2021-12-10 17:06:43 +08:00
|
|
|
//===- MachineCycleAnalysis.cpp - Compute CycleInfo for Machine IR --------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/CodeGen/MachineCycleAnalysis.h"
|
|
|
|
#include "llvm/ADT/GenericCycleImpl.h"
|
2022-04-19 15:40:17 +08:00
|
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
2021-12-10 17:06:43 +08:00
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
template class llvm::GenericCycleInfo<llvm::MachineSSAContext>;
|
|
|
|
template class llvm::GenericCycle<llvm::MachineSSAContext>;
|
|
|
|
|
|
|
|
char MachineCycleInfoWrapperPass::ID = 0;
|
|
|
|
|
|
|
|
MachineCycleInfoWrapperPass::MachineCycleInfoWrapperPass()
|
|
|
|
: MachineFunctionPass(ID) {
|
|
|
|
initializeMachineCycleInfoWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(MachineCycleInfoWrapperPass, "machine-cycles",
|
|
|
|
"Machine Cycle Info Analysis", true, true)
|
|
|
|
INITIALIZE_PASS_END(MachineCycleInfoWrapperPass, "machine-cycles",
|
|
|
|
"Machine Cycle Info Analysis", true, true)
|
|
|
|
|
|
|
|
void MachineCycleInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.setPreservesAll();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool MachineCycleInfoWrapperPass::runOnMachineFunction(MachineFunction &Func) {
|
|
|
|
CI.clear();
|
|
|
|
|
|
|
|
F = &Func;
|
|
|
|
CI.compute(Func);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MachineCycleInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
|
|
|
|
OS << "MachineCycleInfo for function: " << F->getName() << "\n";
|
|
|
|
CI.print(OS);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MachineCycleInfoWrapperPass::releaseMemory() {
|
|
|
|
CI.clear();
|
|
|
|
F = nullptr;
|
|
|
|
}
|
|
|
|
|
2022-04-19 15:40:17 +08:00
|
|
|
class MachineCycleInfoPrinterPass : public MachineFunctionPass {
|
|
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
|
|
|
|
MachineCycleInfoPrinterPass();
|
|
|
|
|
|
|
|
bool runOnMachineFunction(MachineFunction &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
};
|
|
|
|
|
2021-12-10 17:06:43 +08:00
|
|
|
char MachineCycleInfoPrinterPass::ID = 0;
|
|
|
|
|
|
|
|
MachineCycleInfoPrinterPass::MachineCycleInfoPrinterPass()
|
|
|
|
: MachineFunctionPass(ID) {
|
|
|
|
initializeMachineCycleInfoPrinterPassPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(MachineCycleInfoPrinterPass, "print-machine-cycles",
|
|
|
|
"Print Machine Cycle Info Analysis", true, true)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
|
|
|
|
INITIALIZE_PASS_END(MachineCycleInfoPrinterPass, "print-machine-cycles",
|
|
|
|
"Print Machine Cycle Info Analysis", true, true)
|
|
|
|
|
|
|
|
void MachineCycleInfoPrinterPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.setPreservesAll();
|
|
|
|
AU.addRequired<MachineCycleInfoWrapperPass>();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool MachineCycleInfoPrinterPass::runOnMachineFunction(MachineFunction &F) {
|
|
|
|
auto &CI = getAnalysis<MachineCycleInfoWrapperPass>();
|
|
|
|
CI.print(errs());
|
|
|
|
return false;
|
|
|
|
}
|
2022-04-19 15:40:17 +08:00
|
|
|
|
|
|
|
bool llvm::isCycleInvariant(const MachineCycle *Cycle, MachineInstr &I) {
|
|
|
|
MachineFunction *MF = I.getParent()->getParent();
|
|
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
|
|
const TargetSubtargetInfo &ST = MF->getSubtarget();
|
|
|
|
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
|
|
|
|
const TargetInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
|
|
|
|
// The instruction is cycle invariant if all of its operands are.
|
|
|
|
for (const MachineOperand &MO : I.operands()) {
|
|
|
|
if (!MO.isReg())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
Register Reg = MO.getReg();
|
|
|
|
if (Reg == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// An instruction that uses or defines a physical register can't e.g. be
|
|
|
|
// hoisted, so mark this as not invariant.
|
|
|
|
if (Register::isPhysicalRegister(Reg)) {
|
|
|
|
if (MO.isUse()) {
|
|
|
|
// If the physreg has no defs anywhere, it's just an ambient register
|
|
|
|
// and we can freely move its uses. Alternatively, if it's allocatable,
|
|
|
|
// it could get allocated to something with a def during allocation.
|
|
|
|
// However, if the physreg is known to always be caller saved/restored
|
|
|
|
// then this use is safe to hoist.
|
|
|
|
if (!MRI->isConstantPhysReg(Reg) &&
|
|
|
|
!(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())) &&
|
|
|
|
!TII->isIgnorableUse(MO))
|
|
|
|
return false;
|
|
|
|
// Otherwise it's safe to move.
|
|
|
|
continue;
|
|
|
|
} else if (!MO.isDead()) {
|
|
|
|
// A def that isn't dead can't be moved.
|
|
|
|
return false;
|
|
|
|
} else if (any_of(Cycle->getEntries(),
|
|
|
|
[&](const MachineBasicBlock *Block) {
|
|
|
|
return Block->isLiveIn(Reg);
|
|
|
|
})) {
|
|
|
|
// If the reg is live into any header of the cycle we can't hoist an
|
|
|
|
// instruction which would clobber it.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!MO.isUse())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
assert(MRI->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!");
|
|
|
|
|
|
|
|
// If the cycle contains the definition of an operand, then the instruction
|
|
|
|
// isn't cycle invariant.
|
|
|
|
if (Cycle->contains(MRI->getVRegDef(Reg)->getParent()))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we got this far, the instruction is cycle invariant!
|
|
|
|
return true;
|
|
|
|
}
|