llvm-project/clang/AST/CFG.cpp

528 lines
16 KiB
C++
Raw Normal View History

//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CFG and CFGBuilder classes for representing and
// building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/ADT/DenseMap.h"
#include <iostream>
#include <iomanip>
#include <algorithm>
using namespace clang;
namespace {
// SaveAndRestore - A utility class that uses RIIA to save and restore
// the value of a variable.
template<typename T>
struct SaveAndRestore {
SaveAndRestore(T& x) : X(x), old_value(x) {}
~SaveAndRestore() { X = old_value; }
T& X;
T old_value;
};
}
/// CFGBuilder - This class is implements CFG construction from an AST.
/// The builder is stateful: an instance of the builder should be used to only
/// construct a single CFG.
///
/// Example usage:
///
/// CFGBuilder builder;
/// CFG* cfg = builder.BuildAST(stmt1);
///
/// CFG construction is done via a recursive walk of an AST.
/// We actually parse the AST in reverse order so that the successor
/// of a basic block is constructed prior to its predecessor. This
/// allows us to nicely capture implicit fall-throughs without extra
/// basic blocks.
///
class CFGBuilder : public StmtVisitor<CFGBuilder,CFGBlock*> {
CFG* cfg;
CFGBlock* Block;
CFGBlock* Exit;
CFGBlock* Succ;
unsigned NumBlocks;
typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
LabelMapTy LabelMap;
typedef std::vector<CFGBlock*> BackpatchBlocksTy;
BackpatchBlocksTy BackpatchBlocks;
public:
explicit CFGBuilder() : cfg(NULL), Block(NULL), Exit(NULL), Succ(NULL),
NumBlocks(0) {
// Create an empty CFG.
cfg = new CFG();
}
~CFGBuilder() { delete cfg; }
/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can
/// represent an arbitrary statement. Examples include a single expression
/// or a function body (compound statement). The ownership of the returned
/// CFG is transferred to the caller. If CFG construction fails, this method
/// returns NULL.
CFG* BuildCFG(Stmt* Statement) {
if (!Statement) return NULL;
assert (!Exit && "CFGBuilder should only be used to construct one CFG");
// Create the exit block.
Block = createBlock();
Exit = Block;
// Visit the statements and create the CFG.
if (CFGBlock* B = Visit(Statement)) {
// Finalize the last constructed block. This usually involves
// reversing the order of the statements in the block.
FinishBlock(B);
cfg->setEntry(B);
// Backpatch the gotos whose label -> block mappings we didn't know
// when we encountered them.
for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
E = BackpatchBlocks.end(); I != E; ++I ) {
CFGBlock* B = *I;
GotoStmt* G = cast<GotoStmt>(B->getTerminator());
LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
if (LI == LabelMap.end())
return NULL; // No matching label. Bad CFG.
B->addSuccessor(LI->second);
}
// NULL out cfg so that repeated calls
CFG* t = cfg;
cfg = NULL;
return t;
}
else return NULL;
}
// createBlock - Used to lazily create blocks that are connected
// to the current (global) succcessor.
CFGBlock* createBlock( bool add_successor = true ) {
CFGBlock* B = cfg->createBlock(NumBlocks++);
if (add_successor && Succ) B->addSuccessor(Succ);
return B;
}
// FinishBlock - When the last statement has been added to the block,
// usually we must reverse the statements because they have been inserted
// in reverse order. When processing labels, however, there are cases
// in the recursion where we may have already reversed the statements
// in a block. This method safely tidies up a block: if the block
// has a label at the front, it has already been reversed. Otherwise,
// we reverse it.
void FinishBlock(CFGBlock* B) {
assert (B);
CFGBlock::iterator I = B->begin();
if (I != B->end()) {
Stmt* S = *I;
if (S->getStmtClass() != Stmt::LabelStmtClass)
B->reverseStmts();
}
}
/// Here we handle statements with no branching control flow.
CFGBlock* VisitStmt(Stmt* Statement) {
// We cannot assume that we are in the middle of a basic block, since
// the CFG might only be constructed for this single statement. If
// we have no current basic block, just create one lazily.
if (!Block) Block = createBlock();
// Simply add the statement to the current block. We actually
// insert statements in reverse order; this order is reversed later
// when processing the containing element in the AST.
Block->appendStmt(Statement);
return Block;
}
CFGBlock* VisitNullStmt(NullStmt* Statement) {
return Block;
}
CFGBlock* VisitCompoundStmt(CompoundStmt* C) {
// The value returned from this function is the last created CFGBlock
// that represents the "entry" point for the translated AST node.
CFGBlock* LastBlock;
for (CompoundStmt::reverse_body_iterator I = C->body_rbegin(),
E = C->body_rend(); I != E; ++I )
// Add the statement to the current block.
if (!(LastBlock=Visit(*I)))
return NULL;
return LastBlock;
}
CFGBlock* VisitIfStmt(IfStmt* I) {
// We may see an if statement in the middle of a basic block, or
// it may be the first statement we are processing. In either case,
// we create a new basic block. First, we create the blocks for
// the then...else statements, and then we create the block containing
// the if statement. If we were in the middle of a block, we
// stop processing that block and reverse its statements. That block
// is then the implicit successor for the "then" and "else" clauses.
// The block we were proccessing is now finished. Make it the
// successor block.
if (Block) {
Succ = Block;
FinishBlock(Block);
}
// Process the false branch. NULL out Block so that the recursive
// call to Visit will create a new basic block.
// Null out Block so that all successor
CFGBlock* ElseBlock = Succ;
if (Stmt* Else = I->getElse()) {
SaveAndRestore<CFGBlock*> sv(Succ);
// NULL out Block so that the recursive call to Visit will
// create a new basic block.
Block = NULL;
ElseBlock = Visit(Else);
if (!ElseBlock) return NULL;
FinishBlock(ElseBlock);
}
// Process the true branch. NULL out Block so that the recursive
// call to Visit will create a new basic block.
// Null out Block so that all successor
CFGBlock* ThenBlock;
{
Stmt* Then = I->getThen();
assert (Then);
SaveAndRestore<CFGBlock*> sv(Succ);
Block = NULL;
ThenBlock = Visit(Then);
if (!ThenBlock) return NULL;
FinishBlock(ThenBlock);
}
// Now create a new block containing the if statement.
Block = createBlock(false);
// Add the condition as the last statement in the new block.
Block->appendStmt(I->getCond());
// Set the terminator of the new block to the If statement.
Block->setTerminator(I);
// Now add the successors.
Block->addSuccessor(ThenBlock);
Block->addSuccessor(ElseBlock);
return Block;
}
CFGBlock* VisitReturnStmt(ReturnStmt* R) {
// If we were in the middle of a block we stop processing that block
// and reverse its statements.
//
// NOTE: If a "return" appears in the middle of a block, this means
// that the code afterwards is DEAD (unreachable). We still
// keep a basic block for that code; a simple "mark-and-sweep"
// from the entry block will be able to report such dead
// blocks.
if (Block) FinishBlock(Block);
// Create the new block.
Block = createBlock(false);
// The Exit block is the only successor.
Block->addSuccessor(Exit);
// Add the return expression to the block.
Block->appendStmt(R);
// Add the return statement itself to the block.
if (R->getRetValue()) Block->appendStmt(R->getRetValue());
return Block;
}
CFGBlock* VisitLabelStmt(LabelStmt* L) {
// Get the block of the labeled statement. Add it to our map.
CFGBlock* LabelBlock = Visit(L->getSubStmt());
assert (LabelBlock);
assert (LabelMap.find(L) == LabelMap.end() && "label already in map");
LabelMap[ L ] = LabelBlock;
// Labels partition blocks, so this is the end of the basic block
// we were processing (the label is the first statement).
LabelBlock->appendStmt(L);
FinishBlock(LabelBlock);
// We set Block to NULL to allow lazy creation of a new block
// (if necessary);
Block = NULL;
// This block is now the implicit successor of other blocks.
Succ = LabelBlock;
return LabelBlock;
}
CFGBlock* VisitGotoStmt(GotoStmt* G) {
// Goto is a control-flow statement. Thus we stop processing the
// current block and create a new one.
if (Block) FinishBlock(Block);
Block = createBlock(false);
Block->setTerminator(G);
// If we already know the mapping to the label block add the
// successor now.
LabelMapTy::iterator I = LabelMap.find(G->getLabel());
if (I == LabelMap.end())
// We will need to backpatch this block later.
BackpatchBlocks.push_back(Block);
else
Block->addSuccessor(I->second);
return Block;
}
CFGBlock* VisitForStmt(ForStmt* F) {
// For is a control-flow statement. Thus we stop processing the
// current block.
if (Block) FinishBlock(Block);
// Besides the loop body, we actually create two new blocks:
//
// The first contains the initialization statement for the loop.
//
// The second block evaluates the loop condition.
//
// We create the initialization block last, as that will be the block
// we return for the recursion.
CFGBlock* CondBlock = createBlock(false);
if (Stmt* C = F->getCond()) CondBlock->appendStmt(C);
CondBlock->setTerminator(F);
Succ = CondBlock;
// Now create the loop body.
{
assert (F->getBody());
SaveAndRestore<CFGBlock*> sv(Block);
// create a new block to contain the body.
Block = createBlock();
// If we have increment code, insert it at the end of the body block.
if (Stmt* I = F->getInc()) Block->appendStmt(I);
// Now populate the body block, and in the process create new blocks
// as we walk the body of the loop.
CFGBlock* BodyBlock = Visit(F->getBody());
assert (BodyBlock);
FinishBlock(BodyBlock);
// This new body block is a successor to our condition block.
CondBlock->addSuccessor(BodyBlock);
}
// Link up the condition block with the code that follows the loop.
// (the false branch).
CondBlock->addSuccessor(Block);
// Now create the block to contain the initialization.
Succ = CondBlock;
Block = createBlock();
if (Stmt* I = F->getInit()) Block->appendStmt(I);
return Block;
}
CFGBlock* VisitWhileStmt(WhileStmt* W) {
// While is a control-flow statement. Thus we stop processing the
// current block.
if (Block) FinishBlock(Block);
CFGBlock* ConditionBlock = createBlock(false);
ConditionBlock->setTerminator(W);
if (Stmt* C = W->getCond()) ConditionBlock->appendStmt(C);
// Process the loop body.
{
assert (W->getBody());
SaveAndRestore<CFGBlock*> sv(Block);
Succ = ConditionBlock;
Block = NULL;
CFGBlock* BodyBlock = Visit(W->getBody());
assert (BodyBlock);
ConditionBlock->addSuccessor(BodyBlock);
}
ConditionBlock->addSuccessor(Block);
// There can be no more statements in the condition block
// since we loop back to this block. NULL out Block to force
// lazy creation of another block.
Block = NULL;
Succ = ConditionBlock;
return ConditionBlock;
}
};
// BuildCFG - A helper function that builds CFGs from ASTS.
CFG* CFG::BuildCFG(Stmt* Statement) {
CFGBuilder Builder;
return Builder.BuildCFG(Statement);
}
// reverseStmts - A method that reverses the order of the statements within
// a CFGBlock.
void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); }
// dump - A simple pretty printer of a CFG that outputs to stderr.
void CFG::dump() { print(std::cerr); }
// print - A simple pretty printer of a CFG that outputs to an ostream.
void CFG::print(std::ostream& OS) {
// First print out the Entry block, which may not be the first block
// in our list of blocks
if (begin() != end()) {
CFGBlock& Entry = getEntry();
OS << "\n [ B" << Entry.getBlockID() << " (ENTRY) ]\n";
Entry.print(OS);
}
// Iterate through the CFGBlocks and print them one by one. Specially
// designate the Entry and Exit blocks.
for (iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
// Skip the entry block, because we already printed it.
if (&(*I) == &getEntry())
continue;
OS << "\n [ B" << I->getBlockID();
if (&(*I) == &getExit()) OS << " (EXIT) ]\n";
else OS << " ]\n";
I->print(OS);
}
OS << "\n";
}
namespace {
class CFGBlockTerminatorPrint : public StmtVisitor<CFGBlockTerminatorPrint,
void > {
std::ostream& OS;
public:
CFGBlockTerminatorPrint(std::ostream& os) : OS(os) {}
void VisitIfStmt(IfStmt* I) {
OS << "if ";
I->getCond()->printPretty(std::cerr);
OS << "\n";
}
// Default case.
void VisitStmt(Stmt* S) { S->printPretty(OS); }
void VisitForStmt(ForStmt* F) {
OS << "for (" ;
if (Stmt* I = F->getInit()) I->printPretty(OS);
OS << " ; ";
if (Stmt* C = F->getCond()) C->printPretty(OS);
OS << " ; ";
if (Stmt* I = F->getInc()) I->printPretty(OS);
OS << ")\n";
}
void VisitWhileStmt(WhileStmt* W) {
OS << "while " ;
if (Stmt* C = W->getCond()) C->printPretty(OS);
OS << "\n";
}
};
}
// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
void CFGBlock::dump() { print(std::cerr); }
// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
// Generally this will only be called from CFG::print.
void CFGBlock::print(std::ostream& OS) {
// Iterate through the statements in the block and print them.
OS << " ------------------------\n";
unsigned j = 1;
for (iterator I = Stmts.begin(), E = Stmts.end() ; I != E ; ++I, ++j ) {
// Print the statement # in the basic block.
OS << " " << std::setw(3) << j << ": ";
// Print the statement/expression.
Stmt* S = *I;
if (LabelStmt* L = dyn_cast<LabelStmt>(S))
OS << L->getName() << ": (LABEL)\n";
else
(*I)->printPretty(OS);
// Expressions need a newline.
if (isa<Expr>(*I)) OS << '\n';
}
OS << " ------------------------\n";
// Print the predecessors of this block.
OS << " Predecessors (" << pred_size() << "):";
unsigned i = 0;
for (pred_iterator I = pred_begin(), E = pred_end(); I != E; ++I, ++i ) {
if (i == 8 || (i-8) == 0) {
OS << "\n ";
}
OS << " B" << (*I)->getBlockID();
}
// Print the terminator of this block.
OS << "\n Terminator: ";
if (ControlFlowStmt)
CFGBlockTerminatorPrint(OS).Visit(ControlFlowStmt);
else
OS << "<NULL>\n";
// Print the successors of this block.
OS << " Successors (" << succ_size() << "):";
i = 0;
for (succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I, ++i ) {
if (i == 8 || (i-8) % 10 == 0) {
OS << "\n ";
}
OS << " B" << (*I)->getBlockID();
}
OS << '\n';
}