llvm-project/llvm/test/CodeGen/X86/fminnum.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

614 lines
20 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefixes=CHECK,SSE,SSE2
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse4.1 | FileCheck %s --check-prefixes=CHECK,SSE,SSE4
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx | FileCheck %s --check-prefixes=CHECK,AVX,AVX1
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx512f | FileCheck %s --check-prefixes=CHECK,AVX,AVX512
declare float @fminf(float, float)
declare double @fmin(double, double)
declare x86_fp80 @fminl(x86_fp80, x86_fp80)
declare float @llvm.minnum.f32(float, float)
declare double @llvm.minnum.f64(double, double)
declare x86_fp80 @llvm.minnum.f80(x86_fp80, x86_fp80)
declare <2 x float> @llvm.minnum.v2f32(<2 x float>, <2 x float>)
declare <4 x float> @llvm.minnum.v4f32(<4 x float>, <4 x float>)
declare <8 x float> @llvm.minnum.v8f32(<8 x float>, <8 x float>)
declare <16 x float> @llvm.minnum.v16f32(<16 x float>, <16 x float>)
declare <2 x double> @llvm.minnum.v2f64(<2 x double>, <2 x double>)
declare <4 x double> @llvm.minnum.v4f64(<4 x double>, <4 x double>)
declare <8 x double> @llvm.minnum.v8f64(<8 x double>, <8 x double>)
; FIXME: As the vector tests show, the SSE run shouldn't need this many moves.
define float @test_fminf(float %x, float %y) {
; SSE-LABEL: test_fminf:
; SSE: # %bb.0:
; SSE-NEXT: movaps %xmm0, %xmm2
; SSE-NEXT: cmpunordss %xmm0, %xmm2
; SSE-NEXT: movaps %xmm2, %xmm3
; SSE-NEXT: andps %xmm1, %xmm3
; SSE-NEXT: minss %xmm0, %xmm1
; SSE-NEXT: andnps %xmm1, %xmm2
; SSE-NEXT: orps %xmm3, %xmm2
; SSE-NEXT: movaps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX1-LABEL: test_fminf:
; AVX1: # %bb.0:
; AVX1-NEXT: vminss %xmm0, %xmm1, %xmm2
; AVX1-NEXT: vcmpunordss %xmm0, %xmm0, %xmm0
; AVX1-NEXT: vblendvps %xmm0, %xmm1, %xmm2, %xmm0
; AVX1-NEXT: retq
;
; AVX512-LABEL: test_fminf:
; AVX512: # %bb.0:
; AVX512-NEXT: vminss %xmm0, %xmm1, %xmm2
; AVX512-NEXT: vcmpunordss %xmm0, %xmm0, %k1
; AVX512-NEXT: vmovss %xmm1, %xmm2, %xmm2 {%k1}
; AVX512-NEXT: vmovaps %xmm2, %xmm0
; AVX512-NEXT: retq
%z = call float @fminf(float %x, float %y) readnone
ret float %z
}
define float @test_fminf_minsize(float %x, float %y) minsize {
; CHECK-LABEL: test_fminf_minsize:
; CHECK: # %bb.0:
; CHECK-NEXT: jmp fminf # TAILCALL
%z = call float @fminf(float %x, float %y) readnone
ret float %z
}
; FIXME: As the vector tests show, the SSE run shouldn't need this many moves.
define double @test_fmin(double %x, double %y) {
; SSE-LABEL: test_fmin:
; SSE: # %bb.0:
; SSE-NEXT: movapd %xmm0, %xmm2
; SSE-NEXT: cmpunordsd %xmm0, %xmm2
; SSE-NEXT: movapd %xmm2, %xmm3
; SSE-NEXT: andpd %xmm1, %xmm3
; SSE-NEXT: minsd %xmm0, %xmm1
; SSE-NEXT: andnpd %xmm1, %xmm2
; SSE-NEXT: orpd %xmm3, %xmm2
; SSE-NEXT: movapd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX1-LABEL: test_fmin:
; AVX1: # %bb.0:
; AVX1-NEXT: vminsd %xmm0, %xmm1, %xmm2
; AVX1-NEXT: vcmpunordsd %xmm0, %xmm0, %xmm0
; AVX1-NEXT: vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
; AVX1-NEXT: retq
;
; AVX512-LABEL: test_fmin:
; AVX512: # %bb.0:
; AVX512-NEXT: vminsd %xmm0, %xmm1, %xmm2
; AVX512-NEXT: vcmpunordsd %xmm0, %xmm0, %k1
; AVX512-NEXT: vmovsd %xmm1, %xmm2, %xmm2 {%k1}
; AVX512-NEXT: vmovapd %xmm2, %xmm0
; AVX512-NEXT: retq
%z = call double @fmin(double %x, double %y) readnone
ret double %z
}
define x86_fp80 @test_fminl(x86_fp80 %x, x86_fp80 %y) {
; CHECK-LABEL: test_fminl:
; CHECK: # %bb.0:
; CHECK-NEXT: subq $40, %rsp
; CHECK-NEXT: .cfi_def_cfa_offset 48
; CHECK-NEXT: fldt {{[0-9]+}}(%rsp)
; CHECK-NEXT: fldt {{[0-9]+}}(%rsp)
; CHECK-NEXT: fstpt {{[0-9]+}}(%rsp)
; CHECK-NEXT: fstpt (%rsp)
; CHECK-NEXT: callq fminl
; CHECK-NEXT: addq $40, %rsp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq
%z = call x86_fp80 @fminl(x86_fp80 %x, x86_fp80 %y) readnone
ret x86_fp80 %z
}
define float @test_intrinsic_fminf(float %x, float %y) {
; SSE-LABEL: test_intrinsic_fminf:
; SSE: # %bb.0:
; SSE-NEXT: movaps %xmm0, %xmm2
; SSE-NEXT: cmpunordss %xmm0, %xmm2
; SSE-NEXT: movaps %xmm2, %xmm3
; SSE-NEXT: andps %xmm1, %xmm3
; SSE-NEXT: minss %xmm0, %xmm1
; SSE-NEXT: andnps %xmm1, %xmm2
; SSE-NEXT: orps %xmm3, %xmm2
; SSE-NEXT: movaps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX1-LABEL: test_intrinsic_fminf:
; AVX1: # %bb.0:
; AVX1-NEXT: vminss %xmm0, %xmm1, %xmm2
; AVX1-NEXT: vcmpunordss %xmm0, %xmm0, %xmm0
; AVX1-NEXT: vblendvps %xmm0, %xmm1, %xmm2, %xmm0
; AVX1-NEXT: retq
;
; AVX512-LABEL: test_intrinsic_fminf:
; AVX512: # %bb.0:
; AVX512-NEXT: vminss %xmm0, %xmm1, %xmm2
; AVX512-NEXT: vcmpunordss %xmm0, %xmm0, %k1
; AVX512-NEXT: vmovss %xmm1, %xmm2, %xmm2 {%k1}
; AVX512-NEXT: vmovaps %xmm2, %xmm0
; AVX512-NEXT: retq
%z = call float @llvm.minnum.f32(float %x, float %y) readnone
ret float %z
}
define double @test_intrinsic_fmin(double %x, double %y) {
; SSE-LABEL: test_intrinsic_fmin:
; SSE: # %bb.0:
; SSE-NEXT: movapd %xmm0, %xmm2
; SSE-NEXT: cmpunordsd %xmm0, %xmm2
; SSE-NEXT: movapd %xmm2, %xmm3
; SSE-NEXT: andpd %xmm1, %xmm3
; SSE-NEXT: minsd %xmm0, %xmm1
; SSE-NEXT: andnpd %xmm1, %xmm2
; SSE-NEXT: orpd %xmm3, %xmm2
; SSE-NEXT: movapd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX1-LABEL: test_intrinsic_fmin:
; AVX1: # %bb.0:
; AVX1-NEXT: vminsd %xmm0, %xmm1, %xmm2
; AVX1-NEXT: vcmpunordsd %xmm0, %xmm0, %xmm0
; AVX1-NEXT: vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
; AVX1-NEXT: retq
;
; AVX512-LABEL: test_intrinsic_fmin:
; AVX512: # %bb.0:
; AVX512-NEXT: vminsd %xmm0, %xmm1, %xmm2
; AVX512-NEXT: vcmpunordsd %xmm0, %xmm0, %k1
; AVX512-NEXT: vmovsd %xmm1, %xmm2, %xmm2 {%k1}
; AVX512-NEXT: vmovapd %xmm2, %xmm0
; AVX512-NEXT: retq
%z = call double @llvm.minnum.f64(double %x, double %y) readnone
ret double %z
}
define x86_fp80 @test_intrinsic_fminl(x86_fp80 %x, x86_fp80 %y) {
; CHECK-LABEL: test_intrinsic_fminl:
; CHECK: # %bb.0:
; CHECK-NEXT: subq $40, %rsp
; CHECK-NEXT: .cfi_def_cfa_offset 48
; CHECK-NEXT: fldt {{[0-9]+}}(%rsp)
; CHECK-NEXT: fldt {{[0-9]+}}(%rsp)
; CHECK-NEXT: fstpt {{[0-9]+}}(%rsp)
; CHECK-NEXT: fstpt (%rsp)
; CHECK-NEXT: callq fminl
; CHECK-NEXT: addq $40, %rsp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq
%z = call x86_fp80 @llvm.minnum.f80(x86_fp80 %x, x86_fp80 %y) readnone
ret x86_fp80 %z
}
define <2 x float> @test_intrinsic_fmin_v2f32(<2 x float> %x, <2 x float> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v2f32:
; SSE2: # %bb.0:
; SSE2-NEXT: movaps %xmm1, %xmm2
; SSE2-NEXT: minps %xmm0, %xmm2
; SSE2-NEXT: cmpunordps %xmm0, %xmm0
; SSE2-NEXT: andps %xmm0, %xmm1
; SSE2-NEXT: andnps %xmm2, %xmm0
; SSE2-NEXT: orps %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v2f32:
; SSE4: # %bb.0:
; SSE4-NEXT: movaps %xmm1, %xmm2
; SSE4-NEXT: minps %xmm0, %xmm2
; SSE4-NEXT: cmpunordps %xmm0, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm1, %xmm2
; SSE4-NEXT: movaps %xmm2, %xmm0
; SSE4-NEXT: retq
;
; AVX-LABEL: test_intrinsic_fmin_v2f32:
; AVX: # %bb.0:
; AVX-NEXT: vminps %xmm0, %xmm1, %xmm2
; AVX-NEXT: vcmpunordps %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvps %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq
%z = call <2 x float> @llvm.minnum.v2f32(<2 x float> %x, <2 x float> %y) readnone
ret <2 x float> %z
}
define <4 x float> @test_intrinsic_fmin_v4f32(<4 x float> %x, <4 x float> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v4f32:
; SSE2: # %bb.0:
; SSE2-NEXT: movaps %xmm1, %xmm2
; SSE2-NEXT: minps %xmm0, %xmm2
; SSE2-NEXT: cmpunordps %xmm0, %xmm0
; SSE2-NEXT: andps %xmm0, %xmm1
; SSE2-NEXT: andnps %xmm2, %xmm0
; SSE2-NEXT: orps %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v4f32:
; SSE4: # %bb.0:
; SSE4-NEXT: movaps %xmm1, %xmm2
; SSE4-NEXT: minps %xmm0, %xmm2
; SSE4-NEXT: cmpunordps %xmm0, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm1, %xmm2
; SSE4-NEXT: movaps %xmm2, %xmm0
; SSE4-NEXT: retq
;
; AVX-LABEL: test_intrinsic_fmin_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vminps %xmm0, %xmm1, %xmm2
; AVX-NEXT: vcmpunordps %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvps %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq
%z = call <4 x float> @llvm.minnum.v4f32(<4 x float> %x, <4 x float> %y) readnone
ret <4 x float> %z
}
define <8 x float> @test_intrinsic_fmin_v8f32(<8 x float> %x, <8 x float> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v8f32:
; SSE2: # %bb.0:
; SSE2-NEXT: movaps %xmm2, %xmm4
; SSE2-NEXT: minps %xmm0, %xmm4
; SSE2-NEXT: cmpunordps %xmm0, %xmm0
; SSE2-NEXT: andps %xmm0, %xmm2
; SSE2-NEXT: andnps %xmm4, %xmm0
; SSE2-NEXT: orps %xmm2, %xmm0
; SSE2-NEXT: movaps %xmm3, %xmm2
; SSE2-NEXT: minps %xmm1, %xmm2
; SSE2-NEXT: cmpunordps %xmm1, %xmm1
; SSE2-NEXT: andps %xmm1, %xmm3
; SSE2-NEXT: andnps %xmm2, %xmm1
; SSE2-NEXT: orps %xmm3, %xmm1
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v8f32:
; SSE4: # %bb.0:
; SSE4-NEXT: movaps %xmm1, %xmm5
; SSE4-NEXT: movaps %xmm2, %xmm4
; SSE4-NEXT: minps %xmm0, %xmm4
; SSE4-NEXT: cmpunordps %xmm0, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm2, %xmm4
; SSE4-NEXT: movaps %xmm3, %xmm1
; SSE4-NEXT: minps %xmm5, %xmm1
; SSE4-NEXT: cmpunordps %xmm5, %xmm5
; SSE4-NEXT: movaps %xmm5, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm3, %xmm1
; SSE4-NEXT: movaps %xmm4, %xmm0
; SSE4-NEXT: retq
;
; AVX-LABEL: test_intrinsic_fmin_v8f32:
; AVX: # %bb.0:
; AVX-NEXT: vminps %ymm0, %ymm1, %ymm2
; AVX-NEXT: vcmpunordps %ymm0, %ymm0, %ymm0
; AVX-NEXT: vblendvps %ymm0, %ymm1, %ymm2, %ymm0
; AVX-NEXT: retq
%z = call <8 x float> @llvm.minnum.v8f32(<8 x float> %x, <8 x float> %y) readnone
ret <8 x float> %z
}
define <16 x float> @test_intrinsic_fmin_v16f32(<16 x float> %x, <16 x float> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v16f32:
; SSE2: # %bb.0:
; SSE2-NEXT: movaps %xmm4, %xmm8
; SSE2-NEXT: minps %xmm0, %xmm8
; SSE2-NEXT: cmpunordps %xmm0, %xmm0
; SSE2-NEXT: andps %xmm0, %xmm4
; SSE2-NEXT: andnps %xmm8, %xmm0
; SSE2-NEXT: orps %xmm4, %xmm0
; SSE2-NEXT: movaps %xmm5, %xmm4
; SSE2-NEXT: minps %xmm1, %xmm4
; SSE2-NEXT: cmpunordps %xmm1, %xmm1
; SSE2-NEXT: andps %xmm1, %xmm5
; SSE2-NEXT: andnps %xmm4, %xmm1
; SSE2-NEXT: orps %xmm5, %xmm1
; SSE2-NEXT: movaps %xmm6, %xmm4
; SSE2-NEXT: minps %xmm2, %xmm4
; SSE2-NEXT: cmpunordps %xmm2, %xmm2
; SSE2-NEXT: andps %xmm2, %xmm6
; SSE2-NEXT: andnps %xmm4, %xmm2
; SSE2-NEXT: orps %xmm6, %xmm2
; SSE2-NEXT: movaps %xmm7, %xmm4
; SSE2-NEXT: minps %xmm3, %xmm4
; SSE2-NEXT: cmpunordps %xmm3, %xmm3
; SSE2-NEXT: andps %xmm3, %xmm7
; SSE2-NEXT: andnps %xmm4, %xmm3
; SSE2-NEXT: orps %xmm7, %xmm3
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v16f32:
; SSE4: # %bb.0:
; SSE4-NEXT: movaps %xmm3, %xmm8
; SSE4-NEXT: movaps %xmm2, %xmm9
; SSE4-NEXT: movaps %xmm1, %xmm2
; SSE4-NEXT: movaps %xmm4, %xmm10
; SSE4-NEXT: minps %xmm0, %xmm10
; SSE4-NEXT: cmpunordps %xmm0, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm4, %xmm10
; SSE4-NEXT: movaps %xmm5, %xmm1
; SSE4-NEXT: minps %xmm2, %xmm1
; SSE4-NEXT: cmpunordps %xmm2, %xmm2
; SSE4-NEXT: movaps %xmm2, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm5, %xmm1
; SSE4-NEXT: movaps %xmm6, %xmm2
; SSE4-NEXT: minps %xmm9, %xmm2
; SSE4-NEXT: cmpunordps %xmm9, %xmm9
; SSE4-NEXT: movaps %xmm9, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm6, %xmm2
; SSE4-NEXT: movaps %xmm7, %xmm3
; SSE4-NEXT: minps %xmm8, %xmm3
; SSE4-NEXT: cmpunordps %xmm8, %xmm8
; SSE4-NEXT: movaps %xmm8, %xmm0
; SSE4-NEXT: blendvps %xmm0, %xmm7, %xmm3
; SSE4-NEXT: movaps %xmm10, %xmm0
; SSE4-NEXT: retq
;
; AVX1-LABEL: test_intrinsic_fmin_v16f32:
; AVX1: # %bb.0:
; AVX1-NEXT: vminps %ymm0, %ymm2, %ymm4
; AVX1-NEXT: vcmpunordps %ymm0, %ymm0, %ymm0
; AVX1-NEXT: vblendvps %ymm0, %ymm2, %ymm4, %ymm0
; AVX1-NEXT: vminps %ymm1, %ymm3, %ymm2
; AVX1-NEXT: vcmpunordps %ymm1, %ymm1, %ymm1
; AVX1-NEXT: vblendvps %ymm1, %ymm3, %ymm2, %ymm1
; AVX1-NEXT: retq
;
; AVX512-LABEL: test_intrinsic_fmin_v16f32:
; AVX512: # %bb.0:
; AVX512-NEXT: vminps %zmm0, %zmm1, %zmm2
; AVX512-NEXT: vcmpunordps %zmm0, %zmm0, %k1
; AVX512-NEXT: vmovaps %zmm1, %zmm2 {%k1}
; AVX512-NEXT: vmovaps %zmm2, %zmm0
; AVX512-NEXT: retq
%z = call <16 x float> @llvm.minnum.v16f32(<16 x float> %x, <16 x float> %y) readnone
ret <16 x float> %z
}
define <2 x double> @test_intrinsic_fmin_v2f64(<2 x double> %x, <2 x double> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v2f64:
; SSE2: # %bb.0:
; SSE2-NEXT: movapd %xmm1, %xmm2
; SSE2-NEXT: minpd %xmm0, %xmm2
; SSE2-NEXT: cmpunordpd %xmm0, %xmm0
; SSE2-NEXT: andpd %xmm0, %xmm1
; SSE2-NEXT: andnpd %xmm2, %xmm0
; SSE2-NEXT: orpd %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v2f64:
; SSE4: # %bb.0:
; SSE4-NEXT: movapd %xmm1, %xmm2
; SSE4-NEXT: minpd %xmm0, %xmm2
; SSE4-NEXT: cmpunordpd %xmm0, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm1, %xmm2
; SSE4-NEXT: movapd %xmm2, %xmm0
; SSE4-NEXT: retq
;
; AVX-LABEL: test_intrinsic_fmin_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vminpd %xmm0, %xmm1, %xmm2
; AVX-NEXT: vcmpunordpd %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq
%z = call <2 x double> @llvm.minnum.v2f64(<2 x double> %x, <2 x double> %y) readnone
ret <2 x double> %z
}
define <4 x double> @test_intrinsic_fmin_v4f64(<4 x double> %x, <4 x double> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v4f64:
; SSE2: # %bb.0:
; SSE2-NEXT: movapd %xmm2, %xmm4
; SSE2-NEXT: minpd %xmm0, %xmm4
; SSE2-NEXT: cmpunordpd %xmm0, %xmm0
; SSE2-NEXT: andpd %xmm0, %xmm2
; SSE2-NEXT: andnpd %xmm4, %xmm0
; SSE2-NEXT: orpd %xmm2, %xmm0
; SSE2-NEXT: movapd %xmm3, %xmm2
; SSE2-NEXT: minpd %xmm1, %xmm2
; SSE2-NEXT: cmpunordpd %xmm1, %xmm1
; SSE2-NEXT: andpd %xmm1, %xmm3
; SSE2-NEXT: andnpd %xmm2, %xmm1
; SSE2-NEXT: orpd %xmm3, %xmm1
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v4f64:
; SSE4: # %bb.0:
; SSE4-NEXT: movapd %xmm1, %xmm5
; SSE4-NEXT: movapd %xmm2, %xmm4
; SSE4-NEXT: minpd %xmm0, %xmm4
; SSE4-NEXT: cmpunordpd %xmm0, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm2, %xmm4
; SSE4-NEXT: movapd %xmm3, %xmm1
; SSE4-NEXT: minpd %xmm5, %xmm1
; SSE4-NEXT: cmpunordpd %xmm5, %xmm5
; SSE4-NEXT: movapd %xmm5, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm3, %xmm1
; SSE4-NEXT: movapd %xmm4, %xmm0
; SSE4-NEXT: retq
;
; AVX-LABEL: test_intrinsic_fmin_v4f64:
; AVX: # %bb.0:
; AVX-NEXT: vminpd %ymm0, %ymm1, %ymm2
; AVX-NEXT: vcmpunordpd %ymm0, %ymm0, %ymm0
; AVX-NEXT: vblendvpd %ymm0, %ymm1, %ymm2, %ymm0
; AVX-NEXT: retq
%z = call <4 x double> @llvm.minnum.v4f64(<4 x double> %x, <4 x double> %y) readnone
ret <4 x double> %z
}
define <8 x double> @test_intrinsic_fmin_v8f64(<8 x double> %x, <8 x double> %y) {
; SSE2-LABEL: test_intrinsic_fmin_v8f64:
; SSE2: # %bb.0:
; SSE2-NEXT: movapd %xmm4, %xmm8
; SSE2-NEXT: minpd %xmm0, %xmm8
; SSE2-NEXT: cmpunordpd %xmm0, %xmm0
; SSE2-NEXT: andpd %xmm0, %xmm4
; SSE2-NEXT: andnpd %xmm8, %xmm0
; SSE2-NEXT: orpd %xmm4, %xmm0
; SSE2-NEXT: movapd %xmm5, %xmm4
; SSE2-NEXT: minpd %xmm1, %xmm4
; SSE2-NEXT: cmpunordpd %xmm1, %xmm1
; SSE2-NEXT: andpd %xmm1, %xmm5
; SSE2-NEXT: andnpd %xmm4, %xmm1
; SSE2-NEXT: orpd %xmm5, %xmm1
; SSE2-NEXT: movapd %xmm6, %xmm4
; SSE2-NEXT: minpd %xmm2, %xmm4
; SSE2-NEXT: cmpunordpd %xmm2, %xmm2
; SSE2-NEXT: andpd %xmm2, %xmm6
; SSE2-NEXT: andnpd %xmm4, %xmm2
; SSE2-NEXT: orpd %xmm6, %xmm2
; SSE2-NEXT: movapd %xmm7, %xmm4
; SSE2-NEXT: minpd %xmm3, %xmm4
; SSE2-NEXT: cmpunordpd %xmm3, %xmm3
; SSE2-NEXT: andpd %xmm3, %xmm7
; SSE2-NEXT: andnpd %xmm4, %xmm3
; SSE2-NEXT: orpd %xmm7, %xmm3
; SSE2-NEXT: retq
;
; SSE4-LABEL: test_intrinsic_fmin_v8f64:
; SSE4: # %bb.0:
; SSE4-NEXT: movapd %xmm3, %xmm8
; SSE4-NEXT: movapd %xmm2, %xmm9
; SSE4-NEXT: movapd %xmm1, %xmm2
; SSE4-NEXT: movapd %xmm4, %xmm10
; SSE4-NEXT: minpd %xmm0, %xmm10
; SSE4-NEXT: cmpunordpd %xmm0, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm4, %xmm10
; SSE4-NEXT: movapd %xmm5, %xmm1
; SSE4-NEXT: minpd %xmm2, %xmm1
; SSE4-NEXT: cmpunordpd %xmm2, %xmm2
; SSE4-NEXT: movapd %xmm2, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm5, %xmm1
; SSE4-NEXT: movapd %xmm6, %xmm2
; SSE4-NEXT: minpd %xmm9, %xmm2
; SSE4-NEXT: cmpunordpd %xmm9, %xmm9
; SSE4-NEXT: movapd %xmm9, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm6, %xmm2
; SSE4-NEXT: movapd %xmm7, %xmm3
; SSE4-NEXT: minpd %xmm8, %xmm3
; SSE4-NEXT: cmpunordpd %xmm8, %xmm8
; SSE4-NEXT: movapd %xmm8, %xmm0
; SSE4-NEXT: blendvpd %xmm0, %xmm7, %xmm3
; SSE4-NEXT: movapd %xmm10, %xmm0
; SSE4-NEXT: retq
;
; AVX1-LABEL: test_intrinsic_fmin_v8f64:
; AVX1: # %bb.0:
; AVX1-NEXT: vminpd %ymm0, %ymm2, %ymm4
; AVX1-NEXT: vcmpunordpd %ymm0, %ymm0, %ymm0
; AVX1-NEXT: vblendvpd %ymm0, %ymm2, %ymm4, %ymm0
; AVX1-NEXT: vminpd %ymm1, %ymm3, %ymm2
; AVX1-NEXT: vcmpunordpd %ymm1, %ymm1, %ymm1
; AVX1-NEXT: vblendvpd %ymm1, %ymm3, %ymm2, %ymm1
; AVX1-NEXT: retq
;
; AVX512-LABEL: test_intrinsic_fmin_v8f64:
; AVX512: # %bb.0:
; AVX512-NEXT: vminpd %zmm0, %zmm1, %zmm2
; AVX512-NEXT: vcmpunordpd %zmm0, %zmm0, %k1
; AVX512-NEXT: vmovapd %zmm1, %zmm2 {%k1}
; AVX512-NEXT: vmovapd %zmm2, %zmm0
; AVX512-NEXT: retq
%z = call <8 x double> @llvm.minnum.v8f64(<8 x double> %x, <8 x double> %y) readnone
ret <8 x double> %z
}
; The IR-level FMF propagate to the node. With nnan, there's no need to blend.
define float @minnum_intrinsic_nnan_fmf_f32(float %a, float %b) {
; SSE-LABEL: minnum_intrinsic_nnan_fmf_f32:
; SSE: # %bb.0:
; SSE-NEXT: minss %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: minnum_intrinsic_nnan_fmf_f32:
; AVX: # %bb.0:
; AVX-NEXT: vminss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%r = tail call nnan float @llvm.minnum.f32(float %a, float %b)
ret float %r
}
; Make sure vectors work too.
define <2 x double> @minnum_intrinsic_nnan_fmf_v2f64(<2 x double> %a, <2 x double> %b) {
; SSE-LABEL: minnum_intrinsic_nnan_fmf_v2f64:
; SSE: # %bb.0:
; SSE-NEXT: minpd %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: minnum_intrinsic_nnan_fmf_v2f64:
; AVX: # %bb.0:
; AVX-NEXT: vminpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%r = tail call nnan <2 x double> @llvm.minnum.v2f64(<2 x double> %a, <2 x double> %b)
ret <2 x double> %r
}
; Current (but legacy someday): a function-level attribute should also enable the fold.
define double @minnum_intrinsic_nnan_attr_f64(double %a, double %b) #0 {
; SSE-LABEL: minnum_intrinsic_nnan_attr_f64:
; SSE: # %bb.0:
; SSE-NEXT: minsd %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: minnum_intrinsic_nnan_attr_f64:
; AVX: # %bb.0:
; AVX-NEXT: vminsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%r = tail call double @llvm.minnum.f64(double %a, double %b)
ret double %r
}
; Make sure vectors work too.
define <4 x float> @minnum_intrinsic_nnan_attr_v4f32(<4 x float> %a, <4 x float> %b) #0 {
; SSE-LABEL: minnum_intrinsic_nnan_attr_v4f32:
; SSE: # %bb.0:
; SSE-NEXT: minps %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: minnum_intrinsic_nnan_attr_v4f32:
; AVX: # %bb.0:
; AVX-NEXT: vminps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%r = tail call <4 x float> @llvm.minnum.v4f32(<4 x float> %a, <4 x float> %b)
ret <4 x float> %r
}
define float @test_minnum_const_op1(float %x) {
; SSE-LABEL: test_minnum_const_op1:
; SSE: # %bb.0:
; SSE-NEXT: minss {{.*}}(%rip), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: test_minnum_const_op1:
; AVX: # %bb.0:
; AVX-NEXT: vminss {{.*}}(%rip), %xmm0, %xmm0
; AVX-NEXT: retq
%r = call float @llvm.minnum.f32(float 1.0, float %x)
ret float %r
}
define float @test_minnum_const_op2(float %x) {
; SSE-LABEL: test_minnum_const_op2:
; SSE: # %bb.0:
; SSE-NEXT: minss {{.*}}(%rip), %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: test_minnum_const_op2:
; AVX: # %bb.0:
; AVX-NEXT: vminss {{.*}}(%rip), %xmm0, %xmm0
; AVX-NEXT: retq
%r = call float @llvm.minnum.f32(float %x, float 1.0)
ret float %r
}
attributes #0 = { "no-nans-fp-math"="true" }