicated. These changes are target independent and described below. Changed CFI instructions so that they: 1. are duplicable 2. are not counted as instructions when tail duplicating or tail merging 3. can be compared as equal Add information to each MachineBasicBlock about cfa offset and cfa register that are valid at its entry and exit (incoming and outgoing CFI info). Add support for updating this information when basic blocks are merged, split, duplicated, created. Add a verification pass (CFIInfoVerifier) that checks that outgoing cfa offset and register of predecessor blocks match incoming values of their successors. Incoming and outgoing CFI information is used by a late pass (CFIInstrInserter) that corrects CFA calculation rule for a basic block if needed. That means that additional CFI instructions get inserted at basic block beginning to correct the rule for calculating CFA. Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D18046 llvm-svn: 306529
2017-06-28 18:21:17 +08:00
; LINUX: addl $16, %esp
; LINUX: .cfi_adjust_cfa_offset -16
[X86] Correct dwarf unwind information in function epilogue CFI instructions that set appropriate cfa offset and cfa register are now inserted in emitEpilogue() in X86FrameLowering. Majority of the changes in this patch: 1. Ensure that CFI instructions do not affect code generation. 2. Enable maintaining correct information about cfa offset and cfa register in a function when basic blocks are reordered, merged, split, duplicated. These changes are target independent and described below. Changed CFI instructions so that they: 1. are duplicable 2. are not counted as instructions when tail duplicating or tail merging 3. can be compared as equal Add information to each MachineBasicBlock about cfa offset and cfa register that are valid at its entry and exit (incoming and outgoing CFI info). Add support for updating this information when basic blocks are merged, split, duplicated, created. Add a verification pass (CFIInfoVerifier) that checks that outgoing cfa offset and register of predecessor blocks match incoming values of their successors. Incoming and outgoing CFI information is used by a late pass (CFIInstrInserter) that corrects CFA calculation rule for a basic block if needed. That means that additional CFI instructions get inserted at basic block beginning to correct the rule for calculating CFA. Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D18046 llvm-svn: 306529
2017-06-28 18:21:17 +08:00
; LINUX: addl $12, %esp
; LINUX: .cfi_def_cfa_offset 4
; LINUX-NOT: add
; LINUX: retl
define void @pr27140() optsize {
entry:
tail call void @good(i32 1, i32 2, i32 3, i32 4)
ret void
}
; Check that a stack restore (leal -4(%ebp), %esp) doesn't get merged with a
; stack adjustment (addl $12, %esp). Just because it's a lea doesn't mean it's
; simply decreasing the stack pointer.
; NORMAL-LABEL: test14:
; NORMAL: calll _B_func
; NORMAL: leal -4(%ebp), %esp
; NORMAL-NOT: %esp
; NORMAL: retl
%struct.A = type { i32, i32 }
%struct.B = type { i8 }
declare x86_thiscallcc %struct.B* @B_ctor(%struct.B* returned, %struct.A* byval)
declare void @B_func(%struct.B* sret, %struct.B*, i32)
define void @test14(%struct.A* %a) {
entry:
%ref.tmp = alloca %struct.B, align 1
%agg.tmp = alloca i64, align 4
%tmpcast = bitcast i64* %agg.tmp to %struct.A*
%tmp = alloca %struct.B, align 1
%0 = bitcast %struct.A* %a to i64*
%1 = load i64, i64* %0, align 4
store i64 %1, i64* %agg.tmp, align 4
%call = call x86_thiscallcc %struct.B* @B_ctor(%struct.B* %ref.tmp, %struct.A* byval %tmpcast)
%2 = getelementptr inbounds %struct.B, %struct.B* %tmp, i32 0, i32 0
call void @B_func(%struct.B* sret %tmp, %struct.B* %ref.tmp, i32 1)
ret void
}