llvm-project/lld/ELF/Target.cpp

273 lines
8.0 KiB
C++
Raw Normal View History

//===- Target.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Target.h"
#include "Error.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ELF.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf2 {
std::unique_ptr<TargetInfo> Target;
TargetInfo::~TargetInfo() {}
X86TargetInfo::X86TargetInfo() {
PCRelReloc = R_386_PC32;
GotReloc = R_386_GLOB_DAT;
}
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
ArrayRef<uint8_t> Jmp = {0xff, 0x25}; // jmpl *val
memcpy(Buf, Jmp.data(), Jmp.size());
Buf += Jmp.size();
assert(isUInt<32>(GotEntryAddr));
write32le(Buf, GotEntryAddr);
Buf += 4;
ArrayRef<uint8_t> Nops = {0x90, 0x90};
memcpy(Buf, Nops.data(), Nops.size());
}
bool X86TargetInfo::relocNeedsGot(uint32_t Type) const {
if (relocNeedsPlt(Type))
return true;
switch (Type) {
default:
return false;
case R_386_GOT32:
return true;
}
}
bool X86TargetInfo::relocNeedsPlt(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_386_PLT32:
return true;
}
}
static void add32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); }
void X86TargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA) const {
typedef ELFFile<ELF32LE>::Elf_Rel Elf_Rel;
auto &Rel = *reinterpret_cast<const Elf_Rel *>(RelP);
uint32_t Offset = Rel.r_offset;
uint8_t *Location = Buf + Offset;
switch (Type) {
case R_386_PC32:
add32le(Location, SymVA - (BaseAddr + Offset));
break;
case R_386_32:
add32le(Location, SymVA);
break;
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
X86_64TargetInfo::X86_64TargetInfo() {
PCRelReloc = R_X86_64_PC32;
GotReloc = R_X86_64_GLOB_DAT;
}
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
ArrayRef<uint8_t> Jmp = {0xff, 0x25}; // jmpq *val(%rip)
memcpy(Buf, Jmp.data(), Jmp.size());
Buf += Jmp.size();
uintptr_t NextPC = PltEntryAddr + 6;
intptr_t Delta = GotEntryAddr - NextPC;
assert(isInt<32>(Delta));
write32le(Buf, Delta);
Buf += 4;
ArrayRef<uint8_t> Nops = {0x90, 0x90};
memcpy(Buf, Nops.data(), Nops.size());
}
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type) const {
if (relocNeedsPlt(Type))
return true;
switch (Type) {
default:
return false;
case R_X86_64_GOTPCREL:
return true;
}
}
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_X86_64_PLT32:
return true;
}
}
void X86_64TargetInfo::relocateOne(uint8_t *Buf, const void *RelP,
uint32_t Type, uint64_t BaseAddr,
uint64_t SymVA) const {
typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
uint64_t Offset = Rel.r_offset;
uint8_t *Location = Buf + Offset;
switch (Type) {
case R_X86_64_PC32:
case R_X86_64_GOTPCREL:
write32le(Location, SymVA + Rel.r_addend - (BaseAddr + Offset));
break;
case R_X86_64_64:
write64le(Location, SymVA + Rel.r_addend);
break;
case R_X86_64_32: {
case R_X86_64_32S:
uint64_t VA = SymVA + Rel.r_addend;
if (Type == R_X86_64_32 && !isUInt<32>(VA))
error("R_X86_64_32 out of range");
else if (!isInt<32>(VA))
error("R_X86_64_32S out of range");
write32le(Location, VA);
break;
}
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
PPC64TargetInfo::PPC64TargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type) const { return false; }
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type) const { return false; }
void PPC64TargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA) const {
typedef ELFFile<ELF64BE>::Elf_Rela Elf_Rela;
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
uint64_t Offset = Rel.r_offset;
uint8_t *Location = Buf + Offset;
switch (Type) {
case R_PPC64_ADDR64:
write64be(Location, SymVA + Rel.r_addend);
break;
case R_PPC64_TOC:
// We don't create a TOC yet.
break;
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
PPCTargetInfo::PPCTargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void PPCTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool PPCTargetInfo::relocNeedsGot(uint32_t Type) const { return false; }
bool PPCTargetInfo::relocNeedsPlt(uint32_t Type) const { return false; }
void PPCTargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA) const {}
ARMTargetInfo::ARMTargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void ARMTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool ARMTargetInfo::relocNeedsGot(uint32_t Type) const { return false; }
bool ARMTargetInfo::relocNeedsPlt(uint32_t Type) const { return false; }
void ARMTargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA) const {}
AArch64TargetInfo::AArch64TargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type) const { return false; }
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type) const { return false; }
static void handle_ADR_PREL_LO21(uint8_t *Location, uint64_t S, int64_t A,
uint64_t P) {
uint64_t X = S + A - P;
if (!isInt<21>(X))
error("Relocation R_AARCH64_ADR_PREL_LO21 out of range");
uint32_t Imm = X & 0x1FFFFF;
uint32_t ImmLo = (Imm & 0x3) << 29;
uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
write32le(Location, (read32le(Location) & ~Mask) | ImmLo | ImmHi);
}
void AArch64TargetInfo::relocateOne(uint8_t *Buf, const void *RelP,
uint32_t Type, uint64_t BaseAddr,
uint64_t SymVA) const {
typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
uint8_t *Location = Buf + Rel.r_offset;
uint64_t S = SymVA;
int64_t A = Rel.r_addend;
uint64_t P = BaseAddr + Rel.r_offset;
switch (Type) {
case R_AARCH64_ADR_PREL_LO21:
handle_ADR_PREL_LO21(Location, S, A, P);
break;
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
MipsTargetInfo::MipsTargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
DefaultEntry = "__start";
}
void MipsTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool MipsTargetInfo::relocNeedsGot(uint32_t Type) const { return false; }
bool MipsTargetInfo::relocNeedsPlt(uint32_t Type) const { return false; }
void MipsTargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA) const {}
}
}