llvm-project/llvm/lib/ExecutionEngine/JITLink/JITLink.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

431 lines
14 KiB
C++
Raw Normal View History

Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
//===------------- JITLink.cpp - Core Run-time JIT linker APIs ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JITLink/JITLink.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/ExecutionEngine/JITLink/ELF.h"
#include "llvm/ExecutionEngine/JITLink/MachO.h"
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "jitlink"
namespace {
enum JITLinkErrorCode { GenericJITLinkError = 1 };
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class JITLinkerErrorCategory : public std::error_category {
public:
const char *name() const noexcept override { return "runtimedyld"; }
std::string message(int Condition) const override {
switch (static_cast<JITLinkErrorCode>(Condition)) {
case GenericJITLinkError:
return "Generic JITLink error";
}
llvm_unreachable("Unrecognized JITLinkErrorCode");
}
};
static ManagedStatic<JITLinkerErrorCategory> JITLinkerErrorCategory;
} // namespace
namespace llvm {
namespace jitlink {
char JITLinkError::ID = 0;
void JITLinkError::log(raw_ostream &OS) const { OS << ErrMsg; }
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
std::error_code JITLinkError::convertToErrorCode() const {
return std::error_code(GenericJITLinkError, *JITLinkerErrorCategory);
}
const char *getGenericEdgeKindName(Edge::Kind K) {
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
switch (K) {
case Edge::Invalid:
return "INVALID RELOCATION";
case Edge::KeepAlive:
return "Keep-Alive";
default:
return "<Unrecognized edge kind>";
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
}
}
const char *getLinkageName(Linkage L) {
switch (L) {
case Linkage::Strong:
return "strong";
case Linkage::Weak:
return "weak";
}
llvm_unreachable("Unrecognized llvm.jitlink.Linkage enum");
}
const char *getScopeName(Scope S) {
switch (S) {
case Scope::Default:
return "default";
case Scope::Hidden:
return "hidden";
case Scope::Local:
return "local";
}
llvm_unreachable("Unrecognized llvm.jitlink.Scope enum");
}
raw_ostream &operator<<(raw_ostream &OS, const Block &B) {
return OS << B.getAddress() << " -- " << (B.getAddress() + B.getSize())
<< ": "
2021-05-12 07:04:00 +08:00
<< "size = " << formatv("{0:x8}", B.getSize()) << ", "
<< (B.isZeroFill() ? "zero-fill" : "content")
<< ", align = " << B.getAlignment()
<< ", align-ofs = " << B.getAlignmentOffset()
<< ", section = " << B.getSection().getName();
}
raw_ostream &operator<<(raw_ostream &OS, const Symbol &Sym) {
OS << Sym.getAddress() << " (" << (Sym.isDefined() ? "block" : "addressable")
<< " + " << formatv("{0:x8}", Sym.getOffset())
<< "): size: " << formatv("{0:x8}", Sym.getSize())
<< ", linkage: " << formatv("{0:6}", getLinkageName(Sym.getLinkage()))
<< ", scope: " << formatv("{0:8}", getScopeName(Sym.getScope())) << ", "
<< (Sym.isLive() ? "live" : "dead") << " - "
<< (Sym.hasName() ? Sym.getName() : "<anonymous symbol>");
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
return OS;
}
void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
StringRef EdgeKindName) {
OS << "edge@" << B.getAddress() + E.getOffset() << ": " << B.getAddress()
<< " + " << formatv("{0:x}", E.getOffset()) << " -- " << EdgeKindName
<< " -> ";
auto &TargetSym = E.getTarget();
if (TargetSym.hasName())
OS << TargetSym.getName();
else {
auto &TargetBlock = TargetSym.getBlock();
auto &TargetSec = TargetBlock.getSection();
orc::ExecutorAddr SecAddress(~uint64_t(0));
for (auto *B : TargetSec.blocks())
if (B->getAddress() < SecAddress)
SecAddress = B->getAddress();
orc::ExecutorAddrDiff SecDelta = TargetSym.getAddress() - SecAddress;
OS << TargetSym.getAddress() << " (section " << TargetSec.getName();
if (SecDelta)
OS << " + " << formatv("{0:x}", SecDelta);
OS << " / block " << TargetBlock.getAddress();
if (TargetSym.getOffset())
OS << " + " << formatv("{0:x}", TargetSym.getOffset());
OS << ")";
}
if (E.getAddend() != 0)
OS << " + " << E.getAddend();
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
}
Section::~Section() {
for (auto *Sym : Symbols)
Sym->~Symbol();
for (auto *B : Blocks)
B->~Block();
}
Block &LinkGraph::splitBlock(Block &B, size_t SplitIndex,
SplitBlockCache *Cache) {
assert(SplitIndex > 0 && "splitBlock can not be called with SplitIndex == 0");
// If the split point covers all of B then just return B.
if (SplitIndex == B.getSize())
return B;
assert(SplitIndex < B.getSize() && "SplitIndex out of range");
// Create the new block covering [ 0, SplitIndex ).
auto &NewBlock =
B.isZeroFill()
? createZeroFillBlock(B.getSection(), SplitIndex, B.getAddress(),
B.getAlignment(), B.getAlignmentOffset())
: createContentBlock(
B.getSection(), B.getContent().slice(0, SplitIndex),
B.getAddress(), B.getAlignment(), B.getAlignmentOffset());
// Modify B to cover [ SplitIndex, B.size() ).
B.setAddress(B.getAddress() + SplitIndex);
B.setContent(B.getContent().slice(SplitIndex));
B.setAlignmentOffset((B.getAlignmentOffset() + SplitIndex) %
B.getAlignment());
// Handle edge transfer/update.
{
// Copy edges to NewBlock (recording their iterators so that we can remove
// them from B), and update of Edges remaining on B.
std::vector<Block::edge_iterator> EdgesToRemove;
for (auto I = B.edges().begin(); I != B.edges().end();) {
if (I->getOffset() < SplitIndex) {
NewBlock.addEdge(*I);
I = B.removeEdge(I);
} else {
I->setOffset(I->getOffset() - SplitIndex);
++I;
}
}
}
// Handle symbol transfer/update.
{
// Initialize the symbols cache if necessary.
SplitBlockCache LocalBlockSymbolsCache;
if (!Cache)
Cache = &LocalBlockSymbolsCache;
if (*Cache == None) {
*Cache = SplitBlockCache::value_type();
for (auto *Sym : B.getSection().symbols())
if (&Sym->getBlock() == &B)
(*Cache)->push_back(Sym);
llvm::sort(**Cache, [](const Symbol *LHS, const Symbol *RHS) {
return LHS->getOffset() > RHS->getOffset();
});
}
auto &BlockSymbols = **Cache;
// Transfer all symbols with offset less than SplitIndex to NewBlock.
while (!BlockSymbols.empty() &&
BlockSymbols.back()->getOffset() < SplitIndex) {
auto *Sym = BlockSymbols.back();
// If the symbol extends beyond the split, update the size to be within
// the new block.
if (Sym->getOffset() + Sym->getSize() > SplitIndex)
Sym->setSize(SplitIndex - Sym->getOffset());
Sym->setBlock(NewBlock);
BlockSymbols.pop_back();
}
// Update offsets for all remaining symbols in B.
for (auto *Sym : BlockSymbols)
Sym->setOffset(Sym->getOffset() - SplitIndex);
}
return NewBlock;
}
void LinkGraph::dump(raw_ostream &OS) {
DenseMap<Block *, std::vector<Symbol *>> BlockSymbols;
// Map from blocks to the symbols pointing at them.
for (auto *Sym : defined_symbols())
BlockSymbols[&Sym->getBlock()].push_back(Sym);
// For each block, sort its symbols by something approximating
// relevance.
for (auto &KV : BlockSymbols)
llvm::sort(KV.second, [](const Symbol *LHS, const Symbol *RHS) {
if (LHS->getOffset() != RHS->getOffset())
return LHS->getOffset() < RHS->getOffset();
if (LHS->getLinkage() != RHS->getLinkage())
return LHS->getLinkage() < RHS->getLinkage();
if (LHS->getScope() != RHS->getScope())
return LHS->getScope() < RHS->getScope();
if (LHS->hasName()) {
if (!RHS->hasName())
return true;
return LHS->getName() < RHS->getName();
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
}
return false;
});
for (auto &Sec : sections()) {
OS << "section " << Sec.getName() << ":\n\n";
std::vector<Block *> SortedBlocks;
llvm::copy(Sec.blocks(), std::back_inserter(SortedBlocks));
llvm::sort(SortedBlocks, [](const Block *LHS, const Block *RHS) {
return LHS->getAddress() < RHS->getAddress();
});
for (auto *B : SortedBlocks) {
OS << " block " << B->getAddress()
<< " size = " << formatv("{0:x8}", B->getSize())
<< ", align = " << B->getAlignment()
<< ", alignment-offset = " << B->getAlignmentOffset();
if (B->isZeroFill())
OS << ", zero-fill";
OS << "\n";
auto BlockSymsI = BlockSymbols.find(B);
if (BlockSymsI != BlockSymbols.end()) {
OS << " symbols:\n";
auto &Syms = BlockSymsI->second;
for (auto *Sym : Syms)
OS << " " << *Sym << "\n";
} else
OS << " no symbols\n";
if (!B->edges_empty()) {
OS << " edges:\n";
std::vector<Edge> SortedEdges;
llvm::copy(B->edges(), std::back_inserter(SortedEdges));
llvm::sort(SortedEdges, [](const Edge &LHS, const Edge &RHS) {
return LHS.getOffset() < RHS.getOffset();
});
for (auto &E : SortedEdges) {
OS << " " << B->getFixupAddress(E) << " (block + "
<< formatv("{0:x8}", E.getOffset()) << "), addend = ";
if (E.getAddend() >= 0)
OS << formatv("+{0:x8}", E.getAddend());
else
OS << formatv("-{0:x8}", -E.getAddend());
OS << ", kind = " << getEdgeKindName(E.getKind()) << ", target = ";
if (E.getTarget().hasName())
OS << E.getTarget().getName();
else
OS << "addressable@"
<< formatv("{0:x16}", E.getTarget().getAddress()) << "+"
<< formatv("{0:x8}", E.getTarget().getOffset());
OS << "\n";
}
} else
OS << " no edges\n";
OS << "\n";
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
}
}
OS << "Absolute symbols:\n";
if (!llvm::empty(absolute_symbols())) {
for (auto *Sym : absolute_symbols())
OS << " " << Sym->getAddress() << ": " << *Sym << "\n";
} else
OS << " none\n";
OS << "\nExternal symbols:\n";
if (!llvm::empty(external_symbols())) {
for (auto *Sym : external_symbols())
OS << " " << Sym->getAddress() << ": " << *Sym << "\n";
} else
OS << " none\n";
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
}
[ORC][JITLink] Add support for weak references, and improve handling of static libraries. This patch substantially updates ORCv2's lookup API in order to support weak references, and to better support static archives. Key changes: -- Each symbol being looked for is now associated with a SymbolLookupFlags value. If the associated value is SymbolLookupFlags::RequiredSymbol then the symbol must be defined in one of the JITDylibs being searched (or be able to be generated in one of these JITDylibs via an attached definition generator) or the lookup will fail with an error. If the associated value is SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be undefined, in which case it will simply not appear in the resulting SymbolMap if the rest of the lookup succeeds. Since lookup now requires these flags for each symbol, the lookup method now takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet. SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are responsible for ensuring that the set property (i.e. unique elements) holds, though this is usually simple and SymbolLookupSet provides convenience methods to support this. -- Lookups now have an associated LookupKind value, which is either LookupKind::Static or LookupKind::DLSym. Definition generators can inspect the lookup kind when determining whether or not to generate new definitions. The StaticLibraryDefinitionGenerator is updated to only pull in new objects from the archive if the lookup kind is Static. This allows lookup to be re-used to emulate dlsym for JIT'd symbols without pulling in new objects from archives (which would not happen in a normal dlsym call). -- JITLink is updated to allow externals to be assigned weak linkage, and weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value for lookups. Unresolved weak references will be assigned the default value of zero. Since this patch was modifying the lookup API anyway, it alo replaces all of the "MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for readability. If a JITDylib's associated value is JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will match against any symbol defined in the JITDylib.
2019-11-26 13:57:27 +08:00
raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF) {
switch (LF) {
case SymbolLookupFlags::RequiredSymbol:
return OS << "RequiredSymbol";
case SymbolLookupFlags::WeaklyReferencedSymbol:
return OS << "WeaklyReferencedSymbol";
}
llvm_unreachable("Unrecognized lookup flags");
}
void JITLinkAsyncLookupContinuation::anchor() {}
2022-02-07 14:18:35 +08:00
JITLinkContext::~JITLinkContext() = default;
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
bool JITLinkContext::shouldAddDefaultTargetPasses(const Triple &TT) const {
return true;
}
LinkGraphPassFunction JITLinkContext::getMarkLivePass(const Triple &TT) const {
return LinkGraphPassFunction();
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
}
Error JITLinkContext::modifyPassConfig(LinkGraph &G,
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
PassConfiguration &Config) {
return Error::success();
}
Error markAllSymbolsLive(LinkGraph &G) {
for (auto *Sym : G.defined_symbols())
Sym->setLive(true);
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
return Error::success();
}
Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
const Edge &E) {
std::string ErrMsg;
{
raw_string_ostream ErrStream(ErrMsg);
Section &Sec = B.getSection();
ErrStream << "In graph " << G.getName() << ", section " << Sec.getName()
<< ": relocation target ";
if (E.getTarget().hasName()) {
ErrStream << "\"" << E.getTarget().getName() << "\"";
} else
ErrStream << E.getTarget().getBlock().getSection().getName() << " + "
<< formatv("{0:x}", E.getOffset());
ErrStream << " at address " << formatv("{0:x}", E.getTarget().getAddress())
<< " is out of range of " << G.getEdgeKindName(E.getKind())
<< " fixup at " << formatv("{0:x}", B.getFixupAddress(E)) << " (";
Symbol *BestSymbolForBlock = nullptr;
for (auto *Sym : Sec.symbols())
if (&Sym->getBlock() == &B && Sym->hasName() && Sym->getOffset() == 0 &&
(!BestSymbolForBlock ||
Sym->getScope() < BestSymbolForBlock->getScope() ||
Sym->getLinkage() < BestSymbolForBlock->getLinkage()))
BestSymbolForBlock = Sym;
if (BestSymbolForBlock)
ErrStream << BestSymbolForBlock->getName() << ", ";
else
ErrStream << "<anonymous block> @ ";
ErrStream << formatv("{0:x}", B.getAddress()) << " + "
<< formatv("{0:x}", E.getOffset()) << ")";
}
return make_error<JITLinkError>(std::move(ErrMsg));
}
Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
const Edge &E) {
return make_error<JITLinkError>("0x" + llvm::utohexstr(Loc.getValue()) +
" improper alignment for relocation " +
formatv("{0:d}", E.getKind()) + ": 0x" +
llvm::utohexstr(Value) +
" is not aligned to " + Twine(N) + " bytes");
}
Expected<std::unique_ptr<LinkGraph>>
createLinkGraphFromObject(MemoryBufferRef ObjectBuffer) {
auto Magic = identify_magic(ObjectBuffer.getBuffer());
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
switch (Magic) {
case file_magic::macho_object:
return createLinkGraphFromMachOObject(ObjectBuffer);
case file_magic::elf_relocatable:
return createLinkGraphFromELFObject(ObjectBuffer);
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
default:
return make_error<JITLinkError>("Unsupported file format");
};
}
void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx) {
switch (G->getTargetTriple().getObjectFormat()) {
case Triple::MachO:
return link_MachO(std::move(G), std::move(Ctx));
case Triple::ELF:
return link_ELF(std::move(G), std::move(Ctx));
default:
Ctx->notifyFailed(make_error<JITLinkError>("Unsupported object format"));
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
};
}
} // end namespace jitlink
} // end namespace llvm