llvm-project/lldb/source/Core/Value.cpp

709 lines
23 KiB
C++
Raw Normal View History

//===-- Value.cpp -----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Value.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/State.h"
#include "lldb/Utility/Stream.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-types.h"
#include <memory>
#include <string>
#include <inttypes.h>
using namespace lldb;
using namespace lldb_private;
Value::Value()
: m_value(), m_vector(), m_compiler_type(), m_context(nullptr),
m_value_type(eValueTypeScalar), m_context_type(eContextTypeInvalid),
m_data_buffer() {}
Value::Value(const Scalar &scalar)
: m_value(scalar), m_vector(), m_compiler_type(), m_context(nullptr),
m_value_type(eValueTypeScalar), m_context_type(eContextTypeInvalid),
m_data_buffer() {}
Value::Value(const void *bytes, int len)
: m_value(), m_vector(), m_compiler_type(), m_context(nullptr),
m_value_type(eValueTypeHostAddress), m_context_type(eContextTypeInvalid),
m_data_buffer() {
SetBytes(bytes, len);
}
Value::Value(const Value &v)
: m_value(v.m_value), m_vector(v.m_vector),
m_compiler_type(v.m_compiler_type), m_context(v.m_context),
m_value_type(v.m_value_type), m_context_type(v.m_context_type),
m_data_buffer() {
const uintptr_t rhs_value =
(uintptr_t)v.m_value.ULongLong(LLDB_INVALID_ADDRESS);
if ((rhs_value != 0) &&
(rhs_value == (uintptr_t)v.m_data_buffer.GetBytes())) {
m_data_buffer.CopyData(v.m_data_buffer.GetBytes(),
v.m_data_buffer.GetByteSize());
m_value = (uintptr_t)m_data_buffer.GetBytes();
}
}
Value &Value::operator=(const Value &rhs) {
if (this != &rhs) {
m_value = rhs.m_value;
m_vector = rhs.m_vector;
m_compiler_type = rhs.m_compiler_type;
m_context = rhs.m_context;
m_value_type = rhs.m_value_type;
m_context_type = rhs.m_context_type;
const uintptr_t rhs_value =
(uintptr_t)rhs.m_value.ULongLong(LLDB_INVALID_ADDRESS);
if ((rhs_value != 0) &&
(rhs_value == (uintptr_t)rhs.m_data_buffer.GetBytes())) {
m_data_buffer.CopyData(rhs.m_data_buffer.GetBytes(),
rhs.m_data_buffer.GetByteSize());
m_value = (uintptr_t)m_data_buffer.GetBytes();
}
}
return *this;
}
void Value::SetBytes(const void *bytes, int len) {
m_value_type = eValueTypeHostAddress;
m_data_buffer.CopyData(bytes, len);
m_value = (uintptr_t)m_data_buffer.GetBytes();
}
void Value::AppendBytes(const void *bytes, int len) {
m_value_type = eValueTypeHostAddress;
m_data_buffer.AppendData(bytes, len);
m_value = (uintptr_t)m_data_buffer.GetBytes();
}
void Value::Dump(Stream *strm) {
m_value.GetValue(strm, true);
strm->Printf(", value_type = %s, context = %p, context_type = %s",
Value::GetValueTypeAsCString(m_value_type), m_context,
Value::GetContextTypeAsCString(m_context_type));
}
Value::ValueType Value::GetValueType() const { return m_value_type; }
AddressType Value::GetValueAddressType() const {
switch (m_value_type) {
default:
case eValueTypeScalar:
break;
case eValueTypeLoadAddress:
return eAddressTypeLoad;
case eValueTypeFileAddress:
return eAddressTypeFile;
case eValueTypeHostAddress:
return eAddressTypeHost;
}
return eAddressTypeInvalid;
}
RegisterInfo *Value::GetRegisterInfo() const {
if (m_context_type == eContextTypeRegisterInfo)
return static_cast<RegisterInfo *>(m_context);
return nullptr;
}
Type *Value::GetType() {
if (m_context_type == eContextTypeLLDBType)
return static_cast<Type *>(m_context);
return nullptr;
}
size_t Value::AppendDataToHostBuffer(const Value &rhs) {
if (this == &rhs)
return 0;
size_t curr_size = m_data_buffer.GetByteSize();
Status error;
switch (rhs.GetValueType()) {
case eValueTypeScalar: {
const size_t scalar_size = rhs.m_value.GetByteSize();
if (scalar_size > 0) {
const size_t new_size = curr_size + scalar_size;
if (ResizeData(new_size) == new_size) {
rhs.m_value.GetAsMemoryData(m_data_buffer.GetBytes() + curr_size,
scalar_size, endian::InlHostByteOrder(),
error);
return scalar_size;
}
}
} break;
case eValueTypeVector: {
const size_t vector_size = rhs.m_vector.length;
if (vector_size > 0) {
const size_t new_size = curr_size + vector_size;
if (ResizeData(new_size) == new_size) {
::memcpy(m_data_buffer.GetBytes() + curr_size, rhs.m_vector.bytes,
vector_size);
return vector_size;
}
}
} break;
case eValueTypeFileAddress:
case eValueTypeLoadAddress:
case eValueTypeHostAddress: {
const uint8_t *src = rhs.GetBuffer().GetBytes();
const size_t src_len = rhs.GetBuffer().GetByteSize();
if (src && src_len > 0) {
const size_t new_size = curr_size + src_len;
if (ResizeData(new_size) == new_size) {
::memcpy(m_data_buffer.GetBytes() + curr_size, src, src_len);
return src_len;
}
}
} break;
}
return 0;
}
size_t Value::ResizeData(size_t len) {
m_value_type = eValueTypeHostAddress;
m_data_buffer.SetByteSize(len);
m_value = (uintptr_t)m_data_buffer.GetBytes();
return m_data_buffer.GetByteSize();
}
bool Value::ValueOf(ExecutionContext *exe_ctx) {
switch (m_context_type) {
case eContextTypeInvalid:
case eContextTypeRegisterInfo: // RegisterInfo *
case eContextTypeLLDBType: // Type *
break;
case eContextTypeVariable: // Variable *
ResolveValue(exe_ctx);
return true;
}
return false;
}
uint64_t Value::GetValueByteSize(Status *error_ptr, ExecutionContext *exe_ctx) {
switch (m_context_type) {
case eContextTypeRegisterInfo: // RegisterInfo *
if (GetRegisterInfo()) {
if (error_ptr)
error_ptr->Clear();
return GetRegisterInfo()->byte_size;
}
break;
case eContextTypeInvalid:
case eContextTypeLLDBType: // Type *
case eContextTypeVariable: // Variable *
{
auto *scope = exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr;
if (llvm::Optional<uint64_t> size = GetCompilerType().GetByteSize(scope)) {
if (error_ptr)
error_ptr->Clear();
return *size;
}
break;
}
}
if (error_ptr && error_ptr->Success())
error_ptr->SetErrorString("Unable to determine byte size.");
return 0;
}
const CompilerType &Value::GetCompilerType() {
if (!m_compiler_type.IsValid()) {
switch (m_context_type) {
case eContextTypeInvalid:
break;
case eContextTypeRegisterInfo:
break; // TODO: Eventually convert into a compiler type?
case eContextTypeLLDBType: {
Type *lldb_type = GetType();
if (lldb_type)
m_compiler_type = lldb_type->GetForwardCompilerType();
} break;
case eContextTypeVariable: {
Variable *variable = GetVariable();
if (variable) {
Type *variable_type = variable->GetType();
if (variable_type)
m_compiler_type = variable_type->GetForwardCompilerType();
}
} break;
}
}
return m_compiler_type;
}
void Value::SetCompilerType(const CompilerType &compiler_type) {
m_compiler_type = compiler_type;
}
lldb::Format Value::GetValueDefaultFormat() {
switch (m_context_type) {
case eContextTypeRegisterInfo:
if (GetRegisterInfo())
return GetRegisterInfo()->format;
break;
case eContextTypeInvalid:
case eContextTypeLLDBType:
case eContextTypeVariable: {
const CompilerType &ast_type = GetCompilerType();
if (ast_type.IsValid())
return ast_type.GetFormat();
} break;
}
// Return a good default in case we can't figure anything out
return eFormatHex;
}
bool Value::GetData(DataExtractor &data) {
switch (m_value_type) {
default:
break;
case eValueTypeScalar:
if (m_value.GetData(data))
return true;
break;
case eValueTypeLoadAddress:
case eValueTypeFileAddress:
case eValueTypeHostAddress:
if (m_data_buffer.GetByteSize()) {
data.SetData(m_data_buffer.GetBytes(), m_data_buffer.GetByteSize(),
data.GetByteOrder());
return true;
}
break;
}
return false;
}
Status Value::GetValueAsData(ExecutionContext *exe_ctx, DataExtractor &data,
uint32_t data_offset, Module *module) {
data.Clear();
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
Status error;
lldb::addr_t address = LLDB_INVALID_ADDRESS;
AddressType address_type = eAddressTypeFile;
Address file_so_addr;
const CompilerType &ast_type = GetCompilerType();
switch (m_value_type) {
case eValueTypeVector:
if (ast_type.IsValid())
data.SetAddressByteSize(ast_type.GetPointerByteSize());
else
data.SetAddressByteSize(sizeof(void *));
data.SetData(m_vector.bytes, m_vector.length, m_vector.byte_order);
break;
case eValueTypeScalar: {
data.SetByteOrder(endian::InlHostByteOrder());
if (ast_type.IsValid())
data.SetAddressByteSize(ast_type.GetPointerByteSize());
else
data.SetAddressByteSize(sizeof(void *));
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
uint32_t limit_byte_size = UINT32_MAX;
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
if (llvm::Optional<uint64_t> size = ast_type.GetByteSize(
exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr))
limit_byte_size = *size;
Modified LLDB expressions to not have to JIT and run code just to see variable values or persistent expression variables. Now if an expression consists of a value that is a child of a variable, or of a persistent variable only, we will create a value object for it and make a ValueObjectConstResult from it to freeze the value (for program variables only, not persistent variables) and avoid running JITed code. For everything else we still parse up and JIT code and run it in the inferior. There was also a lot of clean up in the expression code. I made the ClangExpressionVariables be stored in collections of shared pointers instead of in collections of objects. This will help stop a lot of copy constructors on these large objects and also cleans up the code considerably. The persistent clang expression variables were moved over to the Target to ensure they persist across process executions. Added the ability for lldb_private::Target objects to evaluate expressions. We want to evaluate expressions at the target level in case we aren't running yet, or we have just completed running. We still want to be able to access the persistent expression variables between runs, and also evaluate constant expressions. Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects can now dump their contents with the UUID, arch and full paths being logged with appropriate prefix values. Thread hardened the Communication class a bit by making the connection auto_ptr member into a shared pointer member and then making a local copy of the shared pointer in each method that uses it to make sure another thread can't nuke the connection object while it is being used by another thread. Added a new file to the lldb/test/load_unload test that causes the test a.out file to link to the libd.dylib file all the time. This will allow us to test using the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else. llvm-svn: 121745
2010-12-14 10:59:59 +08:00
if (limit_byte_size <= m_value.GetByteSize()) {
if (m_value.GetData(data, limit_byte_size))
return error; // Success;
}
error.SetErrorStringWithFormat("extracting data from value failed");
break;
}
case eValueTypeLoadAddress:
if (exe_ctx == nullptr) {
error.SetErrorString("can't read load address (no execution context)");
} else {
Process *process = exe_ctx->GetProcessPtr();
if (process == nullptr || !process->IsAlive()) {
Target *target = exe_ctx->GetTargetPtr();
if (target) {
// Allow expressions to run and evaluate things when the target has
// memory sections loaded. This allows you to use "target modules
// load" to load your executable and any shared libraries, then
// execute commands where you can look at types in data sections.
const SectionLoadList &target_sections = target->GetSectionLoadList();
if (!target_sections.IsEmpty()) {
address = m_value.ULongLong(LLDB_INVALID_ADDRESS);
if (target_sections.ResolveLoadAddress(address, file_so_addr)) {
address_type = eAddressTypeLoad;
data.SetByteOrder(target->GetArchitecture().GetByteOrder());
data.SetAddressByteSize(
target->GetArchitecture().GetAddressByteSize());
} else
address = LLDB_INVALID_ADDRESS;
}
} else {
error.SetErrorString("can't read load address (invalid process)");
}
} else {
address = m_value.ULongLong(LLDB_INVALID_ADDRESS);
address_type = eAddressTypeLoad;
data.SetByteOrder(
process->GetTarget().GetArchitecture().GetByteOrder());
data.SetAddressByteSize(
process->GetTarget().GetArchitecture().GetAddressByteSize());
}
}
break;
case eValueTypeFileAddress:
if (exe_ctx == nullptr) {
error.SetErrorString("can't read file address (no execution context)");
} else if (exe_ctx->GetTargetPtr() == nullptr) {
error.SetErrorString("can't read file address (invalid target)");
} else {
address = m_value.ULongLong(LLDB_INVALID_ADDRESS);
if (address == LLDB_INVALID_ADDRESS) {
error.SetErrorString("invalid file address");
} else {
if (module == nullptr) {
// The only thing we can currently lock down to a module so that we
// can resolve a file address, is a variable.
Variable *variable = GetVariable();
if (variable) {
SymbolContext var_sc;
variable->CalculateSymbolContext(&var_sc);
module = var_sc.module_sp.get();
}
}
if (module) {
bool resolved = false;
ObjectFile *objfile = module->GetObjectFile();
if (objfile) {
Address so_addr(address, objfile->GetSectionList());
addr_t load_address =
so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
bool process_launched_and_stopped =
exe_ctx->GetProcessPtr()
? StateIsStoppedState(exe_ctx->GetProcessPtr()->GetState(),
true /* must_exist */)
: false;
// Don't use the load address if the process has exited.
if (load_address != LLDB_INVALID_ADDRESS &&
process_launched_and_stopped) {
resolved = true;
address = load_address;
address_type = eAddressTypeLoad;
data.SetByteOrder(
exe_ctx->GetTargetRef().GetArchitecture().GetByteOrder());
data.SetAddressByteSize(exe_ctx->GetTargetRef()
.GetArchitecture()
.GetAddressByteSize());
} else {
if (so_addr.IsSectionOffset()) {
resolved = true;
file_so_addr = so_addr;
data.SetByteOrder(objfile->GetByteOrder());
data.SetAddressByteSize(objfile->GetAddressByteSize());
}
}
}
if (!resolved) {
Variable *variable = GetVariable();
if (module) {
if (variable)
error.SetErrorStringWithFormat(
"unable to resolve the module for file address 0x%" PRIx64
" for variable '%s' in %s",
address, variable->GetName().AsCString(""),
module->GetFileSpec().GetPath().c_str());
else
error.SetErrorStringWithFormat(
"unable to resolve the module for file address 0x%" PRIx64
" in %s",
address, module->GetFileSpec().GetPath().c_str());
} else {
if (variable)
error.SetErrorStringWithFormat(
"unable to resolve the module for file address 0x%" PRIx64
" for variable '%s'",
address, variable->GetName().AsCString(""));
else
error.SetErrorStringWithFormat(
"unable to resolve the module for file address 0x%" PRIx64,
address);
}
}
} else {
// Can't convert a file address to anything valid without more
// context (which Module it came from)
error.SetErrorString(
"can't read memory from file address without more context");
}
}
}
break;
case eValueTypeHostAddress:
address = m_value.ULongLong(LLDB_INVALID_ADDRESS);
address_type = eAddressTypeHost;
if (exe_ctx) {
Target *target = exe_ctx->GetTargetPtr();
if (target) {
data.SetByteOrder(target->GetArchitecture().GetByteOrder());
data.SetAddressByteSize(target->GetArchitecture().GetAddressByteSize());
break;
}
}
// fallback to host settings
data.SetByteOrder(endian::InlHostByteOrder());
data.SetAddressByteSize(sizeof(void *));
break;
}
// Bail if we encountered any errors
if (error.Fail())
return error;
if (address == LLDB_INVALID_ADDRESS) {
error.SetErrorStringWithFormat("invalid %s address",
address_type == eAddressTypeHost ? "host"
: "load");
return error;
}
// If we got here, we need to read the value from memory
size_t byte_size = GetValueByteSize(&error, exe_ctx);
// Bail if we encountered any errors getting the byte size
if (error.Fail())
return error;
// No memory to read for zero-sized types.
if (byte_size == 0)
return error;
// Make sure we have enough room within "data", and if we don't make
// something large enough that does
if (!data.ValidOffsetForDataOfSize(data_offset, byte_size)) {
auto data_sp =
std::make_shared<DataBufferHeap>(data_offset + byte_size, '\0');
data.SetData(data_sp);
}
uint8_t *dst = const_cast<uint8_t *>(data.PeekData(data_offset, byte_size));
if (dst != nullptr) {
if (address_type == eAddressTypeHost) {
// The address is an address in this process, so just copy it.
if (address == 0) {
error.SetErrorStringWithFormat(
"trying to read from host address of 0.");
return error;
}
memcpy(dst, reinterpret_cast<uint8_t *>(address), byte_size);
} else if ((address_type == eAddressTypeLoad) ||
(address_type == eAddressTypeFile)) {
if (file_so_addr.IsValid()) {
// We have a file address that we were able to translate into a section
// offset address so we might be able to read this from the object
// files if we don't have a live process. Lets always try and read from
// the process if we have one though since we want to read the actual
// value by setting "prefer_file_cache" to false.
const bool prefer_file_cache = false;
if (exe_ctx->GetTargetRef().ReadMemory(file_so_addr, prefer_file_cache,
dst, byte_size,
error) != byte_size) {
error.SetErrorStringWithFormat(
"read memory from 0x%" PRIx64 " failed", (uint64_t)address);
}
} else {
// The execution context might have a NULL process, but it might have a
// valid process in the exe_ctx->target, so use the
// ExecutionContext::GetProcess accessor to ensure we get the process
// if there is one.
Process *process = exe_ctx->GetProcessPtr();
if (process) {
const size_t bytes_read =
process->ReadMemory(address, dst, byte_size, error);
if (bytes_read != byte_size)
error.SetErrorStringWithFormat(
"read memory from 0x%" PRIx64 " failed (%u of %u bytes read)",
(uint64_t)address, (uint32_t)bytes_read, (uint32_t)byte_size);
} else {
error.SetErrorStringWithFormat("read memory from 0x%" PRIx64
" failed (invalid process)",
(uint64_t)address);
}
}
} else {
error.SetErrorStringWithFormat("unsupported AddressType value (%i)",
address_type);
}
} else {
error.SetErrorStringWithFormat("out of memory");
}
return error;
}
Scalar &Value::ResolveValue(ExecutionContext *exe_ctx) {
const CompilerType &compiler_type = GetCompilerType();
if (compiler_type.IsValid()) {
switch (m_value_type) {
case eValueTypeScalar: // raw scalar value
break;
default:
case eValueTypeFileAddress:
case eValueTypeLoadAddress: // load address value
case eValueTypeHostAddress: // host address value (for memory in the process
// that is using liblldb)
{
DataExtractor data;
lldb::addr_t addr = m_value.ULongLong(LLDB_INVALID_ADDRESS);
Status error(GetValueAsData(exe_ctx, data, 0, nullptr));
if (error.Success()) {
Scalar scalar;
if (compiler_type.GetValueAsScalar(data, 0, data.GetByteSize(),
scalar)) {
m_value = scalar;
m_value_type = eValueTypeScalar;
} else {
if ((uintptr_t)addr != (uintptr_t)m_data_buffer.GetBytes()) {
m_value.Clear();
m_value_type = eValueTypeScalar;
}
}
} else {
if ((uintptr_t)addr != (uintptr_t)m_data_buffer.GetBytes()) {
m_value.Clear();
m_value_type = eValueTypeScalar;
}
}
} break;
}
}
return m_value;
}
Variable *Value::GetVariable() {
if (m_context_type == eContextTypeVariable)
return static_cast<Variable *>(m_context);
return nullptr;
}
void Value::Clear() {
m_value.Clear();
m_vector.Clear();
m_compiler_type.Clear();
m_value_type = eValueTypeScalar;
m_context = nullptr;
m_context_type = eContextTypeInvalid;
m_data_buffer.Clear();
}
const char *Value::GetValueTypeAsCString(ValueType value_type) {
switch (value_type) {
case eValueTypeScalar:
return "scalar";
case eValueTypeVector:
return "vector";
case eValueTypeFileAddress:
return "file address";
case eValueTypeLoadAddress:
return "load address";
case eValueTypeHostAddress:
return "host address";
};
return "???";
}
const char *Value::GetContextTypeAsCString(ContextType context_type) {
switch (context_type) {
case eContextTypeInvalid:
return "invalid";
case eContextTypeRegisterInfo:
return "RegisterInfo *";
case eContextTypeLLDBType:
return "Type *";
case eContextTypeVariable:
return "Variable *";
};
return "???";
}
void Value::ConvertToLoadAddress(Module *module, Target *target) {
if (!module || !target || (GetValueType() != eValueTypeFileAddress))
return;
lldb::addr_t file_addr = GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (file_addr == LLDB_INVALID_ADDRESS)
return;
Address so_addr;
if (!module->ResolveFileAddress(file_addr, so_addr))
return;
lldb::addr_t load_addr = so_addr.GetLoadAddress(target);
if (load_addr == LLDB_INVALID_ADDRESS)
return;
SetValueType(Value::eValueTypeLoadAddress);
GetScalar() = load_addr;
}
ValueList::ValueList(const ValueList &rhs) { m_values = rhs.m_values; }
const ValueList &ValueList::operator=(const ValueList &rhs) {
m_values = rhs.m_values;
return *this;
}
void ValueList::PushValue(const Value &value) { m_values.push_back(value); }
size_t ValueList::GetSize() { return m_values.size(); }
Value *ValueList::GetValueAtIndex(size_t idx) {
if (idx < GetSize()) {
return &(m_values[idx]);
} else
return nullptr;
}
void ValueList::Clear() { m_values.clear(); }