[XRay][compiler-rt] XRay Flight Data Recorder Mode
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 293015
2017-01-25 11:50:46 +08:00
|
|
|
//===-- xray_fdr_logging.h ------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file is a part of XRay, a function call tracing system.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef XRAY_XRAY_FDR_LOGGING_H
|
|
|
|
#define XRAY_XRAY_FDR_LOGGING_H
|
|
|
|
|
|
|
|
#include "xray/xray_log_interface.h"
|
[XRay] [compiler-rt] Refactor logic for xray fdr logging. NFC.
Summary:
Separated the IO and the thread local storage state machine of logging
from the writing of log records once the contents are deterministic.
Finer granularity functions are provided as inline functions in the same
header such that stack does not grow due to the functions being separated.
An executable utility xray_fdr_log_printer is also implemented to use the
finest granularity functions to produce binary test data in the FDR format
with a relatively convenient text input.
For example, one can take a file with textual contents layed out in rows
and feed it to the binary to generate data that llvm-xray convert can then
read. This is a convenient way to build a test suite for llvm-xray convert
to ensure it's robust to the fdr format.
Example:
$cat myFile.txt
NewBuffer : { time = 2 , Tid=5}
NewCPU : { CPU =1 , TSC = 123}
Function : { FuncId = 5, TSCDelta = 3, EntryType = Entry }
Function : { FuncId = 5, TSCDelta = 5, EntryType = Exit}
TSCWrap : { TSC = 678 }
Function : { FuncId = 6, TSCDelta = 0, EntryType = Entry }
Function : { FuncId = 6, TSCDelta = 50, EntryType = Exit }
EOB : { }
$cat myFile.txt | ./bin/xray_fdr_log_printer > /tmp/binarydata.bin
$./bin/llvm-xray convert -output-format=yaml -output=- /tmp/binarydata.bin
yaml format comes out as expected.
Reviewers: dberris, pelikan
Reviewed By: dberris
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D30850
llvm-svn: 297801
2017-03-15 11:12:01 +08:00
|
|
|
#include "xray_fdr_log_records.h"
|
[XRay][compiler-rt] XRay Flight Data Recorder Mode
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 293015
2017-01-25 11:50:46 +08:00
|
|
|
|
|
|
|
// FDR (Flight Data Recorder) Mode
|
|
|
|
// ===============================
|
|
|
|
//
|
|
|
|
// The XRay whitepaper describes a mode of operation for function call trace
|
|
|
|
// logging that involves writing small records into an in-memory circular
|
|
|
|
// buffer, that then gets logged to disk on demand. To do this efficiently and
|
|
|
|
// capture as much data as we can, we use smaller records compared to the
|
|
|
|
// default mode of always writing fixed-size records.
|
|
|
|
|
|
|
|
namespace __xray {
|
2017-02-08 07:35:34 +08:00
|
|
|
XRayLogInitStatus fdrLoggingInit(size_t BufferSize, size_t BufferMax,
|
[XRay] [compiler-rt] Refactor logic for xray fdr logging. NFC.
Summary:
Separated the IO and the thread local storage state machine of logging
from the writing of log records once the contents are deterministic.
Finer granularity functions are provided as inline functions in the same
header such that stack does not grow due to the functions being separated.
An executable utility xray_fdr_log_printer is also implemented to use the
finest granularity functions to produce binary test data in the FDR format
with a relatively convenient text input.
For example, one can take a file with textual contents layed out in rows
and feed it to the binary to generate data that llvm-xray convert can then
read. This is a convenient way to build a test suite for llvm-xray convert
to ensure it's robust to the fdr format.
Example:
$cat myFile.txt
NewBuffer : { time = 2 , Tid=5}
NewCPU : { CPU =1 , TSC = 123}
Function : { FuncId = 5, TSCDelta = 3, EntryType = Entry }
Function : { FuncId = 5, TSCDelta = 5, EntryType = Exit}
TSCWrap : { TSC = 678 }
Function : { FuncId = 6, TSCDelta = 0, EntryType = Entry }
Function : { FuncId = 6, TSCDelta = 50, EntryType = Exit }
EOB : { }
$cat myFile.txt | ./bin/xray_fdr_log_printer > /tmp/binarydata.bin
$./bin/llvm-xray convert -output-format=yaml -output=- /tmp/binarydata.bin
yaml format comes out as expected.
Reviewers: dberris, pelikan
Reviewed By: dberris
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D30850
llvm-svn: 297801
2017-03-15 11:12:01 +08:00
|
|
|
void *Options, size_t OptionsSize);
|
2017-02-08 07:35:34 +08:00
|
|
|
XRayLogInitStatus fdrLoggingFinalize();
|
|
|
|
void fdrLoggingHandleArg0(int32_t FuncId, XRayEntryType Entry);
|
|
|
|
XRayLogFlushStatus fdrLoggingFlush();
|
|
|
|
XRayLogInitStatus fdrLoggingReset();
|
[XRay][compiler-rt] XRay Flight Data Recorder Mode
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 293015
2017-01-25 11:50:46 +08:00
|
|
|
|
|
|
|
} // namespace __xray
|
|
|
|
|
|
|
|
#endif // XRAY_XRAY_FDR_LOGGING_H
|