llvm-project/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2913 lines
120 KiB
C++
Raw Normal View History

//===- ComprehensiveBufferize.cpp - Single pass bufferization -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Perform inplace bufferization within function boundaries.
// This is a specialized pass that supports inplace analysis for a fixed subset
// of ops that have well-defined inplace semantics.
// This pass caters to high-performance codegen where buffer reuse is deemed
// critical: the pass should fail if the bufferized form of the function needs
// to return any buffer.
// Generic control-flow and branching are unsupported.
// Composability with extensible set of ops is not a first-class concern.
//
// Bufferization occurs by:
// a. performing an inPlace analysis `inPlaceAnalysisFuncOpBody`
// which marks each operation within the function with the
// `kInPlaceResultsAttrName` attribute.
// b. traversing each operation in the function and rewriting it in
// buffer form and keeping a BlockAndValueMapping mapping of the
// rewrites. New allocations are introduced during this step.
// TODO: Allocation + depending op hoisting to outermost enclosing
// sequential scope.
// c. at the end of this bufferization, 3 cases may occur:
// i. inplaceable function arguments may be reused in place after the
// function itself has been bufferized. This is encoded by IR resembling:
//
// ```
// #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
// -> tensor<?xf32> {
// %0 = memref.buffer_cast %A : memref<?xf32, #map>
// // ... uses of %0
// %res = memref.tensor_load %0 : memref<?xf32, #map>
// return %res : tensor<?xf32>
// }
// ```
//
// this is the cue for the bufferization of the function foo (and calls
// to it) may bufferize to `func @foo(%A: memref<?xf32, some_layout>)`.
// To fully achieve bufferization, an additional analysis is needed to
// determine whether function argument/operand pairs bufferize to a
// single inplace buffer argument (i.e. functions may return tensors in
// arbitrary order that may not match argument numbers).
//
// ii. results that don't map to an inplaceable function argument are
// generally allocated. Since memref semantics wrt ownership of the
// underlying memory region are not well-defined, comprehensive
// bufferization chooses to perform allocations in a scoped fashion:
// returning memrefs is always considered illegal.
// Such scenarios are encoded by IR resembling:
//
// ```
// #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
// -> tensor<?xf32> {
// %0 = memref.buffer_cast %A : memref<?xf32, #map>
// %1 = memref.dim %0, %c0 : memref<?xf32, #map>
// %2 = memref.alloc(%1) : memref<?xf32>
// %3 = memref.cast %2 : memref<?xf32> to memref<?xf32, #map>
// // ... uses of %3
// memref.dealloc %2 : memref<?xf32, #map>
// %res = memref.tensor_load %3 : memref<?xf32, #map>
// return %res : tensor<?xf32>
// }
// ```
//
// this is the cue for the bufferization of the function foo (and calls
// to it) that it must bufferize to `func @foo(%A: memref<?xf32,
// some_layout>,
// %B: memref<?xf32, some_layout>)` (i.e. make a cloned
// allocation of the result tensor)
// To fully achieve bufferization, the alloc/dealloc pair must be lifted
// out of the function at each call site.
//
// iii. as an optimization over ii., it may be possible to reuse an argument
// and only want to return a slice.
// This may forego allocation by letting *all* callers decide whether to
// pass a new *aliasing* memref function argument (i.e. a subview).
// Without loss of generality, callers may agree to allocate a new buffer
// to avoid this aliasing. Such scenarios are encoded by IR resembling:
//
// ```
// #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// func @foo(%arg0: tensor<?xf32> {linalg.inplaceable = true})
// -> tensor<4xf32> {
// %0 = memref.buffer_cast %arg0 : memref<?xf32, #map>
// %1 = memref.subview %0[0] [4] [1] : memref<?xf32, #map> to
// memref<4xf32, #map>
// // ... inplace computes into %1
// %3 = memref.tensor_load %1 : memref<4xf32, #map>
// return %3 : tensor<4xf32>
// }
// ```
//
// Note: In the future, it may be worthwhile to design special bufferization
// ops to encode the desired semantics at function boundaries for i., ii. and
// iii.
//
// Lastly, note that layout map chosen to bufferize is the most dynamic
// canonical strided layout of the proper rank. This ensures compatibility with
// expected layouts after transformations. Combinations of memref.cast +
// canonicalization are responsible for clean ups.
#include "mlir/Dialect/Linalg/Transforms/ComprehensiveBufferize.h"
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/BufferUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define DEBUG_TYPE "comprehensive-module-bufferize"
using namespace mlir;
using namespace linalg;
using namespace tensor;
using BufferRelation = BufferizationAliasInfo::BufferRelation;
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X)
// TODO: from some HW description.
static constexpr int64_t kBufferAlignments = 128;
// Forward declarations.
static std::string printOperationInfo(Operation *, bool prefix = true);
static std::string printValueInfo(Value, bool prefix = true);
//===----------------------------------------------------------------------===//
// Generic helpers.
//===----------------------------------------------------------------------===//
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
/// Return the FuncOp called by `callOp`.
static FuncOp getCalledFunction(CallOpInterface callOp) {
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
if (!sym)
return nullptr;
return dyn_cast_or_null<FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
ReturnOp returnOp;
for (Block &b : funcOp.body()) {
if (auto candidateOp = dyn_cast<ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
/// Return true if `value` is the result of an InitTensorOp or a cast thereof.
static bool isInitTensorOp(Value value) {
tensor::CastOp castOp;
while ((castOp = value.getDefiningOp<tensor::CastOp>()))
value = castOp.source();
return value.getDefiningOp<InitTensorOp>();
}
//===----------------------------------------------------------------------===//
// Bufferization-specific BlockAndValueMapping support with debugging.
//===----------------------------------------------------------------------===//
/// Wrapper for better debugging.
static void map(BlockAndValueMapping &bvm, ValueRange keys, ValueRange values) {
assert(!keys.empty() && "Unexpected empty keys");
LDBG("\n\tMap: " << printValueInfo(keys.front())
<< "\n\tto: " << printValueInfo(values.front()) << '\n');
return bvm.map(keys, values);
}
/// Wrapper for better debugging.
static void map(BlockAndValueMapping &bvm, Value key, Value value) {
LDBG("\n\tMap: " << printValueInfo(key) << "\n\tto: " << printValueInfo(value)
<< '\n');
return bvm.map(key, value);
}
/// Wrapper for better debugging.
static Value lookup(const BlockAndValueMapping &bvm, Value key) {
// TODO: if key comes from bbArg, forward.
assert(key.getType().isa<TensorType>());
Value v = bvm.lookupOrNull(key);
if (v)
return v;
Operation *parentOp;
if (auto bbArg = key.dyn_cast<BlockArgument>()) {
if (isa<FuncOp>(key.getParentBlock()->getParentOp()))
parentOp = key.getParentBlock()->getParentOp();
else
parentOp = key.getParentBlock()->getParentOp()->getParentOfType<FuncOp>();
} else {
parentOp = key.getDefiningOp()->getParentOfType<FuncOp>();
}
LDBG("In func:\n" << *parentOp << "\nNO VALUE FOR KEY: " << key << '\n');
(void)parentOp;
return Value();
}
//===----------------------------------------------------------------------===//
// Bufferization-specific attribute manipulation.
// These could be simplified with helper structs on the side, for now attributes
// allow simple embedding in the IR which simplifies testing.
// This could also be folded in BufferizationAliasInfo or a Bufferizer class
// that uses BufferizationAliasInfo.
//===----------------------------------------------------------------------===//
/// Attribute marker to specify op results that can be bufferized inPlace.
constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_results_attr__";
// TODO: proper enum.
enum class InPlaceSpec {
False,
True,
None,
};
static StringRef stringify(InPlaceSpec val) {
switch (val) {
case InPlaceSpec::False:
return "false";
case InPlaceSpec::True:
return "true";
case InPlaceSpec::None:
return "none";
}
return "";
}
static Optional<InPlaceSpec> symbolize(StringRef str) {
return StringSwitch<Optional<InPlaceSpec>>(str)
.Case("false", InPlaceSpec::False)
.Case("true", InPlaceSpec::True)
.Case("none", InPlaceSpec::None)
.Default(None);
}
/// Mark whether OpResult can actually be bufferized inplace.
/// If `inPlace` is `InPlaceSpec::True`, the use-def chain analysis has
/// guaranteed that no subsequent write would occur to the bufferized
/// tensor value (i.e. the result can be bufferized inPlace).
static void setInPlaceOpResult(OpResult opResult,
InPlaceSpec inPlace = InPlaceSpec::True) {
if (!opResult)
return;
Operation *op = opResult.getOwner();
auto attr =
op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
SmallVector<StringRef> inPlaceVector =
attr ? SmallVector<StringRef>(
llvm::to_vector<4>(attr.getAsValueRange<StringAttr>()))
: SmallVector<StringRef>(op->getNumResults(),
stringify(InPlaceSpec::None));
LDBG("->set inPlace=" << stringify(inPlace) << " <- #"
<< opResult.getResultNumber() << ": "
<< printOperationInfo(op) << "\n");
inPlaceVector[opResult.getResultNumber()] = stringify(inPlace);
op->setAttr(kInPlaceResultsAttrName,
OpBuilder(op).getStrArrayAttr(inPlaceVector));
}
/// Get the InPlaceSpec attribute entry `kInPlaceResultsAttrName` for
/// `opResult`. If the result is `InPlaceSpec::True`, the use-def chain analysis
/// has guaranteed that no subsequent read of the tensor value occurs and the
/// result can be buferized inPlace.
/// If no InPlaceSpec attribute has been set for `opResult`, return
/// InPlaceSpec::None.
static InPlaceSpec getInPlace(OpResult opResult) {
if (!opResult)
return InPlaceSpec::None;
Operation *op = opResult.getOwner();
auto attr =
op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
if (!attr)
return InPlaceSpec::None;
// Must return a proper value.
return *symbolize(*(attr.getAsValueRange<StringAttr>().begin() +
opResult.getResultNumber()));
}
/// Get inPlace information for `bbArg`.
/// FuncOp allow argument attributes, we use those to encode the information.
/// BlockArgument of other ops delegate to their owner's parent op.
static InPlaceSpec getInPlace(BlockArgument bbArg) {
if (auto funcOp = dyn_cast<FuncOp>(bbArg.getOwner()->getParentOp())) {
BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
bbArg.getArgNumber(), LinalgDialect::kInplaceableAttrName);
if (!inplaceAttr)
return InPlaceSpec::None;
return inplaceAttr.getValue() ? InPlaceSpec::True : InPlaceSpec::False;
}
// Interestingly, scf::ForOp's and TiledLoop's bbArg can **always** be viewed
// inplace from the perspective of ops nested under:
// 1. Either the matching iter operand is not bufferized inplace and an
// alloc + optional copy makes the bbArg itself inplaceable.
// 2. Or the matching iter operand is bufferized inplace and bbArg just
// bufferizes to that too.
if (isa<scf::ForOp, TiledLoopOp>(bbArg.getOwner()->getParentOp()))
return InPlaceSpec::True;
// Unknown cases.
return InPlaceSpec::None;
}
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
/// `bbArg`.
static void
setInPlaceFuncArgument(BlockArgument bbArg,
InPlaceSpec inPlaceSpec = InPlaceSpec::True) {
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.setArgAttr(
bbArg.getArgNumber(), LinalgDialect::kInplaceableAttrName,
BoolAttr::get(bbArg.getContext(), inPlaceSpec == InPlaceSpec::True));
}
/// Remove the attribute that triggers inplace bufferization on a FuncOp
/// argument `bbArg`.
static void removeBufferizationFuncArguments(BlockArgument bbArg) {
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
LinalgDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
LinalgDialect::kInplaceableAttrName);
}
LLVM_ATTRIBUTE_UNUSED static InPlaceSpec getInPlace(Value v) {
if (auto bbArg = v.dyn_cast<BlockArgument>())
return getInPlace(bbArg);
return getInPlace(v.cast<OpResult>());
}
//===----------------------------------------------------------------------===//
// Printing helpers.
//===----------------------------------------------------------------------===//
/// Helper method printing the bufferization information of a buffer / tensor.
static void printTensorOrBufferInfo(std::string prefix, Value value,
AsmState &state, llvm::raw_ostream &os) {
if (!value.getType().isa<ShapedType>())
return;
os << prefix;
value.printAsOperand(os, state);
os << " : " << value.getType();
if (getInPlace(value) == InPlaceSpec::None)
return;
os << " [InPlace=" << stringify(getInPlace(value)) << "]";
}
/// Print the operation name and bufferization information.
static std::string printOperationInfo(Operation *op, bool prefix) {
std::string result;
llvm::raw_string_ostream os(result);
AsmState state(op->getParentOfType<mlir::FuncOp>());
StringRef tab = prefix ? "\n[" DEBUG_TYPE "]\t" : "";
os << tab << op->getName();
SmallVector<Value> shapedOperands;
for (OpOperand &opOperand : op->getOpOperands()) {
std::string prefix =
llvm::formatv("{0} -> #{1} ", tab, opOperand.getOperandNumber());
printTensorOrBufferInfo(prefix, opOperand.get(), state, os);
}
for (OpResult opResult : op->getOpResults()) {
std::string prefix =
llvm::formatv("{0} <- #{1} ", tab, opResult.getResultNumber());
printTensorOrBufferInfo(prefix, opResult, state, os);
}
return result;
}
/// Print the bufferization information for the defining op or block argument.
static std::string printValueInfo(Value value, bool prefix) {
auto *op = value.getDefiningOp();
if (op)
return printOperationInfo(op, prefix);
// Print the block argument bufferization information.
std::string result;
llvm::raw_string_ostream os(result);
AsmState state(value.getParentRegion()->getParentOfType<mlir::FuncOp>());
os << value;
printTensorOrBufferInfo("\n\t - ", value, state, os);
return result;
}
//===----------------------------------------------------------------------===//
// Op-specific semantics helper to retrieve matching inplaceable result.
// These should become proper interfaces interfaces when the time is right.
// Modulo better naming, these helpers / interfaces comprise information on:
// 1. Whether an op has a known bufferization behavior (i.e. an instance of
// BufferizableOpInterface).
// 2. Whether an op, when bufferized inplace, can guarantee an
// (OpOperand, OpResult) pair bufferizes to equivalent (i.e. the same)
// buffers in memory.
// 3. Whether an op operand, when bufferized inplace, aliases a return value.
// 4. Whether an op return value, when bufferized inplace, aliases an operand.
// 5. Whether an op bufferizes to a memory read.
// 6. Whether an op bufferizes to a memory write.
// 7. The buffer relationship between an operand and it corresponding result
// (in case of in-place bufferization).
// These interfaces are necessary to distinguish between various cases and allow
// special inplace behavior for (ExtractSliceOp, InsertSliceOp) pairs.
//===----------------------------------------------------------------------===//
/// Return `true` if the op is explicitly supported by bufferization or if it
/// has no result tensors.
/// Other cases must be conservative.
static bool hasKnownBufferizationAliasingBehavior(Operation *op) {
return
// clang-format off
isa<CallOpInterface,
tensor::CastOp,
ConstantOp,
tensor::DimOp,
ExtractSliceOp,
scf::ForOp,
InsertSliceOp,
InitTensorOp,
LinalgOp,
ReturnOp,
TiledLoopOp,
VectorTransferOpInterface,
linalg::YieldOp,
scf::YieldOp>(op)
// clang-format on
|| (none_of(op->getResultTypes(), isaTensor) &&
none_of(op->getOperandTypes(), isaTensor));
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(TiledLoopOp op, OpOperand &opOperand) {
return op.getTiedOpResult(opOperand);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(scf::ForOp forOp, OpOperand &opOperand) {
if (!opOperand.get().getType().isa<RankedTensorType>())
return OpResult();
return forOp.getResultForOpOperand(opOperand);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(LinalgOp linalgOp,
OpOperand &opOperand) {
if (!opOperand.get().getType().isa<RankedTensorType>())
return OpResult();
// For now assume inputs are never inplaceable.
// TODO: refine this.
if (opOperand.getOperandNumber() < linalgOp.getNumInputs())
return OpResult();
int64_t outputOperandIndex =
opOperand.getOperandNumber() - linalgOp.getNumInputs();
int64_t numOutputBuffers = 0;
for (unsigned idx = 0; idx < outputOperandIndex; ++idx)
if (!linalgOp.getOutputOperand(idx)->get().getType().isa<TensorType>())
++numOutputBuffers;
return linalgOp->getResult(outputOperandIndex - numOutputBuffers);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(VectorTransferOpInterface op,
OpOperand &opOperand) {
if (opOperand.get() != op.source() ||
!op.source().getType().isa<TensorType>() ||
isa<vector::TransferReadOp>(op))
return OpResult();
return op->getResult(0);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(InsertSliceOp op, OpOperand &opOperand) {
if (opOperand.get() != op.dest())
return OpResult();
return op->getResult(0);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(tensor::CastOp op,
OpOperand &opOperand) {
return op->getResult(0);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// The inplace analysis uses this information along with interfering read
/// analysis to determine which op results reuse the same buffer as some
/// operand.
static OpResult getInplaceableOpResult(OpOperand &opOperand) {
return TypeSwitch<Operation *, OpResult>(opOperand.getOwner())
// clang-format off
// Ops that perform destructive updates on operand(s) to produce
// result(s).
.Case<tensor::CastOp,
scf::ForOp,
InsertSliceOp,
LinalgOp,
TiledLoopOp,
VectorTransferOpInterface>(
[&](auto op) { return getInplaceableOpResult(op, opOperand); })
// ExtractSliceOp is special, when bufferized inplace it just returns an
// alias to its operand. Its result is never inplaceable on its operand.
.Case([&](ExtractSliceOp op) { return OpResult(); })
// CallOpInterface is special, it needs to wait for the callee to be
// bufferized and needs to inspect the BufferAliasInfo object. It can't
// make a proper determination by itself and needs to be conservative.
.Case([&](CallOpInterface op) { return OpResult(); })
// Other ops.
.Default([&](Operation *op) { return OpResult(); });
// clang-format on
}
/// Determine which OpOperand* will alias with `result` if the op is bufferized
/// in place.
/// Return None if the owner of `opOperand` does not have known
/// bufferization aliasing behavior, which indicates that the op must allocate
/// all of its tensor results.
/// TODO: in the future this may need to evolve towards a list of OpOperand*.
static Optional<OpOperand *> getAliasingOpOperand(OpResult result) {
if (!hasKnownBufferizationAliasingBehavior(result.getDefiningOp()))
return None;
return TypeSwitch<Operation *, OpOperand *>(result.getDefiningOp())
.Case([&](tensor::CastOp op) { return &op->getOpOperand(0); })
.Case([&](ConstantOp op) { return nullptr; })
.Case([&](ExtractSliceOp op) { return &op->getOpOperand(0); })
// In the case of scf::ForOp, this currently assumes the iter_args / yield
// are 1-1. This may fail and is verified at the end.
// TODO: update this.
.Case([&](scf::ForOp op) {
return &op.getIterOpOperands()[result.getResultNumber()];
})
.Case([&](InitTensorOp op) { return nullptr; })
.Case([&](InsertSliceOp op) { return &op->getOpOperand(1); })
.Case([&](LinalgOp op) {
return op.getOutputTensorOperands()[result.getResultNumber()];
})
.Case([&](TiledLoopOp op) {
// TODO: TiledLoopOp helper method to avoid leaking impl details.
return &op->getOpOperand(op.getNumControlOperands() +
op.getNumInputs() + result.getResultNumber());
})
.Case([&](vector::TransferWriteOp op) { return &op->getOpOperand(1); })
.Case([&](CallOpInterface op) { return nullptr; })
.Default([&](Operation *op) {
op->dump();
llvm_unreachable("unexpected defining op");
return nullptr;
});
}
/// If the an ExtractSliceOp is bufferized in-place, the source operand will
/// alias with the result.
static OpResult getAliasingOpResult(ExtractSliceOp op, OpOperand &opOperand) {
if (op.source() == opOperand.get())
return op->getResult(0);
return OpResult();
}
/// Determine which OpResult will alias with `opOperand` if the op is bufferized
/// in place. This is a superset of `getInplaceableOpResult`.
/// TODO: in the future this may need to evolve towards a list of OpResult.
static OpResult getAliasingOpResult(OpOperand &opOperand) {
return TypeSwitch<Operation *, OpResult>(opOperand.getOwner())
// ExtractSliceOp is different: its result is not inplaceable on op.source
// but when bufferized inplace, the result is an aliasing subregion of
// op.source.
.Case(
[&](ExtractSliceOp op) { return getAliasingOpResult(op, opOperand); })
// All other ops, return the result of `getInplaceableOpResult`.
.Default(
[&](Operation *op) { return getInplaceableOpResult(opOperand); });
}
/// Return true if `opOperand` bufferizes to a memory read.
static bool bufferizesToMemoryRead(OpOperand &opOperand) {
// Unknown op that returns a tensor. The inplace analysis does not support
// it. Conservatively return true.
if (!hasKnownBufferizationAliasingBehavior(opOperand.getOwner()))
return true;
// ExtractSliceOp alone doesn't bufferize to a memory read, one of its uses
// may.
if (isa<ExtractSliceOp>(opOperand.getOwner()))
return false;
// scf::ForOp alone doesn't bufferize to a memory read, one of the uses of its
// matching bbArg may.
if (auto forOp = dyn_cast<scf::ForOp>(opOperand.getOwner())) {
for (OpOperand &use :
forOp.getRegionIterArgForOpOperand(opOperand).getUses())
if (bufferizesToMemoryRead(use))
return true;
return false;
}
// TiledLoop alone doesn't bufferize to a memory read, one of the uses of its
// matching bbArg may.
if (auto tiledLoopOp = dyn_cast<TiledLoopOp>(opOperand.getOwner())) {
for (OpOperand &use : tiledLoopOp.getTiedBlockArgument(opOperand).getUses())
if (bufferizesToMemoryRead(use))
return true;
return false;
}
// CallOpInterface alone doesn't bufferize to a memory read, one of the uses
// of the matching bbArg may. It is the responsibility of the caller to
// inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
// conservative.
if (auto callOp = dyn_cast<CallOpInterface>(opOperand.getOwner()))
return true;
if (auto linalgOp = dyn_cast<LinalgOp>(opOperand.getOwner()))
return linalgOp.isInputTensor(&opOperand) ||
linalgOp.isInitTensor(&opOperand);
// All other cases are considered to bufferize to memory reads.
// In particular, terminators are often the last use and need to be considered
// as reads to return the proper value and avoid WAW clobbers.
return true;
}
/// Return true if `opOperand` bufferizes to a memory write.
/// If inPlaceSpec is different from InPlaceSpec::None, additionally require the
/// write to match the inplace specification.
static bool
bufferizesToMemoryWrite(OpOperand &opOperand,
InPlaceSpec inPlaceSpec = InPlaceSpec::None) {
// These terminators are not writes.
if (isa<ReturnOp, linalg::YieldOp, scf::YieldOp>(opOperand.getOwner()))
return false;
// ExtractSliceOp alone doesn't bufferize to a memory write, one of its uses
// may.
if (isa<ExtractSliceOp>(opOperand.getOwner()))
return false;
// CallOpInterface alone doesn't bufferize to a memory write, one of the uses
// of the matching bbArg may. It is the responsibility of the caller to
// inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
// conservative.
if (auto callOp = dyn_cast<CallOpInterface>(opOperand.getOwner()))
return true;
// Unknown op that returns a tensor. The inplace analysis does not support
// it. Conservatively return true.
if (!hasKnownBufferizationAliasingBehavior(opOperand.getOwner()))
return true;
OpResult opResult = getAliasingOpResult(opOperand);
// Supported op without a matching result for opOperand (e.g. ReturnOp).
// This does not bufferize to a write.
if (!opResult)
return false;
// If we have a matching OpResult, this is a write.
// Additionally allow to restrict to only inPlace write, if so specified.
return inPlaceSpec == InPlaceSpec::None ||
getInPlace(opResult) == inPlaceSpec;
}
/// Returns the relationship between the operand and the its corresponding
/// OpResult that it may alias with.
static BufferRelation bufferRelation(OpOperand &operand) {
return TypeSwitch<Operation *, BufferRelation>(operand.getOwner())
// ExtractSliceOp returns a subview of the original tensor.
.Case([&](ExtractSliceOp op) { return BufferRelation::None; })
// All other ops: Buffers are equivalent.
.Default([&](Operation *op) { return BufferRelation::Equivalent; });
}
//===----------------------------------------------------------------------===//
// Bufferization-specific alias analysis.
//===----------------------------------------------------------------------===//
BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) {
rootOp->walk([&](Operation *op) {
for (Value v : op->getResults())
if (v.getType().isa<TensorType>())
createAliasInfoEntry(v);
for (Region &r : op->getRegions())
for (Block &b : r.getBlocks())
for (auto bbArg : b.getArguments())
if (bbArg.getType().isa<TensorType>())
createAliasInfoEntry(bbArg);
});
}
/// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the
/// beginning the alias and equivalence sets only contain `v` itself.
void BufferizationAliasInfo::createAliasInfoEntry(Value v) {
aliasInfo.insert(v);
equivalentInfo.insert(v);
}
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`.
void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) {
createAliasInfoEntry(newValue);
aliasInfo.unionSets(newValue, alias);
}
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`. Additionally, merge their equivalence classes.
void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue,
Value alias) {
insertNewBufferAlias(newValue, alias);
equivalentInfo.unionSets(newValue, alias);
}
/// Return true if the buffer to which `operand` would bufferize aliases a
/// buffer that is known to not be writable. This implies that the matching
/// OpResult cannot be bufferized inplace.
bool BufferizationAliasInfo::aliasesNonWritableBuffer(
OpOperand &operand) const {
LDBG("----Start aliasesNonWritableBuffer\n");
LDBG("-------for -> #" << operand.getOperandNumber() << ": "
<< printOperationInfo(operand.getOwner()) << '\n');
for (Value v : getAliases(operand.get())) {
LDBG("-----------examine: " << printValueInfo(v) << '\n');
if (bufferizesToWritableMemory(v)) {
LDBG("-----------Value is known to be writeable -> skip: "
<< printValueInfo(v) << '\n');
continue;
}
if (auto bbArg = v.dyn_cast<BlockArgument>()) {
if (getInPlace(bbArg) == InPlaceSpec::True) {
LDBG("-----------bbArg is writeable -> skip: " << printValueInfo(bbArg)
<< '\n');
continue;
}
LDBG("-----------notWriteable\n");
return true;
}
if (Operation *op = v.getDefiningOp()) {
if (isa<ConstantOp>(op) || !hasKnownBufferizationAliasingBehavior(op)) {
LDBG("-----------notWritable\n");
return true;
}
}
}
LDBG("---->operand is writable\n");
return false;
}
bool BufferizationAliasInfo::bufferizesToWritableMemory(Value v) const {
return bufferizeToWritableMemory.count(v) > 0;
}
/// Specify that the value is known to bufferize to writable memory.
void BufferizationAliasInfo::setBufferizesToWritableMemory(Value v) {
bufferizeToWritableMemory.insert(v);
}
/// Return true if the buffer to which `operand` would bufferize is equivalent
/// to some buffer write.
bool BufferizationAliasInfo::aliasesInPlaceWrite(Value value) const {
LDBG("----Start aliasesInPlaceWrite\n");
LDBG("-------for : " << printValueInfo(value) << '\n');
for (Value v : getAliases(value)) {
for (auto &use : v.getUses()) {
if (bufferizesToMemoryWrite(use, InPlaceSpec::True)) {
LDBG("-----------wants to bufferize to inPlace write: "
<< printOperationInfo(use.getOwner()) << '\n');
return true;
}
}
}
LDBG("----------->does not alias an inplace write\n");
return false;
}
/// Set the inPlace bufferization spec to true.
void BufferizationAliasInfo::bufferizeInPlace(OpResult result,
OpOperand &operand) {
setInPlaceOpResult(result, InPlaceSpec::True);
aliasInfo.unionSets(result, operand.get());
// Dump the updated alias analysis.
LLVM_DEBUG(dumpAliases());
if (bufferRelation(operand) == BufferRelation::Equivalent)
equivalentInfo.unionSets(result, operand.get());
// Dump the updated equivalence analysis.
LLVM_DEBUG(dumpEquivalences());
}
/// Set the inPlace bufferization spec to false.
void BufferizationAliasInfo::bufferizeOutOfPlace(OpResult result) {
setInPlaceOpResult(result, InPlaceSpec::False);
}
/// Return true if it is possible to find an inplace write W among `usesWrite`
/// and a read R among `usesRead`, such that W and R interfere.
bool BufferizationAliasInfo::wouldCreateReadAfterWriteInterference(
Operation *opToBufferize, DenseSet<OpOperand *> &usesRead,
DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo) const {
for (OpOperand *uRead : usesRead) {
Operation *aliasingReadOp = uRead->getOwner();
LDBG("----++++aliasRead -> #"
<< uRead->getOperandNumber()
<< " in: " << printOperationInfo(aliasingReadOp) << '\n');
for (OpOperand *uWrite : usesWrite) {
// The same operand may both read and write.
// Don't consider self-use of the same operand for interference.
// Multiple different uses within the same op is fair game though.
if (uWrite == uRead)
continue;
Operation *aliasingWriteOp = uWrite->getOwner();
LDBG("---- aliasWrite -> #"
<< uWrite->getOperandNumber()
<< " in: " << printOperationInfo(aliasingWriteOp) << '\n');
// If the candidate write is the one that produces the read value (in the
// SSA def-use sense), this is not considered an interference.
if (getInplaceableOpResult(*uWrite) == uRead->get())
continue;
// If aliasingReadOp properly dominates aliasingWriteOp, the read cannot
// be affected by the write: there is no interference.
if (domInfo.properlyDominates(aliasingReadOp, aliasingWriteOp))
continue;
// At this point, aliasingWriteOp properly dominates aliasingReadOp or
// there is no clear dominance and we need to be conservative.
LDBG("---->found RaW interference between:\n");
LDBG(" OpToBufferize -> " << printOperationInfo(opToBufferize)
<< '\n');
LDBG(" Interfering write -> #"
<< uWrite->getOperandNumber() << ":"
<< printOperationInfo(aliasingWriteOp) << '\n');
LDBG(" Target read -> #" << uRead->getOperandNumber() << ":"
<< printOperationInfo(aliasingReadOp)
<< '\n');
LDBG("---->opportunity to clobber RaW interference\n");
if (isClobberedWriteBeforeRead(opToBufferize, *uRead, *uWrite, domInfo)) {
LDBG("---->clobbered! -> skip\n");
continue;
}
LDBG("---->not clobbered -> found an interference\n");
return true;
}
}
LDBG("----No interference found\n");
return false;
}
/// Return true if it is possible to find an inplace write W among the uses of
/// aliasInfo[result], and a read R among the uses of aliasInfo[result],
/// such that W and R interfere.
/// Such a (W, R) pair is an interference to the inplace bufferization of
/// opResult when:
/// 1. R is not known to properly dominate W (i.e. the effects of the write
/// may be visible from R).
/// 2. one cannot find an intermediate clobbering write `C` to W, such that
/// C interleaved between W and R (i.e. W -> C -> R where -> denotes
/// dominance).
bool BufferizationAliasInfo::wouldCreateReadAfterWriteInterference(
OpResult result, const DominanceInfo &domInfo) const {
Optional<OpOperand *> maybeAliasingOperand = getAliasingOpOperand(result);
if (!maybeAliasingOperand)
return false;
Operation *opToBufferize = result.getDefiningOp();
Value opResult = result;
Value opOperand = (*maybeAliasingOperand)->get();
LDBG("----Start wouldCreateReadAfterWriteInterference\n");
LDBG("--------consider all aliases to root read: "
<< printValueInfo(opOperand) << "\n");
LDBG("--------consider all aliases to root write: "
<< printValueInfo(opResult) << "\n");
/// Helper function to iterate on aliases of `root` and capture the reads.
auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) {
for (Value alias : getAliases(root)) {
for (auto &use : alias.getUses()) {
// Read to a value that aliases root.
if (bufferizesToMemoryRead(use)) {
LDBG("------------bufferizesToMemoryRead: "
<< use.getOwner()->getName().getStringRef() << "\n");
res.insert(&use);
}
}
}
};
/// Helper function to iterate on aliases of `root` and capture the writes.
auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) {
for (Value alias : getAliases(root)) {
for (auto &use : alias.getUses()) {
// Inplace write to a value that aliases root.
if (bufferizesToMemoryWrite(use, InPlaceSpec::True)) {
LDBG("------------bufferizesToMemoryWrite: "
<< use.getOwner()->getName().getStringRef() << "\n");
res.insert(&use);
}
}
}
};
// Check if we can find any interference between reads to aliases[`opOperand`]
// and writes to aliases[`opResult`]. This handles the case:
//
// ```
// %0 = op_to_bufferize_maybe_inplace(%1)
// %2 = some_alias(%0)
// inplace_write(%2)
// %3 = some_alias(%1)
// read(%3)
// ```
DenseSet<OpOperand *> usesRead, usesWrite;
LDBG("--------\n");
LDBG("--------Test reads(opOperand) vs writes(opResult)\n");
getAliasingReads(usesRead, opOperand);
getAliasingInplaceWrites(usesWrite, opResult);
// Additionally, `result` is not yet bufferized and we need to check for
// interferences as if it were bufferized inplace: add `maybeAliasingOperand`
// if it is a write. This handles the case:
//
// ```
// %0 = op_to_bufferize_maybe_inplace(%1)
// %2 = some_alias(%1)
// read(%2)
// ```
if (bufferizesToMemoryWrite(**maybeAliasingOperand))
usesWrite.insert(*maybeAliasingOperand);
if (wouldCreateReadAfterWriteInterference(opToBufferize, usesRead, usesWrite,
domInfo))
return true;
// Check if we can find any interference between writes to
// aliases[`opOperand`] and reads to aliases[`opResult`]. This handles the
// case:
//
// ```
// %0 = op_to_bufferize_maybe_inplace(%1)
// %2 = some_alias(%1)
// inplace_write(%2)
// %3 = some_alias(%0)
// read(%3)
// ```
LDBG("--------\n");
LDBG("--------Test reads(opResult) vs writes(opOperand)\n");
usesRead.clear();
usesWrite.clear();
getAliasingReads(usesRead, opResult);
getAliasingInplaceWrites(usesWrite, opOperand);
return wouldCreateReadAfterWriteInterference(opToBufferize, usesRead,
usesWrite, domInfo);
}
/// Return true if the source of a `insertSliceOp` bufferizes to an
/// equivalent ExtractSliceOp that bufferizes inplace.
bool BufferizationAliasInfo::isSourceEquivalentToAMatchingInplaceExtractSliceOp(
InsertSliceOp insertSliceOp) const {
LDBG("isSourceEquivalentToAMatchingInplaceExtractSliceOp: " << *insertSliceOp
<< '\n');
auto leaderIt = equivalentInfo.findLeader(insertSliceOp.source());
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
auto extractSliceOp =
dyn_cast_or_null<ExtractSliceOp>(mit->v.getDefiningOp());
if (extractSliceOp &&
areEquivalentExtractSliceOps(extractSliceOp, insertSliceOp) &&
getInPlace(extractSliceOp.result()) == InPlaceSpec::True) {
LDBG("\tfound: " << *mit->v.getDefiningOp() << '\n');
return true;
}
}
LDBG("\tnot equivalent\n");
return false;
}
/// Apply `fun` to all the members of the equivalence class of `v`.
void BufferizationAliasInfo::applyOnEquivalenceClass(
Value v, function_ref<void(Value)> fun) const {
auto leaderIt = equivalentInfo.findLeader(v);
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
fun(mit->v);
}
}
void BufferizationAliasInfo::printAliases(raw_ostream &os) const {
os << "\n/===================== AliasInfo =====================\n";
for (auto it = aliasInfo.begin(), eit = aliasInfo.end(); it != eit; ++it) {
if (!it->isLeader())
continue;
Value leader = it->getData();
os << "|\n| -- leader: " << printValueInfo(leader, /*prefix=*/false)
<< '\n';
for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end();
mit != meit; ++mit) {
Value v = static_cast<Value>(*mit);
os << "| ---- aliasing member: " << printValueInfo(v, /*prefix=*/false)
<< '\n';
}
}
os << "\n/===================== End AliasInfo =====================\n\n";
}
void BufferizationAliasInfo::printEquivalences(raw_ostream &os) const {
os << "\n/********************* Equivalent Buffers *********************\n";
for (auto it = equivalentInfo.begin(), eit = equivalentInfo.end(); it != eit;
++it) {
if (!it->isLeader())
continue;
Value leader = it->getData();
os << "|\n| -- leader: " << printValueInfo(leader, /*prefix=*/false)
<< '\n';
for (auto mit = equivalentInfo.member_begin(it),
meit = equivalentInfo.member_end();
mit != meit; ++mit) {
Value v = static_cast<Value>(*mit);
os << "| ---- equivalent member: " << printValueInfo(v, /*prefix=*/false)
<< '\n';
}
}
os << "|\n\\***************** End Equivalent Buffers *****************\n\n";
}
BufferizationAliasInfo::EquivalenceClassRangeType
BufferizationAliasInfo::getAliases(Value v) const {
DenseSet<Value> res;
auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v));
for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end();
mit != meit; ++mit) {
res.insert(static_cast<Value>(*mit));
}
return BufferizationAliasInfo::EquivalenceClassRangeType(
aliasInfo.member_begin(it), aliasInfo.member_end());
}
void BufferizationAliasInfo::dumpAliases() const { printAliases(llvm::errs()); }
void BufferizationAliasInfo::dumpEquivalences() const {
printEquivalences(llvm::errs());
}
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and exposed
/// as interfaces on the proper types.
bool BufferizationAliasInfo::areEquivalentExtractSliceOps(
ExtractSliceOp st, InsertSliceOp sti) const {
if (!st || !sti)
return false;
if (!equivalentInfo.isEquivalent(st.source(), sti.dest()))
return false;
if (!sameOffsetsSizesAndStrides(st, sti, isEqualConstantIntOrValue))
return false;
if (!equivalentInfo.isEquivalent(st.result(), sti.source()))
return false;
return true;
}
/// Return true if there is a `candidateOp` that would write to memory after
/// bufferization and such that:
/// 1. The written buffer is equivalent to either `aliasingRead` or
/// `aliasingWrite` under the inPlace bufferization decisions taken
/// so far.
/// 2. `aliasingWrite` properly dominates `candidateOp`.
/// 3. `candidateOp` properly dominates `aliasingReadOp`.
// TODO: richer clobbering analysis with container-containee relationship
// instead of equivalence.
bool BufferizationAliasInfo::existsInterleavedValueClobber(
OpOperand &aliasingRead, OpOperand &aliasingWrite,
const DominanceInfo &domInfo) const {
Operation *aliasingReadOp = aliasingRead.getOwner();
Operation *aliasingWriteOp = aliasingWrite.getOwner();
assert(!domInfo.properlyDominates(aliasingReadOp, aliasingWriteOp) &&
"Unexpected aliasingReadOp properly dominates aliasingWriteOp");
for (Value valueToClobber : {aliasingRead.get(), aliasingWrite.get()}) {
auto leaderIt = equivalentInfo.findLeader(valueToClobber);
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
Operation *candidateOp = mit->v.getDefiningOp();
if (!candidateOp)
continue;
auto maybeAliasingOperand = getAliasingOpOperand(mit->v.cast<OpResult>());
if (!maybeAliasingOperand || !*maybeAliasingOperand ||
!bufferizesToMemoryWrite(**maybeAliasingOperand))
continue;
LDBG("---->clobbering candidate: " << printOperationInfo(candidateOp)
<< '\n');
if (domInfo.properlyDominates(aliasingWriteOp, candidateOp) &&
domInfo.properlyDominates(candidateOp, aliasingReadOp))
return true;
}
}
return false;
}
/// Return true if there is a write that:
/// 1. Properly dominates aliasingReadOp.
/// 2. Is properly dominated by aliasingWriteOp.
/// 3. Clobbers the write that would be interfering with the read.
///
bool BufferizationAliasInfo::isClobberedWriteBeforeRead(
Operation *opToBufferize, OpOperand &aliasingRead, OpOperand &aliasingWrite,
const DominanceInfo &domInfo) const {
Operation *aliasingReadOp = aliasingRead.getOwner();
Operation *aliasingWriteOp = aliasingWrite.getOwner();
assert(!domInfo.properlyDominates(aliasingReadOp, aliasingWriteOp) &&
"Unexpected aliasingReadOp properly dominates aliasingWriteOp");
// Bail if the write does not dominate the read: it may clobber but only on
// a strict subset of paths, which is not enough for safety.
if (!domInfo.dominates(aliasingWriteOp, aliasingReadOp)) {
LDBG("---->no clobbering: write does not dominate read\n");
return false;
}
// The case `opToBufferize` isa ExtractSliceOp is important enough that we
// look for it specifically. The key information to discover is whether the
// aliasing read or write come from a matching InsertSliceOp.
// Such a pattern is introduced by tiling and is the key inplace condition
// not to miss.
if (auto extractSliceOp = dyn_cast<ExtractSliceOp>(opToBufferize)) {
if (auto insertSliceOp = dyn_cast<InsertSliceOp>(aliasingReadOp)) {
// %1 = extract_slice %0[%offset_sizes_and_strides_1]
//
// ... // 0 or more of inplace compute that reduces to: %X is an
// // aliasingWrite equivalent to %1.
// %W = inplace_write(%1)
//
// // aliasingRead %Y in insert_slice
// ... = insert_slice %W into %R[%offset_sizes_and_strides_1]
if (aliasingRead.get() == insertSliceOp.dest() &&
// TODO: This is currently too restrictive and misses clobberings.
// When available, use container-containee analysis: the condition
// should be that the `aliasingWrite` is contained within
// `insertSliceOp.source()`.
equivalentInfo.isEquivalent(aliasingWrite.get(),
insertSliceOp.source()) &&
areEquivalentExtractSliceOps(extractSliceOp, insertSliceOp)) {
LDBG("---->clobbering matching extract_slice/insert_slice\n");
return true;
}
// %1 = extract_slice %0[%offset_sizes_and_strides_1]
//
// ... // bunch of inplace ops that reduce to %X, equivalent to %1.
// %X = inplace_write(%1)
//
// // aliasingRead %X in insert_slice
// // aliasingWrite %Y in insert_slice
// ... = insert_slice %X into %Y[%offset_sizes_and_strides_1]
if (aliasingReadOp == aliasingWriteOp) {
assert(aliasingRead.get() == insertSliceOp.source() &&
"expected read to source of insert_slice");
assert(aliasingWrite.get() == insertSliceOp.dest() &&
"expected write to dest of insert_slice");
if (areEquivalentExtractSliceOps(extractSliceOp, insertSliceOp)) {
LDBG("---->clobbering matching extract_slice/insert_slice\n");
return true;
}
}
}
}
// General case: look for a properly interleaved clobber of either exactly
// `aliasingRead` or `aliasingWrite`.
// TODO: Relax this to inclusion instead of double inclusion (a.k.a
// equivalence). We will need to compute container-containee relationship.
return existsInterleavedValueClobber(aliasingRead, aliasingWrite, domInfo);
}
//===----------------------------------------------------------------------===//
// Forward declarations.
//===----------------------------------------------------------------------===//
/// Return the op with Allocate MemoryEffect if `v` is equivalent to an such
/// an op. Return null otherwise.
static Operation *getEquivalentAlloc(Value value,
const BufferizationAliasInfo &aliasInfo);
/// Return the first argument of the enclosing FuncOp that is equivalent to `v`.
/// Return null if no such bbArg can be found.
static BlockArgument
getEquivalentEnclosingFuncBBArg(Value v,
const BufferizationAliasInfo &aliasInfo);
//===----------------------------------------------------------------------===//
// Bufferization-specific MemRefType support.
//===----------------------------------------------------------------------===//
/// Return a contiguous MemRefType (i.e. with canonical/empty layout map)
/// with the same shape as `shapedType` and specified `layout` and
/// `addressSpace`.
static MemRefType getContiguousMemRefType(ShapedType shapedType,
ArrayRef<AffineMap> layout = {},
unsigned addressSpace = 0) {
if (RankedTensorType tensorType = shapedType.dyn_cast<RankedTensorType>())
return MemRefType::get(tensorType.getShape(), tensorType.getElementType(),
layout, addressSpace);
MemRefType memrefType = shapedType.cast<MemRefType>();
return MemRefType::get(memrefType.getShape(), memrefType.getElementType(),
layout, addressSpace);
}
/// Return a contiguous MemRefType (i.e. with canonical/empty layout map)
/// with the same shape as `shapedType` and specified `layout` and
/// `addressSpace` or an UnrankedMemRefType otherwise.
static Type getContiguousOrUnrankedMemRefType(Type type,
ArrayRef<AffineMap> layout = {},
unsigned addressSpace = 0) {
if (type.isa<RankedTensorType, MemRefType>())
return getContiguousMemRefType(type.cast<ShapedType>(), layout,
addressSpace);
assert(layout.empty() && "expected empty layout with UnrankedMemRefType");
return UnrankedMemRefType::get(getElementTypeOrSelf(type), addressSpace);
}
/// Return a MemRefType to which the `tensorType` can be bufferized in a
/// composable fashion. The layout must be the most dynamic possible and
/// canonicalize away once bufferization is finished.
static MemRefType getDynamicMemRefType(RankedTensorType tensorType,
unsigned addressSpace = 0) {
// TODO: address space decisions to connect with the actual alloc.
int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset;
SmallVector<int64_t> dynamicStrides(tensorType.getRank(),
ShapedType::kDynamicStrideOrOffset);
AffineMap stridedLayout = makeStridedLinearLayoutMap(
dynamicStrides, dynamicOffset, tensorType.getContext());
return MemRefType::get(tensorType.getShape(), tensorType.getElementType(),
stridedLayout, addressSpace);
}
/// Return the FunctionType with `argumentTypes` and `resultTypes` where each
/// tensor is replaced by the corresponding buffer type.
/// In order for all the callers to agree, this *must* bufferize to the most
/// dynamic buffer type supported.
/// A later pass across all CallOps in the module can decide whether to simplify
/// the types of to version according to some cost model.
static FunctionType getBufferizedFunctionType(MLIRContext *ctx,
TypeRange argumentTypes,
TypeRange resultTypes) {
auto rewrite = [](Type t) -> Type {
// TODO: non-zero address space.
// TODO: layout information if relevant.
if (auto rankedTensorType = t.dyn_cast<RankedTensorType>())
return getDynamicMemRefType(rankedTensorType);
if (auto tensorType = t.dyn_cast<TensorType>())
return getContiguousOrUnrankedMemRefType(tensorType);
return t;
};
auto argTypes = llvm::to_vector<4>(llvm::map_range(argumentTypes, rewrite));
auto retTypes = llvm::to_vector<4>(llvm::map_range(resultTypes, rewrite));
return FunctionType::get(ctx, argTypes, retTypes);
}
/// If an entry for `funcOp` is available in `bufferizedFunctionTypes`, return
/// it. Otherwise, construct a new entry based on `argumentTypes` and
/// `resultTypes`.
// TODO: improve the layering.
static FunctionType getOrCreateBufferizedFunctionType(
FuncOp funcOp, TypeRange argumentTypes, TypeRange resultTypes,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
auto it = bufferizedFunctionTypes.find(funcOp);
if (it != bufferizedFunctionTypes.end())
return it->second;
auto it2 = bufferizedFunctionTypes.try_emplace(
funcOp, getBufferizedFunctionType(funcOp.getContext(), argumentTypes,
resultTypes));
LDBG("FT: " << funcOp.getType() << " -> " << it2.first->second << "\n");
return it2.first->second;
}
//===----------------------------------------------------------------------===//
// Bufferization-specific scoped alloc/dealloc insertion support.
//===----------------------------------------------------------------------===//
template <typename... Args>
Operation *getFirstParentOfType(Value v) {
Operation *parent;
if (auto bbArg = v.dyn_cast<BlockArgument>())
parent = bbArg.getOwner()->getParentOp();
else
parent = v.getDefiningOp()->getParentOp();
while (parent) {
if (isa<Args...>(parent))
return parent;
parent = parent->getParentOp();
}
return nullptr;
}
/// Create an Allocop/DeAllocOp pair, where the AllocOp is after
/// `shapedValue.getDefiningOp` (or at the top of the block in case of a
/// bbArg) and the DeallocOp is at the end of the block.
static Value
createNewAllocDeallocPairForShapedValue(OpBuilder &b, Location loc,
Value shapedValue,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// TODO: non-zero address space.
// TODO: layout information if relevant.
// Cannot allocate an unranked memref so just always go for the contiguous
// form.
MemRefType allocMemRefType =
getContiguousMemRefType(shapedValue.getType().cast<ShapedType>());
assert(shapedValue.getType().isa<ShapedType>());
MemRefType memRefType = shapedValue.getType().dyn_cast<MemRefType>();
memRefType = memRefType ? memRefType : allocMemRefType;
if (auto bbArg = shapedValue.dyn_cast<BlockArgument>()) {
b.setInsertionPointToStart(bbArg.getOwner());
loc = bbArg.getOwner()->getParentOp()->getLoc();
} else {
b.setInsertionPointAfter(shapedValue.getDefiningOp());
loc = shapedValue.getDefiningOp()->getLoc();
}
// Compute the dynamic part of the shape.
SmallVector<Value> dynShape;
for (auto dim : enumerate(memRefType.getShape()))
if (dim.value() == ShapedType::kDynamicSize)
dynShape.push_back(createOrFoldDimOp(b, loc, shapedValue, dim.index()));
// If the buffer is statically shaped, try to hoist it to the first enclosing
// parallel region.
// TODO: this concept of parallel region and threadlocal needs interfaces.
// TODO: also hoist in the dynamic case. For now this relies on subsequent
// calls to LICM and buffer hoisting which will most likely not succeed.
// TODO: when packing, allocate a static bounding box which will enable more
// hoisting.
Value allocated;
{ // Guarded insertion point to potentially hoist the AllocOp.
OpBuilder::InsertionGuard g(b);
if (dynShape.empty()) {
Operation *parent =
getFirstParentOfType<FuncOp, TiledLoopOp, scf::ParallelOp,
AffineParallelOp>(shapedValue);
if (parent)
b.setInsertionPointToStart(&(parent->getRegion(0).front()));
}
allocated = b.create<memref::AllocOp>(
loc, allocMemRefType, dynShape, b.getI64IntegerAttr(kBufferAlignments));
aliasInfo.createAliasInfoEntry(allocated);
}
Value casted = allocated;
if (memRefType != allocMemRefType) {
casted = b.create<memref::CastOp>(loc, memRefType, allocated);
aliasInfo.insertNewBufferEquivalence(casted, allocated);
}
b.setInsertionPoint(allocated.getParentBlock()->getTerminator());
b.create<memref::DeallocOp>(loc, allocated);
return casted;
}
//===----------------------------------------------------------------------===//
// Bufferization as simple BlockAndValueMapping rewrites.
//===----------------------------------------------------------------------===//
/// Helper function for LinalgOp bufferization.
/// Examines each result and determines whether it bufferizes inplace on an
/// operand.
/// If the opResult bufferizes inplace, just reuse the existing buffer.
/// Otherwise allocate a new buffer to hold the result.
/// When allocating a new buffer, analyze whether `op` want to read form that
/// buffer. In such a case, insert a copy to ensure the newly allocated buffer
/// is properly initialiazed.
static void allocateBuffersForResults(OpBuilder &b, Location loc, LinalgOp op,
SmallVectorImpl<Value> &resultBuffers,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
// TODO: provide the proper interface to iterate on OpResults and get the
// matching OpOperands.
for (OpOperand *opOperand : op.getOutputOperands()) {
Value output = opOperand->get();
assert(output.getType().isa<TensorType>() && "expected tensor type");
// If output tensor is marked inPlace, just use the buffer.
// The following uses internal knowledge of the position of inplaceable
// operand / results.
OpResult opResult = getInplaceableOpResult(*opOperand);
if (getInPlace(opResult) == InPlaceSpec::True) {
Value v = lookup(bvm, output);
assert(v && "missing buffer");
resultBuffers.push_back(v);
continue;
}
// Otherwise, `op` is not inplaceable and we need to allocate its result.
Value dimTensor = bvm.lookupOrDefault(output);
Value alloc =
createNewAllocDeallocPairForShapedValue(b, loc, dimTensor, aliasInfo);
resultBuffers.push_back(alloc);
// Additionally, if the output buffer is used, clone its value for now.
if (op.payloadUsesValueFromOperand(opOperand)) {
Value v = lookup(bvm, output);
b.create<CopyOp>(loc, v, alloc);
}
}
if (op->getNumResults())
map(bvm, op->getResults(), resultBuffers);
}
/// Generic conversion for any LinalgOp on tensors.
static LogicalResult bufferize(OpBuilder &b, LinalgOp op,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Ensure op has only tensors. Allow mixed tensor-buffer mode on a per-need
// basis.
if (!op.hasTensorSemantics())
return op->emitError() << "op does not have tensor semantics";
Location loc = op.getLoc();
SmallVector<Value> newInputBuffers;
newInputBuffers.reserve(op.getNumInputs());
for (OpOperand *opOperand : op.getInputOperands()) {
if (op.isScalar(opOperand)) {
newInputBuffers.push_back(opOperand->get());
continue;
}
newInputBuffers.push_back(lookup(bvm, opOperand->get()));
assert(newInputBuffers.back() && "missing buffer");
}
SmallVector<Value> newOutputBuffers;
// Try to allocate new buffers depending on op's inplace semantics.
allocateBuffersForResults(b, loc, op, newOutputBuffers, bvm, aliasInfo);
// Clone the newly bufferized op.
SmallVector<Value> newOperands = newInputBuffers;
newOperands.append(newOutputBuffers.begin(), newOutputBuffers.end());
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(op);
op.clone(b, loc, /*resultTypes=*/TypeRange{}, newOperands);
// Replace the results of the old op with the new output buffers.
if (op->getNumResults())
map(bvm, op->getResults(), newOutputBuffers);
// The original op will be DCE'd away later.
return success();
}
/// In a first approximation, all the function arguments of a FuncOp are marked
/// inplaceable. For now, it is the responsibility of the `callOp` bufferization
/// to allow FuncOp that are inplaceable to write inPlace.
static LogicalResult
bufferize(OpBuilder &b, CallOpInterface callOp, BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
FuncOp funcOp = getCalledFunction(callOp);
assert(isa<CallOp>(callOp.getOperation()) && funcOp &&
"expected Callop to a FuncOp");
// If nothing to do then we are done.
if (!llvm::any_of(funcOp.getType().getInputs(), isaTensor) &&
!llvm::any_of(funcOp.getType().getResults(), isaTensor))
return success();
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(callOp);
// 1. Filter return types:
// - if the callee is bodiless / external, we cannot inspect it and we
// cannot assume anything. We can just assert that it does not return a
// tensor as this would have to bufferize to "return a memref", whose
// semantics is ill-defined.
// - if the callee has a body, we perform inter-procedural equivalence
// analysis. When successful, a result folds onto an operand. When
// unsuccessful, additional work is needed to either:
// * hoist a result into an inplaceable operand or
// * devise a better representation to truly return a buffer.
SmallVector<Type> resultTypes;
SmallVector<Value> hoistedArguments;
if (funcOp.body().empty()) {
if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
return callOp->emitError()
<< "cannot bufferize bodiless function that returns a tensor";
} else {
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
// For each FuncOp result, keep track of which inplace argument it reuses.
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
Type returnType = returnOperand.get().getType();
if (!isaTensor(returnType)) {
resultTypes.push_back(returnType);
continue;
}
// If return operand is equivalent to some bbArg, no need to return it.
Value returnVal = returnOperand.get();
if (BlockArgument bbArg =
getEquivalentEnclosingFuncBBArg(returnVal, aliasInfo)) {
Value oldRes = callOp->getResult(returnOperand.getOperandNumber());
int64_t idx = bbArg.getArgNumber();
Value buffer = lookup(bvm, callOp->getOperand(idx));
assert(buffer && "expected bufferized value");
// Add CallOp operand/result equivalence: this is interprocedural info.
aliasInfo.insertNewBufferEquivalence(oldRes, buffer);
map(bvm, oldRes, buffer);
// Add a TensorLoadOp to kill all uses of the CallOp return.
// Replace all uses of the CallOp results so we can erase the CallOp.
// This TensorLoadOp must fold/DCE away or bufferization should be
// considered failed.
Value tensorLoad =
b.create<memref::TensorLoadOp>(callOp.getLoc(), buffer);
oldRes.replaceAllUsesWith(tensorLoad);
// Add new op equivalence info.
aliasInfo.insertNewBufferEquivalence(tensorLoad, buffer);
map(bvm, tensorLoad, buffer);
continue;
}
// TODO: Need to hoist above function boundary.
if (Operation *allocOp = getEquivalentAlloc(returnVal, aliasInfo)) {
hoistedArguments.push_back(allocOp->getResult(0));
continue;
}
// Other cases legitimately need to return a tensor, this is currently not
// supported. For instance, if hoisting across function boundary has
// failed, it may be due to e.g. data-dependent sizes. In such a case, we
// would we need a better type than memref.
resultTypes.push_back(returnType);
int64_t returnIdx = returnOperand.getOperandNumber();
return returnOp->emitError()
<< "buffer result #" << returnIdx << " not produced by an alloc\n";
}
}
// 2. Compute bufferized FunctionType.
SmallVector<Type> argumentTypes{callOp->getOperandTypes()};
ValueRange hoistedArgs{hoistedArguments};
llvm::append_range(argumentTypes, hoistedArgs.getTypes());
// Get the bufferized FunctionType for funcOp or construct it if not yet
// available.
FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
funcOp, argumentTypes, resultTypes, bufferizedFunctionTypes);
// 3. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
SmallVector<Value> newOperands;
newOperands.reserve(callOp->getNumOperands());
for (OpOperand &opOperand : callOp->getOpOperands()) {
Value tensorOperand = opOperand.get();
// Non-tensor operands are just copied.
if (!tensorOperand.getType().isa<TensorType>()) {
newOperands.push_back(tensorOperand);
continue;
}
// Tensor operands are guaranteed to have been buferized.
int64_t idx = opOperand.getOperandNumber();
Value buffer = lookup(bvm, tensorOperand);
assert(buffer && "expected bufferized value");
// Caller / callee type mistmatch is handled with a CastOp.
auto memRefType = bufferizedFuncType.getInput(idx);
// Since we don't yet have a clear layout story, buffer_cast may
// conservatively turn tensors into more dynamic memref than necessary.
// If the memref type of the callee fails, introduce an extra memref.cast
// that will either canonicalize away or fail compilation until we can do
// something better.
if (buffer.getType() != memRefType) {
Value castBuffer =
b.create<memref::CastOp>(callOp.getLoc(), memRefType, buffer);
// Add new op equivalence info.
aliasInfo.insertNewBufferEquivalence(castBuffer, buffer);
map(bvm, tensorOperand, castBuffer);
buffer = castBuffer;
}
newOperands.push_back(buffer);
}
// 4. Create the new CallOp.
Operation *newCallOp = b.create<CallOp>(callOp.getLoc(), funcOp.sym_name(),
resultTypes, newOperands);
newCallOp->setAttrs(callOp->getAttrs());
return success();
}
/// tensor::CastOp bufferizes to memref::CastOp.
static LogicalResult bufferize(OpBuilder &b, tensor::CastOp castOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(castOp);
// If castOp is not inPlace, allocate a new buffer.
auto inPlace = getInPlace(castOp->getResult(0));
Value newBuffer;
if (inPlace != InPlaceSpec::True) {
Location loc = castOp.getLoc();
// Alloc a copy for `writeOp.source()`, it will become the result buffer.
newBuffer = createNewAllocDeallocPairForShapedValue(b, loc, castOp.source(),
aliasInfo);
if (!isInitTensorOp(castOp.source())) {
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(castOp);
b.create<CopyOp>(loc, lookup(bvm, castOp.source()), newBuffer);
}
} else {
// InPlace write will result in memref.tensor_load(x) which must
// canonicalize away with one of it uses.
newBuffer = lookup(bvm, castOp.source());
assert(newBuffer && "missing buffer");
}
Type sourceType = newBuffer.getType();
auto rankedMemRefType = sourceType.dyn_cast<MemRefType>();
auto unrankedMemRefType = sourceType.dyn_cast<UnrankedMemRefType>();
assert(rankedMemRefType || unrankedMemRefType);
unsigned memorySpace = rankedMemRefType
? rankedMemRefType.getMemorySpaceAsInt()
: unrankedMemRefType.getMemorySpaceAsInt();
TensorType tensorType = castOp.getResult().getType().cast<TensorType>();
ArrayRef<AffineMap> affineMaps =
rankedMemRefType && tensorType.isa<RankedTensorType>()
? rankedMemRefType.getAffineMaps()
: ArrayRef<AffineMap>{};
Type memRefType = getContiguousOrUnrankedMemRefType(
castOp.getResult().getType(), affineMaps, memorySpace);
Value res = b.create<memref::CastOp>(castOp.getLoc(), memRefType, newBuffer);
aliasInfo.insertNewBufferEquivalence(res, castOp.getResult());
map(bvm, castOp.getResult(), res);
return success();
}
static LogicalResult bufferize(OpBuilder &b, ConstantOp constantOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
GlobalCreator &globalCreator) {
assert(constantOp.getType().dyn_cast<RankedTensorType>() &&
"not a constant ranked tensor");
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(constantOp);
auto globalMemref = globalCreator.getGlobalFor(constantOp);
Value memref = b.create<memref::GetGlobalOp>(
constantOp.getLoc(), globalMemref.type(), globalMemref.getName());
aliasInfo.insertNewBufferEquivalence(memref, constantOp.getResult());
map(bvm, constantOp, memref);
return success();
}
/// DimOp tensor operand is modified inplace. This allows leaving dead
/// tensors behind that will get DCE'd.
static LogicalResult bufferize(OpBuilder &b, tensor::DimOp dimOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(dimOp);
if (dimOp.source().getType().isa<RankedTensorType>()) {
Value v = lookup(bvm, dimOp.source());
assert(v && "missing buffer");
dimOp.result().replaceAllUsesWith(
b.create<memref::DimOp>(dimOp.getLoc(), v, dimOp.index()));
}
return success();
}
static LogicalResult bufferize(OpBuilder &b, scf::ForOp forOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// If inPlace, just forward the buffer.
// Otherwise alloc and copy.
Location loc = forOp.getLoc();
for (OpResult opResult : forOp->getResults()) {
if (!opResult.getType().isa<TensorType>())
continue;
// TODO: Atm we bail on unranked TensorType because we don't know how to
// alloc an UnrankedMemRefType + its underlying ranked MemRefType.
assert(opResult.getType().isa<RankedTensorType>() &&
"unsupported unranked tensor");
OpOperand &opOperand = forOp.getOpOperandForResult(opResult);
Value operand = opOperand.get();
Value operandBuffer = lookup(bvm, operand);
Value resultBuffer = operandBuffer;
if (getInPlace(opResult) != InPlaceSpec::True) {
resultBuffer =
createNewAllocDeallocPairForShapedValue(b, loc, operand, aliasInfo);
// If the tensor comes from either:
// - linalg.init_tensor
// - tensor.cast(linalg.init_tensor())
// Then the value is unitialized and we do not need to copy. This is a
// pragmatic simplification of "matching bbArg does not bufferize to a
// read".
// TODO: "matching bbArg does not bufferize to a read" is a more general
// check.
if (!isInitTensorOp(operand)) {
OpBuilder::InsertionGuard g(b);
// Set insertion point now that potential alloc/dealloc are introduced.
// Copy is inserted just before the forOp.
b.setInsertionPoint(forOp);
b.create<linalg::CopyOp>(forOp.getLoc(), operandBuffer, resultBuffer);
}
}
BlockArgument bbArg = forOp.getRegionIterArgForOpOperand(opOperand);
aliasInfo.createAliasInfoEntry(resultBuffer);
aliasInfo.insertNewBufferEquivalence(bbArg, resultBuffer);
map(bvm, bbArg, resultBuffer);
map(bvm, opResult, resultBuffer);
}
return success();
}
/// FuncOp always creates TensorToMemRef ops.
static LogicalResult bufferize(OpBuilder &b, FuncOp funcOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&funcOp.body().front());
for (auto bbArg : funcOp.getArguments()) {
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
if (!tensorType)
continue;
auto rankedTensorType = tensorType.dyn_cast<RankedTensorType>();
// Cast the tensor to the most dynamic buffer possible. Further
// canonicalizations will clean up.
Type memRefType = rankedTensorType
? getDynamicMemRefType(rankedTensorType)
: getContiguousOrUnrankedMemRefType(tensorType);
Value bufferCast =
b.create<memref::BufferCastOp>(funcOp.getLoc(), memRefType, bbArg);
aliasInfo.insertNewBufferEquivalence(bufferCast, bbArg);
map(bvm, bbArg, bufferCast);
}
return success();
}
/// InitTensor always allocates.
/// TODO: consider hoisting across function boundaries prior to bufferization.
static LogicalResult bufferize(OpBuilder &b, InitTensorOp initTensorOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(initTensorOp);
Value alloc = createNewAllocDeallocPairForShapedValue(
b, initTensorOp->getLoc(), initTensorOp.result(), aliasInfo);
map(bvm, initTensorOp.result(), alloc);
return success();
}
/// ReturnOp always creates memref::TensorLoadOp.
static LogicalResult bufferize(OpBuilder &b, ReturnOp returnOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Cannot insert after returnOp.
b.setInsertionPoint(returnOp);
assert(isa<FuncOp>(returnOp->getParentOp()) &&
"only support FuncOp parent for ReturnOp");
for (OpOperand &operand : returnOp->getOpOperands()) {
auto tensorType = operand.get().getType().dyn_cast<TensorType>();
if (!tensorType)
continue;
Value v = lookup(bvm, operand.get());
assert(v && "missing buffer for result");
Value returnTensor = b.create<memref::TensorLoadOp>(returnOp.getLoc(), v);
operand.set(returnTensor);
aliasInfo.insertNewBufferEquivalence(returnTensor, v);
map(bvm, returnTensor, v);
}
return success();
}
/// Bufferization for TiledLoopOp..
static LogicalResult bufferize(OpBuilder &b, TiledLoopOp tiledLoopOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Allocate output buffers if needed, forward output tensor args to the
// terminator.
Operation *yieldOp = tiledLoopOp.getBody()->getTerminator();
Block *body = tiledLoopOp.getBody();
// Take copies of the old input and output operands, so we can insert inplace
// easily.
auto oldInputs = llvm::to_vector<4>(tiledLoopOp.inputs());
auto oldOutputs = llvm::to_vector<4>(tiledLoopOp.outputs());
int numLoops = tiledLoopOp.getNumLoops();
int numControlOperands = tiledLoopOp.getNumControlOperands();
// Add buffers for outputs and the corresponding block arguments.
// Keep separate iterators to increment without further leaking impl. details.
// Start with outputs to avoid interference from new input buffers.
int numNewOutputBuffers = 0;
int resultIndex = 0;
int oldOutputBBArgIndex = numLoops + oldInputs.size();
int nextOutputBBArgIndex = numLoops + oldInputs.size() + oldOutputs.size();
int nextOutputOperandIndex =
numControlOperands + oldInputs.size() + oldOutputs.size();
for (Value oldOutputTensor : oldOutputs) {
if (!oldOutputTensor.getType().isa<TensorType>()) {
// Skip and increment the old bbarg index only.
++oldOutputBBArgIndex;
// Do not increment resultIndex as only tensors are returned.
// TODO: better interface to avoid leaking such impl details.
continue;
}
assert(oldOutputTensor.getType().isa<RankedTensorType>() &&
"bufferizable output must be a ranked tensor");
Value outputBuffer = lookup(bvm, oldOutputTensor);
const OpResult &opResult = tiledLoopOp->getResult(resultIndex);
OpOperand &yieldOperand = yieldOp->getOpOperand(resultIndex);
// If the result is not inplaceable, need to allocate a copy for it.
if (getInPlace(opResult) != InPlaceSpec::True) {
auto loc = tiledLoopOp.getLoc();
Value alloc = createNewAllocDeallocPairForShapedValue(
b, loc, oldOutputTensor, aliasInfo);
// If the tensor comes from either:
// - linalg.init_tensor
// - tensor.cast(linalg.init_tensor())
// Then the value is unitialized and we do not need to copy. This is a
// pragmatic simplification of "matching bbArg does not bufferize to a
// read".
// TODO: "matching bbArg does not bufferize to a read" is a more general
// check.
if (!isInitTensorOp(oldOutputTensor)) {
OpBuilder::InsertionGuard g(b);
// Set insertion point now that potential alloc/dealloc are introduced.
// Copy is inserted just before the tiledLoopOp.
b.setInsertionPoint(tiledLoopOp);
b.create<linalg::CopyOp>(loc, outputBuffer, alloc);
}
outputBuffer = alloc;
}
// Insert mapping and aliasing info.
aliasInfo.createAliasInfoEntry(outputBuffer);
aliasInfo.insertNewBufferEquivalence(opResult, outputBuffer);
map(bvm, opResult, outputBuffer);
// Insert new operand and bbArg.
tiledLoopOp->insertOperands(nextOutputOperandIndex, outputBuffer);
BlockArgument newBufferBBArg =
body->insertArgument(nextOutputBBArgIndex, outputBuffer.getType());
BlockArgument oldTensorBBArg = body->getArgument(oldOutputBBArgIndex);
// Insert mapping and aliasing info.
aliasInfo.createAliasInfoEntry(newBufferBBArg);
aliasInfo.insertNewBufferEquivalence(oldTensorBBArg, newBufferBBArg);
map(bvm, oldTensorBBArg, newBufferBBArg);
// Set operand of `linalg.yield` to the bbArg so it just canonicalizes away
// later.
yieldOperand.set(oldTensorBBArg);
// Increment indices.
++numNewOutputBuffers;
++resultIndex;
++oldOutputBBArgIndex;
++nextOutputBBArgIndex;
++nextOutputOperandIndex;
}
// Add buffers for inputs and the corresponding block arguments.
// Keep separate iterators to increment without further leaking impl. details.
int numNewInputBuffers = 0;
int oldInputBBArgIndex = numLoops;
int nextInputBBArgIndex = numLoops + oldInputs.size();
int nextInputOperandIndex = numControlOperands + oldInputs.size();
for (Value oldInputTensor : oldInputs) {
if (!oldInputTensor.getType().isa<TensorType>()) {
// Skip and increment the old bbarg index only.
++oldInputBBArgIndex;
continue;
}
Value inputBuffer = lookup(bvm, oldInputTensor);
assert(inputBuffer && " missing buffer for operand");
// Insert new operand and bbArg.
tiledLoopOp->insertOperands(nextInputOperandIndex, inputBuffer);
BlockArgument newBufferBBArg =
body->insertArgument(nextInputBBArgIndex, inputBuffer.getType());
BlockArgument oldTensorBBArg = body->getArgument(oldInputBBArgIndex);
// Insert mapping and aliasing info.
aliasInfo.createAliasInfoEntry(newBufferBBArg);
aliasInfo.insertNewBufferEquivalence(oldTensorBBArg, newBufferBBArg);
map(bvm, oldTensorBBArg, newBufferBBArg);
// Increment indices.
++numNewInputBuffers;
++oldInputBBArgIndex;
++nextInputBBArgIndex;
++nextInputOperandIndex;
}
// Update segment sizes.
// TODO: Helper method to avoid leaking impl details.
tiledLoopOp->setAttr(
TiledLoopOp::getOperandSegmentSizeAttr(),
b.getI32VectorAttr(
{numLoops, numLoops, numLoops,
static_cast<int>(oldInputs.size()) + numNewInputBuffers,
static_cast<int>(oldOutputs.size()) + numNewOutputBuffers}));
return success();
}
/// Bufferize ExtractSliceOp to subview with optional alloc + copy depending on
/// whether or not it is marked inplaceable.
/// Note that `getInplaceableOpResult` on a ExtractSliceOp always returns null.
/// As consequence a ExtractSliceOp always alloc + copy when taken in
/// isolation.
static LogicalResult bufferize(OpBuilder &b, ExtractSliceOp extractSliceOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
LDBG("bufferize: " << *extractSliceOp << '\n');
Location loc = extractSliceOp.getLoc();
// Bail if source was not bufferized.
Value srcMemref = lookup(bvm, extractSliceOp.source());
if (!srcMemref)
return failure();
auto srcMemrefType = srcMemref.getType().cast<MemRefType>();
auto dstTensorType =
extractSliceOp.result().getType().cast<RankedTensorType>();
// If not inplaceable, alloc.
Value alloc;
auto inPlace = getInPlace(extractSliceOp->getResult(0));
if (inPlace != InPlaceSpec::True)
alloc = createNewAllocDeallocPairForShapedValue(
b, loc, extractSliceOp.result(), aliasInfo);
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(extractSliceOp);
// Bufferize to subview.
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
dstTensorType.getRank(), srcMemrefType,
extractSliceOp.getMixedOffsets(), extractSliceOp.getMixedSizes(),
extractSliceOp.getMixedStrides())
.cast<MemRefType>();
Value subView = b.create<memref::SubViewOp>(
loc, subviewMemRefType, srcMemref, extractSliceOp.getMixedOffsets(),
extractSliceOp.getMixedSizes(), extractSliceOp.getMixedStrides());
// Insert new alias.
aliasInfo.insertNewBufferAlias(subView, srcMemref);
/// If not inplaceable, copy.
if (alloc) {
b.create<CopyOp>(extractSliceOp.getLoc(), subView, alloc);
subView = alloc;
}
map(bvm, extractSliceOp.result(), subView);
return success();
}
static LogicalResult bufferize(OpBuilder &b, InsertSliceOp insertSliceOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(insertSliceOp);
LDBG("bufferize: " << *insertSliceOp << '\n');
Location loc = insertSliceOp.getLoc();
Value dstMemref = lookup(bvm, insertSliceOp.dest());
if (!dstMemref)
return failure();
auto inPlace = getInPlace(insertSliceOp->getResult(0));
if (inPlace != InPlaceSpec::True) {
// Since insert_slice arise from tiling and introducing loops, this
// case is generally a deal breaker. When used with loops, this ends up
// cloning the whole tensor on every single iteration and is a symptom
// of a catastrophically bad scheduling decision.
// TODO: be very loud about it or even consider failing the pass.
// Alloc a copy for `insertSliceOp.dest()`, it will become the result
// buffer.
Value newDstMemref = createNewAllocDeallocPairForShapedValue(
b, loc, insertSliceOp.dest(), aliasInfo);
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(insertSliceOp);
b.create<CopyOp>(insertSliceOp.getLoc(), dstMemref, newDstMemref);
dstMemref = newDstMemref;
}
auto dstMemrefType = dstMemref.getType().cast<MemRefType>();
Value srcMemref = lookup(bvm, insertSliceOp.source());
if (!srcMemref)
return failure();
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
insertSliceOp.getSourceType().getRank(), dstMemrefType,
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides())
.cast<MemRefType>();
// A copy of the source buffer is needed if either:
// - The producer of `source` is not inplace. This is the case where a
// slice is computed out of place into the inplace full tensor.
// - The result is not inplace. This is the case where the whole tensor is
// cloned and the clone needs to be updated.
if (!aliasInfo.isSourceEquivalentToAMatchingInplaceExtractSliceOp(
insertSliceOp) ||
inPlace != InPlaceSpec::True) {
LDBG("insert_slice needs extra source copy: " << insertSliceOp.source()
<< " -> copy\n");
// Take a subview of the dst.
Value subView = b.create<memref::SubViewOp>(
loc, subviewMemRefType, dstMemref, insertSliceOp.getMixedOffsets(),
insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides());
// Insert new alias.
aliasInfo.insertNewBufferAlias(subView, dstMemref);
b.create<CopyOp>(insertSliceOp.getLoc(), srcMemref, subView);
}
map(bvm, insertSliceOp.result(), dstMemref);
return success();
}
static LogicalResult bufferize(OpBuilder &b, VectorTransferOpInterface op,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
if (op.getShapedType().isa<MemRefType>())
return failure();
/// transfer_read from buffer always reads from the bufferized
/// op.source().
if (auto readOp = dyn_cast<vector::TransferReadOp>(op.getOperation())) {
Value v = lookup(bvm, op.source());
assert(v && "missing buffer");
readOp.sourceMutable().assign(v);
return success();
}
auto inPlace = getInPlace(op->getResult(0));
auto writeOp = cast<vector::TransferWriteOp>(op.getOperation());
// If transfer_write is not inPlace, allocate a new buffer.
Value newInputBuffer;
Location loc = op.getLoc();
if (inPlace != InPlaceSpec::True) {
// Alloc a copy for `writeOp.source()`, it will become the result buffer.
newInputBuffer = createNewAllocDeallocPairForShapedValue(
b, loc, writeOp.source(), aliasInfo);
Value v = lookup(bvm, writeOp.source());
if (!isInitTensorOp(writeOp.source())) {
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(op);
b.create<CopyOp>(loc, v, newInputBuffer);
}
} else {
// InPlace write will result in memref.tensor_load(x) which must
// canonicalize away with one of it uses.
newInputBuffer = lookup(bvm, writeOp.source());
assert(newInputBuffer && "missing buffer");
}
// Create a new transfer_write on buffer that doesn't have a return value.
// Leave the previous transfer_write to dead code as it still has uses at
// this point.
b.create<vector::TransferWriteOp>(
loc, writeOp.vector(), newInputBuffer, writeOp.indices(),
writeOp.permutation_map(),
writeOp.in_bounds() ? *writeOp.in_bounds() : ArrayAttr());
map(bvm, op->getResult(0), newInputBuffer);
return success();
}
static LogicalResult bufferize(OpBuilder &b, scf::YieldOp yieldOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Cannot create IR past a yieldOp.
b.setInsertionPoint(yieldOp);
if (auto execOp = dyn_cast<scf::ExecuteRegionOp>(yieldOp->getParentOp())) {
if (execOp->getNumResults() != 0)
return execOp->emitError(
"expected result-less scf.execute_region containing op");
return success();
}
scf::ForOp forOp = dyn_cast<scf::ForOp>(yieldOp->getParentOp());
if (!forOp)
return yieldOp->emitError("expected scf::ForOp parent for scf::YieldOp");
for (OpOperand &operand : yieldOp->getOpOperands()) {
auto tensorType = operand.get().getType().dyn_cast<TensorType>();
if (!tensorType)
continue;
OpOperand &forOperand = forOp.getOpOperandForResult(
forOp->getResult(operand.getOperandNumber()));
auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
Value yieldedBuffer = lookup(bvm, operand.get());
Value bbArgBuffer = lookup(bvm, bbArg);
if (!aliasInfo.areEquivalentBufferizedValues(yieldedBuffer, bbArgBuffer)) {
// TODO: this could get resolved with copies but it can also turn into
// swaps so we need to be careful about order of copies.
return yieldOp->emitError()
<< "Yield operand #" << operand.getOperandNumber()
<< " does not bufferize to an equivalent buffer to the matching"
<< " enclosing scf::for operand";
}
// Buffers are equivalent so the work is already done and we just yield the
// bbArg so that it later canonicalizes away.
operand.set(bbArg);
}
return success();
}
/// Bufferization for linalg::YieldOp either does not involve tensors or just
/// results in later canonicalization. In either case it does nothing.
static LogicalResult bufferize(OpBuilder &b, linalg::YieldOp yieldOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Cannot create IR past a yieldOp.
b.setInsertionPoint(yieldOp);
// No tensors -> success.
if (!llvm::any_of(yieldOp.getOperandTypes(), isaTensor))
return success();
// linalg::YieldOp nested under TiledLoop must just canonicalize.
if (yieldOp->getParentOfType<TiledLoopOp>())
return success();
llvm_unreachable("unexpected yieldOp");
}
/// Bufferization for tensor::ExtractOp just translate to memref.load, it only
/// reads the tensor.
static LogicalResult bufferize(OpBuilder &b, tensor::ExtractOp extractOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(extractOp);
Location loc = extractOp.getLoc();
Value srcMemref = lookup(bvm, extractOp.tensor());
Value l = b.create<memref::LoadOp>(loc, srcMemref, extractOp.indices());
extractOp.replaceAllUsesWith(l);
return success();
}
//===----------------------------------------------------------------------===//
// Bufferization analyses.
//===----------------------------------------------------------------------===//
///
/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace.
/// ===========================================================
///
/// When bufferized out of place, a ExtractSlice lowers to alloc + copy. This
/// cannot change the flow of information for either the source or the
/// result buffers.
///
/// When bufferized inplace, a ExtractSliceOp does not by itself create any read
/// or write from memory. Instead, it has the effect of merging the alias sets
/// of the source and the result buffers.
///
/// An analysis is required to ensure inplace bufferization would not result in
/// RaW dependence violations.
static LogicalResult
bufferizableInPlaceAnalysis(ExtractSliceOp extractSliceOp,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
LDBG('\n');
LDBG("Inplace analysis for extract_slice: "
<< printOperationInfo(extractSliceOp) << '\n');
// If `extractSliceOp` were to be bufferized inplace, it cannot end up
// aliasing a write into a non-writable buffer.
bool wouldCreateAliasingWriteToNonWritableBuffer =
aliasInfo.aliasesInPlaceWrite(extractSliceOp.result()) &&
aliasInfo.aliasesNonWritableBuffer(extractSliceOp->getOpOperand(0));
if (wouldCreateAliasingWriteToNonWritableBuffer)
LDBG("->the corresponding buffer is not writable\n");
else
LDBG("->bufferizes to writable inplace buffer\n");
// In any of extractSliceOp.result's aliases, can we find 2 such that we hit
// an interfering write?
OpResult r = extractSliceOp->getResult(0);
OpOperand &s = extractSliceOp->getOpOperand(0);
bool foundInterference =
wouldCreateAliasingWriteToNonWritableBuffer ||
aliasInfo.wouldCreateReadAfterWriteInterference(r, domInfo);
if (foundInterference)
aliasInfo.bufferizeOutOfPlace(r);
else
aliasInfo.bufferizeInPlace(r, s);
LDBG("Done inplace analysis for extract_slice\n");
return success();
}
/// Determine if `operand` can be bufferized in-place with one of the op's
/// results. If so, set InPlaceSpec::True on the result. Otherwise, set
/// InPlaceSpec::False on the result.
static LogicalResult
bufferizableInPlaceAnalysis(OpOperand &operand,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
OpResult result = getInplaceableOpResult(operand);
if (!result)
return success();
Operation *op = result.getDefiningOp();
assert(result && !isa<ExtractSliceOp>(op) &&
"expected OpResult not coming from a ExtractSliceOp");
(void)op;
int64_t resultNumber = result.getResultNumber();
(void)resultNumber;
LDBG('\n');
LDBG("Inplace analysis for <- #" << resultNumber << " -> #"
<< operand.getOperandNumber() << " in "
<< printValueInfo(result) << '\n');
// `result` must bufferize to a writable buffer to be a candidate.
// This means the operand must not alias either:
// 1. a function bbArg that is not inplaceable or
// 2. a constant op.
// to be considered for inplace bufferization
bool wouldCreateAliasingWriteToNonWritableBuffer =
aliasInfo.aliasesNonWritableBuffer(operand);
if (wouldCreateAliasingWriteToNonWritableBuffer)
LDBG("->the corresponding buffer is not writable\n");
else
LDBG("->bufferizes to writable inplace buffer\n");
bool foundInterference =
wouldCreateAliasingWriteToNonWritableBuffer ||
aliasInfo.wouldCreateReadAfterWriteInterference(result, domInfo);
if (foundInterference)
aliasInfo.bufferizeOutOfPlace(result);
else
// TODO: Atm, all inplace bufferizations yield equivalent tensors. Support
// more cases on a per-need basis.
aliasInfo.bufferizeInPlace(result, operand);
LDBG("Done inplace analysis for result #" << resultNumber << '\n');
return success();
}
/// Analyze the `ops` to determine which OpResults are inplaceable:
/// 1. First, analyze InsertSliceOp greedily: we almost never want to
/// bufferize the tensor "inserted into" to become out-of-place.
/// 2. Walk the other ops in reverse. This is a good starter heuristic.
/// ExtractSliceOps are interleaved with other ops in traversal order.
///
LogicalResult mlir::linalg::inPlaceAnalysis(SmallVector<Operation *> &ops,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
// Walk ops in reverse for better interference analysis.
for (Operation *op : reverse(ops)) {
for (OpOperand &opOperand : op->getOpOperands())
if (failed(bufferizableInPlaceAnalysis(opOperand, aliasInfo, domInfo)))
return failure();
// Special logic to analyze ExtractSliceOp.
// Note that ExtractSliceOp analysis needs to be interleaved with other ops
// to properly capture aliases.
// Walk ExtractSliceOps in reverse for better clobbering analysis behavior:
// it is easier to detect clobbers of smaller slices before larger ones.
if (auto extractSliceOp = dyn_cast<ExtractSliceOp>(op)) {
if (failed(
bufferizableInPlaceAnalysis(extractSliceOp, aliasInfo, domInfo)))
return failure();
continue;
}
}
return success();
}
/// Analyze the `funcOp` body to determine which OpResults are inplaceable.
static LogicalResult
inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
assert(funcOp && funcOp->getNumRegions() > 0 && !funcOp.body().empty() &&
"expected a funcOp definition with a body");
// Collect ops so we can build our own reverse traversal.
SmallVector<Operation *> ops;
funcOp.walk([&](Operation *op) {
// No tensors => no buffers.
if (none_of(op->getOperandTypes(), isaTensor) &&
none_of(op->getResultTypes(), isaTensor))
return;
ops.push_back(op);
});
// Set the function arguments marked with inplaceable to be known as
// bufferizing to a writeable memory.
for (BlockArgument bbArg : funcOp.getArguments()) {
BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
bbArg.getArgNumber(), LinalgDialect::kInplaceableAttrName);
if (inplaceAttr && inplaceAttr.getValue())
aliasInfo.setBufferizesToWritableMemory(bbArg);
}
LogicalResult res = inPlaceAnalysis(ops, aliasInfo, domInfo);
LDBG("End InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
return res;
}
//===----------------------------------------------------------------------===//
// Bufferization entry-point for functions.
//===----------------------------------------------------------------------===//
LogicalResult mlir::linalg::bufferizeOp(
Operation *op, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> *bufferizedFunctionTypes,
GlobalCreator *globalCreator) {
OpBuilder b(op->getContext());
return TypeSwitch<Operation *, LogicalResult>(op)
// Skip BufferCast and TensorLoad ops.
.Case<memref::BufferCastOp, memref::TensorLoadOp>(
[&](auto) { return success(); })
.Case<tensor::CastOp, tensor::DimOp, ExtractSliceOp, scf::ForOp,
InitTensorOp, InsertSliceOp, tensor::ExtractOp, LinalgOp, ReturnOp,
TiledLoopOp, VectorTransferOpInterface, linalg::YieldOp,
scf::YieldOp>([&](auto op) {
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo);
})
.Case([&](CallOpInterface op) {
LDBG("Begin bufferize:\n" << op << '\n');
if (!bufferizedFunctionTypes)
llvm_unreachable(
"null bufferizedFunctionTypes when bufferizing CallOpInterface");
return bufferize(b, op, bvm, aliasInfo, *bufferizedFunctionTypes);
})
.Case([&](ConstantOp op) {
if (!isaTensor(op.getResult().getType()))
return success();
LDBG("Begin bufferize:\n" << op << '\n');
if (!globalCreator)
llvm_unreachable("null globalCreator when bufferizing ConstantOp");
return bufferize(b, op, bvm, aliasInfo, *globalCreator);
})
.Default([&](Operation *op) -> LogicalResult {
auto isaTensor = [](Type t) { return t.isa<TensorType>(); };
if (any_of(op->getOperandTypes(), isaTensor) ||
any_of(op->getResultTypes(), isaTensor))
return op->emitError() << "unsupported op with tensors";
return success();
});
}
static LogicalResult bufferizeFuncOpInternals(
FuncOp funcOp, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes,
GlobalCreator &globalCreator) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin BufferizeFuncOpInternals:\n" << funcOp << '\n');
OpBuilder b(funcOp->getContext());
/// Start by bufferizing `funcOp` arguments.
if (failed(bufferize(b, funcOp, bvm, aliasInfo)))
return failure();
// Walk in PreOrder to ensure ops with regions are handled before their body.
// Since walk has to be PreOrder, we need to erase ops that require it
// separately: this is the case for CallOp
SmallVector<Operation *> toErase;
if (funcOp
.walk<WalkOrder::PreOrder>([&](Operation *op) -> WalkResult {
if (failed(bufferizeOp(op, bvm, aliasInfo, &bufferizedFunctionTypes,
&globalCreator)))
return failure();
// Register post-walk erasure, if necessary.
if (isa<CallOpInterface>(op))
if (llvm::any_of(op->getOperandTypes(), isaTensor) ||
llvm::any_of(op->getResultTypes(), isaTensor))
toErase.push_back(op);
return success();
})
.wasInterrupted())
return failure();
LDBG("End BufferizeFuncOpInternals:\n" << funcOp << '\n');
for (Operation *op : toErase)
op->erase();
return success();
}
//===----------------------------------------------------------------------===//
// Bufferization entry-point for modules.
//===----------------------------------------------------------------------===//
/// Return the op with Allocate MemoryEffect if `v` is equivalent to such an
/// an op. Return null otherwise.
static Operation *getEquivalentAlloc(Value value,
const BufferizationAliasInfo &aliasInfo) {
Operation *res = nullptr;
aliasInfo.applyOnEquivalenceClass(value, [&](Value v) {
if (!res)
if (auto interface =
dyn_cast_or_null<MemoryEffectOpInterface>(v.getDefiningOp()))
if (auto effect =
interface.getEffectOnValue<MemoryEffects::Allocate>(v))
res = v.getDefiningOp();
});
return res;
}
/// Return the first argument of the enclosing FuncOp that is equivalent to `v`.
/// Return null if no such bbArg can be found.
static BlockArgument
getEquivalentEnclosingFuncBBArg(Value v,
const BufferizationAliasInfo &aliasInfo) {
if (!v.getType().isa<RankedTensorType>())
return nullptr;
Operation *op = v.getParentBlock()->getParentOp();
FuncOp funcOp = dyn_cast<FuncOp>(op);
if (!funcOp)
funcOp = op->getParentOfType<FuncOp>();
assert(funcOp && "expected non-null FuncOp");
for (BlockArgument bbArg : funcOp.getArguments()) {
if (!bbArg.getType().isa<RankedTensorType>())
continue;
if (aliasInfo.areEquivalentBufferizedValues(v, bbArg))
return bbArg;
}
return nullptr;
}
/// Rewrite the `funcOp` arguments analysis return values and terminator into
/// buffer form (using the canonical memref layout for now), according to the
/// inPlace-bufferizable information of the function arguments.
/// This relies on a buffer equivalence analysis of each return operand. When a
/// result buffer is equivalent to:
/// 1. a BlockArgument of `funcOp`, it can be dropped from the return values
/// and becomes inplaceable at all callers. This assumes all CallOp perform
/// the necessary work to clone operands so as to make them inplaceable.
// Reliance on this logic will need to be relaxed in thefuture.
/// 2. an op with an Alloc effect, this currently fails bufferization but is a
/// candidate for hoisting and creating a new inplace operand at all caller
/// sites.
/// 3. if such a hoisting for 2. is not possible (e.g. data-dependent that
/// prevents hoisting), this is currently unsupported and will require a
/// refcounted buffer type.
static LogicalResult bufferizeFuncOpBoundary(
FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
LLVM_DEBUG(DBGS() << "Begin bufferizeFuncOpBoundary:\n" << funcOp << "\n");
// If nothing to do then we are done.
if (!llvm::any_of(funcOp.getType().getInputs(), isaTensor) &&
!llvm::any_of(funcOp.getType().getResults(), isaTensor))
return success();
// Get the bufferized FunctionType for funcOp or construct it if not yet
// available.
// TODO: Atm we have 3 cases:
// 1. if a function is called from within the Module, it must have bufferized
// to inplaceable tensor results.
// 2. if it is bodiless, it must have bufferized and is not allowed to have
// result tensors.
// 3. if it is not called internally, it still must bufferize to inplaceable
// tensor results and we construct it now (e.g. top-level function called
// externally).
// -> Figure out a better layering.
TypeRange resultTypes;
// Corner case: Bodiless FuncOp
// ============================
// The body of such functions is assumed opaque and we can't know the
// bufferization contract they want to enforce atm.
// As a consequence, only support functions that don't return any tensor atm.
if (funcOp.getBody().empty()) {
if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
return funcOp->emitError() << "cannot bufferize bodiless function that "
<< "returns a tensor";
FunctionType bufferizedFuncType =
getOrCreateBufferizedFunctionType(funcOp, funcOp.getType().getInputs(),
TypeRange{}, bufferizedFunctionTypes);
funcOp.setType(bufferizedFuncType);
LLVM_DEBUG(DBGS() << "End bufferizeFuncOpBoundary no fun body: " << funcOp);
return success();
}
// Support only single return-terminated block in the function.
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
// 1. For each FuncOp result, keep track of which inplace argument it reuses.
SmallVector<Value> returnValues;
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
// If not a renturn tensor type just forward it.
if (!returnOperand.get().getType().isa<RankedTensorType>()) {
returnValues.push_back(returnOperand.get());
continue;
}
// If return operand is equivalent to some bbArg, no need to return it.
Value returnVal = returnOperand.get();
if (getEquivalentEnclosingFuncBBArg(returnVal, aliasInfo))
continue;
// TODO: Need to hoist above function boundary.
if (Operation *allocOp = getEquivalentAlloc(returnVal, aliasInfo)) {
returnValues.push_back(allocOp->getResult(0));
continue;
}
// Other cases legitimately need to return a tensor, this is currently not
// supported. For instance, if hoisting across function boundary has
// failed, it may be due to e.g. data-dependent sizes. In such a case, we
// would need a better type than memref.
int64_t returnIdx = returnOperand.getOperandNumber();
return returnOp->emitError()
<< "buffer result #" << returnIdx << " not produced by an alloc\n";
}
// 2. Rewrite the terminator without the inPlace bufferizable values.
ValueRange retValues{returnValues};
FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
funcOp, funcOp.getType().getInputs(), retValues.getTypes(),
bufferizedFunctionTypes);
OpBuilder b(returnOp);
b.create<ReturnOp>(returnOp.getLoc(), returnValues);
returnOp->erase();
// 3. Rewrite the bbArgs.
// Iterate on the original `numArgs` and replace them in order.
// This guarantees the argument order still matches after the rewrite.
Block &frontBlock = funcOp.body().front();
unsigned numArgs = frontBlock.getNumArguments();
for (unsigned idx = 0; idx < numArgs; ++idx) {
auto bbArg = frontBlock.getArgument(0);
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
// Non-tensor types are just forwarded.
if (!tensorType) {
frontBlock.addArgument(bbArg.getType());
bbArg.replaceAllUsesWith(frontBlock.getArguments().back());
frontBlock.eraseArgument(0);
continue;
}
// Get the buffer type from the bufferized function type.
Type memrefType = bufferizedFuncType.getInput(idx);
Value memref = frontBlock.addArgument(memrefType);
OpBuilder b(funcOp->getContext());
b.setInsertionPointToStart(&frontBlock);
// Replace all uses of bbArg through a BufferCastOp by a memref::CastOp.
for (auto &use : llvm::make_early_inc_range(bbArg.getUses())) {
if (auto bufferCastOp = dyn_cast<memref::BufferCastOp>(use.getOwner())) {
auto castOp = b.create<memref::CastOp>(
funcOp.getLoc(), bufferCastOp.memref().getType(), memref);
bufferCastOp.memref().replaceAllUsesWith(castOp);
aliasInfo.insertNewBufferEquivalence(castOp.dest(),
bufferCastOp.memref());
}
}
// Replace all remaining uses by a tensor_load.
if (!bbArg.use_empty()) {
auto tensorLoadOp =
b.create<memref::TensorLoadOp>(funcOp.getLoc(), memref);
aliasInfo.insertNewBufferEquivalence(tensorLoadOp, bbArg);
bbArg.replaceAllUsesWith(tensorLoadOp);
}
frontBlock.eraseArgument(0);
// TODO: add support to erase aliasInfo entries if deemed necessary.
}
// 4. Rewrite the FuncOp type to buffer form.
funcOp.setType(bufferizedFuncType);
LLVM_DEBUG(DBGS() << "End bufferizeFuncOpBoundary:\n" << funcOp);
return success();
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
/// Return `failure()` if a cycle of calls is detected or if we are unable to
/// retrieve the called FuncOp from any CallOpInterface.
static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
SmallVectorImpl<FuncOp> &orderedFuncOps,
DenseMap<FuncOp, DenseSet<Operation *>> &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested CallOpInterfaceOp).
DenseMap<FuncOp, DenseSet<FuncOp>> calledBy;
// For each FuncOp, the number of CallOpInterface it contains.
DenseMap<FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](FuncOp funcOp) -> WalkResult {
if (!funcOp.body().empty()) {
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
// Only support CallOp for now.
if (!isa<CallOp>(callOp.getOperation()))
return callOp->emitError() << "expected a CallOp";
FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called FuncOp");
auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
it.first->getSecond().insert(callOp);
if (calledBy[calledFunction].count(funcOp) == 0) {
calledBy[calledFunction].insert(funcOp);
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
return moduleOp.emitOpError(
"expected callgraph to be free of circular dependencies.");
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
return success();
}
namespace {
struct LinalgComprehensiveModuleBufferize
: public LinalgComprehensiveModuleBufferizeBase<
LinalgComprehensiveModuleBufferize> {
void runOnOperation() override;
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<linalg::LinalgDialect, memref::MemRefDialect>();
}
};
} // end namespace
static void applyEnablingTransformations(ModuleOp moduleOp) {
RewritePatternSet patterns(moduleOp.getContext());
patterns.add<GeneralizePadTensorOpPattern>(moduleOp.getContext());
(void)applyPatternsAndFoldGreedily(moduleOp, std::move(patterns));
}
static void
foreachCaller(const DenseMap<FuncOp, DenseSet<Operation *>> &callerMap,
FuncOp callee, llvm::function_ref<void(Operation *)> doit) {
auto itCallers = callerMap.find(callee);
if (itCallers == callerMap.end())
return;
for (Operation *caller : itCallers->second)
doit(caller);
}
/// Postprocess the linalg.buffer_layout annotation across function boundaries.
/// This is a purely mechanical process that may later become part of a
/// separate pass with its own layout assignment heuristic.
static void layoutPostProcessing(ModuleOp moduleOp) {
SmallVector<FuncOp> orderedFuncOps;
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
auto res = getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap);
(void)res;
assert(succeeded(res) && "unexpected getFuncOpsOrderedByCalls failure");
for (FuncOp funcOp : orderedFuncOps) {
DenseMap<Operation *, SmallVector<Value>> operandsPerCaller;
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
operandsPerCaller.try_emplace(caller, SmallVector<Value>());
});
SmallVector<Type> argumentTypes;
// Iterate on each function argument and check it it was marked with a
// desired layout.
for (auto it : llvm::enumerate(funcOp.getType().getInputs())) {
int argNumber = it.index();
Type inputType = it.value();
auto memrefType = inputType.dyn_cast<MemRefType>();
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
argNumber, LinalgDialect::kBufferLayoutAttrName);
AffineMap desiredLayoutMap =
layoutAttr ? layoutAttr.getValue() : AffineMap();
AffineMap currentLayoutMap =
memrefType ? getStridedLinearLayoutMap(memrefType) : AffineMap();
if (!memrefType || !layoutAttr || desiredLayoutMap == currentLayoutMap) {
argumentTypes.push_back(inputType);
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
operandsPerCaller.find(caller)->getSecond().push_back(
caller->getOperand(argNumber));
});
continue;
}
// Compute the buffer type with desired layout and add to input argument
// types.
MemRefType desiredMemrefType = MemRefType::get(
memrefType.getShape(), memrefType.getElementType(), desiredLayoutMap);
argumentTypes.push_back(desiredMemrefType);
// If funcOp's body is not empty, change the bbArg type and propagate.
if (!funcOp.body().empty()) {
BlockArgument bbArg = funcOp.getArgument(argNumber);
bbArg.setType(desiredMemrefType);
OpBuilder b(bbArg.getContext());
b.setInsertionPointToStart(bbArg.getOwner());
// Cast back to the original memrefType and let it canonicalize.
Value cast =
b.create<memref::CastOp>(funcOp.getLoc(), memrefType, bbArg);
bbArg.replaceAllUsesExcept(cast, cast.getDefiningOp());
}
// Cast to desired buffer type on all callers to `funcOp`.
// TODO: on the callee side, this may even have to trigger a copy to
// change the layout. For now let the memref::CastOp fail to verify in
// such cases.
auto castArg = [&](Operation *caller) {
OpBuilder b(caller);
Value newOperand = b.create<memref::CastOp>(
funcOp.getLoc(), desiredMemrefType, caller->getOperand(argNumber));
operandsPerCaller.find(caller)->getSecond().push_back(newOperand);
};
foreachCaller(callerMap, funcOp, castArg);
}
// Set operands with cast buffer on all callers to `funcOp`.
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
caller->setOperands(operandsPerCaller.lookup(caller));
});
// Finally set the funcOp type to update the arguments.
auto newFuncType = FunctionType::get(moduleOp.getContext(), argumentTypes,
funcOp.getType().getResults());
funcOp.setType(newFuncType);
}
}
void LinalgComprehensiveModuleBufferize::runOnOperation() {
ModuleOp moduleOp = getOperation();
applyEnablingTransformations(moduleOp);
SmallVector<FuncOp> orderedFuncOps;
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
DenseMap<FuncOp, FunctionType> bufferizedFunctionTypes;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return signalPassFailure();
GlobalCreator globalCreator(moduleOp);
DominanceInfo domInfo(moduleOp);
BufferizationAliasInfo aliasInfo(moduleOp);
// Interestingly, all function args that are not visible outside of a module
// can be fully bufferized inplace by guaranteeing the CallOp is bufferized
// inplace. Therefore, we just bufferize funcOp as if none of its results were
// inplaceable, detect which operands are cloned internally and decide what to
// do at call sites.
for (FuncOp funcOp : orderedFuncOps) {
// No body => no analysis.
if (funcOp.body().empty())
continue;
// In a first approximation:
// =========================
// If the function is called, we can allocate on the caller side which lets
// us force inplace arguments at function boundaries.
// TODO: do not rely on this behavior.
if (callerMap.find(funcOp) != callerMap.end())
for (BlockArgument bbArg : funcOp.getArguments())
if (bbArg.getType().isa<TensorType>())
setInPlaceFuncArgument(bbArg);
// If the analysis fails, just return.
if (failed(inPlaceAnalysisFuncOpBody(funcOp, aliasInfo, domInfo))) {
signalPassFailure();
return;
}
// Bufferization phase.
if (!testAnalysisOnly) {
BlockAndValueMapping tensorToBufferMap;
if (failed(bufferizeFuncOpInternals(funcOp, tensorToBufferMap, aliasInfo,
bufferizedFunctionTypes,
globalCreator))) {
signalPassFailure();
return;
}
}
}
// Don't drop the attributes if we only want to report the analysis.
if (testAnalysisOnly)
return;
for (FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
if (failed(bufferizeFuncOpBoundary(funcOp, aliasInfo,
bufferizedFunctionTypes))) {
signalPassFailure();
return;
}
if (!allowReturnMemref &&
llvm::any_of(funcOp.getType().getResults(), [](Type t) {
return t.isa<MemRefType, UnrankedMemRefType>();
})) {
funcOp->emitError("memref return type is unsupported");
signalPassFailure();
return;
}
}
// Perform a post-processing pass of layout modification at function boundary
// according to the kBufferLayoutAttrName.
layoutPostProcessing(moduleOp);
// Post-pass cleanup of inplaceable and buffer_layout attributes.
moduleOp.walk(
[&](Operation *op) { op->removeAttr(kInPlaceResultsAttrName); });
moduleOp.walk([&](FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationFuncArguments(bbArg);
});
OpPassManager cleanupPipeline("builtin.module");
cleanupPipeline.addPass(createCanonicalizerPass());
cleanupPipeline.addPass(createCSEPass());
cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
(void)runPipeline(cleanupPipeline, moduleOp);
}
std::unique_ptr<Pass> mlir::createLinalgComprehensiveModuleBufferizePass() {
return std::make_unique<LinalgComprehensiveModuleBufferize>();
}