llvm-project/clang/lib/Sema/SemaExprObjC.cpp

466 lines
18 KiB
C++
Raw Normal View History

//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective-C expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
using namespace clang;
Sema::ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
ExprTy **Strings,
unsigned NumStrings) {
SourceLocation AtLoc = AtLocs[0];
StringLiteral* S = static_cast<StringLiteral *>(Strings[0]);
if (NumStrings > 1) {
// Concatenate objc strings.
StringLiteral* ES = static_cast<StringLiteral *>(Strings[NumStrings-1]);
SourceLocation EndLoc = ES->getSourceRange().getEnd();
unsigned Length = 0;
for (unsigned i = 0; i < NumStrings; i++)
Length += static_cast<StringLiteral *>(Strings[i])->getByteLength();
char *strBuf = new char [Length];
char *p = strBuf;
bool isWide = false;
for (unsigned i = 0; i < NumStrings; i++) {
S = static_cast<StringLiteral *>(Strings[i]);
if (S->isWide())
isWide = true;
memcpy(p, S->getStrData(), S->getByteLength());
p += S->getByteLength();
delete S;
}
S = new StringLiteral(strBuf, Length,
isWide, Context.getPointerType(Context.CharTy),
AtLoc, EndLoc);
}
if (CheckBuiltinCFStringArgument(S))
return true;
if (Context.getObjCConstantStringInterface().isNull()) {
// Initialize the constant string interface lazily. This assumes
// the NSConstantString interface is seen in this translation unit.
IdentifierInfo *NSIdent = &Context.Idents.get("NSConstantString");
Decl *IFace = LookupDecl(NSIdent, Decl::IDNS_Ordinary, TUScope);
ObjCInterfaceDecl *strIFace = dyn_cast_or_null<ObjCInterfaceDecl>(IFace);
if (!strIFace)
return Diag(S->getLocStart(), diag::err_undef_interface,
NSIdent->getName());
Context.setObjCConstantStringInterface(strIFace);
}
QualType t = Context.getObjCConstantStringInterface();
t = Context.getPointerType(t);
return new ObjCStringLiteral(S, t, AtLoc);
}
Sema::ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc) {
QualType EncodedType = QualType::getFromOpaquePtr(Ty);
QualType t = Context.getPointerType(Context.CharTy);
return new ObjCEncodeExpr(t, EncodedType, AtLoc, RParenLoc);
}
Sema::ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
QualType t = Context.getObjCSelType();
return new ObjCSelectorExpr(t, Sel, AtLoc, RParenLoc);
}
Sema::ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
ObjCProtocolDecl* PDecl = ObjCProtocols[ProtocolId];
if (!PDecl) {
Diag(ProtoLoc, diag::err_undeclared_protocol, ProtocolId->getName());
return true;
}
QualType t = Context.getObjCProtoType();
if (t.isNull())
return true;
t = Context.getPointerType(t);
return new ObjCProtocolExpr(t, PDecl, AtLoc, RParenLoc);
}
bool Sema::CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs,
ObjCMethodDecl *Method) {
bool anyIncompatibleArgs = false;
for (unsigned i = 0; i < NumArgs; i++) {
Expr *argExpr = Args[i];
assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
QualType lhsType = Method->getParamDecl(i)->getType();
QualType rhsType = argExpr->getType();
// If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
if (lhsType->isArrayType())
lhsType = Context.getArrayDecayedType(lhsType);
else if (lhsType->isFunctionType())
lhsType = Context.getPointerType(lhsType);
AssignConvertType Result =
CheckSingleAssignmentConstraints(lhsType, argExpr);
if (Args[i] != argExpr) // The expression was converted.
Args[i] = argExpr; // Make sure we store the converted expression.
anyIncompatibleArgs |=
DiagnoseAssignmentResult(Result, argExpr->getLocStart(), lhsType, rhsType,
argExpr, "sending");
}
return anyIncompatibleArgs;
}
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
Sema::ExprResult Sema::ActOnClassMessage(
Scope *S,
IdentifierInfo *receiverName, Selector Sel,
SourceLocation lbrac, SourceLocation rbrac, ExprTy **Args, unsigned NumArgs)
{
assert(receiverName && "missing receiver class name");
Expr **ArgExprs = reinterpret_cast<Expr **>(Args);
ObjCInterfaceDecl* ClassDecl = 0;
if (!strcmp(receiverName->getName(), "super") && CurMethodDecl) {
ClassDecl = CurMethodDecl->getClassInterface()->getSuperClass();
if (!ClassDecl)
return Diag(lbrac, diag::error_no_super_class,
CurMethodDecl->getClassInterface()->getName());
if (CurMethodDecl->isInstance()) {
// Synthesize a cast to the super class. This hack allows us to loosely
// represent super without creating a special expression node.
IdentifierInfo &II = Context.Idents.get("self");
ExprResult ReceiverExpr = ActOnIdentifierExpr(S, lbrac, II, false);
QualType superTy = Context.getObjCInterfaceType(ClassDecl);
superTy = Context.getPointerType(superTy);
ReceiverExpr = ActOnCastExpr(SourceLocation(), superTy.getAsOpaquePtr(),
SourceLocation(), ReceiverExpr.Val);
// We are really in an instance method, redirect.
return ActOnInstanceMessage(ReceiverExpr.Val, Sel, lbrac, rbrac,
Args, NumArgs);
}
// We are sending a message to 'super' within a class method. Do nothing,
// the receiver will pass through as 'super' (how convenient:-).
} else
ClassDecl = getObjCInterfaceDecl(receiverName);
// FIXME: can ClassDecl ever be null?
ObjCMethodDecl *Method = ClassDecl->lookupClassMethod(Sel);
QualType returnType;
// Before we give up, check if the selector is an instance method.
if (!Method)
Method = ClassDecl->lookupInstanceMethod(Sel);
if (!Method) {
Diag(lbrac, diag::warn_method_not_found, std::string("+"), Sel.getName(),
SourceRange(lbrac, rbrac));
returnType = Context.getObjCIdType();
} else {
returnType = Method->getResultType();
if (Sel.getNumArgs()) {
if (CheckMessageArgumentTypes(ArgExprs, Sel.getNumArgs(), Method))
return true;
}
}
return new ObjCMessageExpr(receiverName, Sel, returnType, Method,
lbrac, rbrac, ArgExprs, NumArgs);
}
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
Sema::ExprResult Sema::ActOnInstanceMessage(
ExprTy *receiver, Selector Sel,
SourceLocation lbrac, SourceLocation rbrac, ExprTy **Args, unsigned NumArgs)
{
assert(receiver && "missing receiver expression");
Expr **ArgExprs = reinterpret_cast<Expr **>(Args);
Expr *RExpr = static_cast<Expr *>(receiver);
QualType receiverType = RExpr->getType().getCanonicalType();
QualType returnType;
ObjCMethodDecl *Method = 0;
// FIXME: This code is not stripping off type qualifiers! Should it?
if (receiverType == Context.getObjCIdType().getCanonicalType() ||
receiverType == Context.getObjCClassType().getCanonicalType()) {
Method = InstanceMethodPool[Sel].Method;
if (!Method)
Method = FactoryMethodPool[Sel].Method;
if (!Method) {
Diag(lbrac, diag::warn_method_not_found, std::string("-"), Sel.getName(),
SourceRange(lbrac, rbrac));
returnType = Context.getObjCIdType();
} else {
returnType = Method->getResultType();
if (Sel.getNumArgs())
if (CheckMessageArgumentTypes(ArgExprs, Sel.getNumArgs(), Method))
return true;
}
} else {
bool receiverIsQualId = isa<ObjCQualifiedIdType>(receiverType);
// FIXME (snaroff): checking in this code from Patrick. Needs to be
// revisited. how do we get the ClassDecl from the receiver expression?
if (!receiverIsQualId)
while (const PointerType *PTy = receiverType->getAsPointerType())
receiverType = PTy->getPointeeType();
ObjCInterfaceDecl* ClassDecl = 0;
if (ObjCQualifiedInterfaceType *QIT =
dyn_cast<ObjCQualifiedInterfaceType>(receiverType)) {
ClassDecl = QIT->getDecl();
Method = ClassDecl->lookupInstanceMethod(Sel);
if (!Method) {
// search protocols
for (unsigned i = 0; i < QIT->getNumProtocols(); i++) {
ObjCProtocolDecl *PDecl = QIT->getProtocols(i);
if (PDecl && (Method = PDecl->lookupInstanceMethod(Sel)))
break;
}
}
if (!Method)
Diag(lbrac, diag::warn_method_not_found_in_protocol,
std::string("-"), Sel.getName(),
SourceRange(lbrac, rbrac));
}
else if (ObjCQualifiedIdType *QIT =
dyn_cast<ObjCQualifiedIdType>(receiverType)) {
// search protocols
for (unsigned i = 0; i < QIT->getNumProtocols(); i++) {
ObjCProtocolDecl *PDecl = QIT->getProtocols(i);
if (PDecl && (Method = PDecl->lookupInstanceMethod(Sel)))
break;
}
if (!Method)
Diag(lbrac, diag::warn_method_not_found_in_protocol,
std::string("-"), Sel.getName(),
SourceRange(lbrac, rbrac));
}
else {
ObjCInterfaceType *OCIReceiver =dyn_cast<ObjCInterfaceType>(receiverType);
if (OCIReceiver == 0) {
Diag(lbrac, diag::error_bad_receiver_type,
RExpr->getType().getAsString());
return true;
}
ClassDecl = OCIReceiver->getDecl();
// FIXME: consider using InstanceMethodPool, since it will be faster
// than the following method (which can do *many* linear searches). The
// idea is to add class info to InstanceMethodPool...
Method = ClassDecl->lookupInstanceMethod(Sel);
}
if (!Method) {
// If we have an implementation in scope, check "private" methods.
if (ClassDecl)
if (ObjCImplementationDecl *ImpDecl =
ObjCImplementations[ClassDecl->getIdentifier()])
Method = ImpDecl->getInstanceMethod(Sel);
// If we still haven't found a method, look in the global pool. This
// behavior isn't very desirable, however we need it for GCC
// compatibility.
if (!Method)
Method = InstanceMethodPool[Sel].Method;
}
if (!Method) {
Diag(lbrac, diag::warn_method_not_found, std::string("-"), Sel.getName(),
SourceRange(lbrac, rbrac));
returnType = Context.getObjCIdType();
} else {
returnType = Method->getResultType();
if (Sel.getNumArgs())
if (CheckMessageArgumentTypes(ArgExprs, Sel.getNumArgs(), Method))
return true;
}
}
return new ObjCMessageExpr(RExpr, Sel, returnType, Method, lbrac, rbrac,
ArgExprs, NumArgs);
}
//===----------------------------------------------------------------------===//
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
//===----------------------------------------------------------------------===//
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
/// inheritance hierarchy of 'rProto'.
static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto) {
if (lProto == rProto)
return true;
ObjCProtocolDecl** RefPDecl = rProto->getReferencedProtocols();
for (unsigned i = 0; i < rProto->getNumReferencedProtocols(); i++)
if (ProtocolCompatibleWithProtocol(lProto, RefPDecl[i]))
return true;
return false;
}
/// ClassImplementsProtocol - Checks that 'lProto' protocol
/// has been implemented in IDecl class, its super class or categories (if
/// lookupCategory is true).
static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
ObjCInterfaceDecl *IDecl,
bool lookupCategory) {
// 1st, look up the class.
ObjCProtocolDecl **protoList = IDecl->getReferencedProtocols();
for (unsigned i = 0; i < IDecl->getNumIntfRefProtocols(); i++) {
if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
return true;
}
// 2nd, look up the category.
if (lookupCategory)
for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
CDecl = CDecl->getNextClassCategory()) {
protoList = CDecl->getReferencedProtocols();
for (unsigned i = 0; i < CDecl->getNumReferencedProtocols(); i++) {
if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
return true;
}
}
// 3rd, look up the super class(s)
if (IDecl->getSuperClass())
return
ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory);
return false;
}
/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
/// ObjCQualifiedIDType.
bool Sema::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
bool compare) {
// Allow id<P..> and an 'id' or void* type in all cases.
if (const PointerType *PT = lhs->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (Context.isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
return true;
} else if (const PointerType *PT = rhs->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (Context.isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
return true;
}
if (const ObjCQualifiedIdType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
const ObjCQualifiedIdType *rhsQID = rhs->getAsObjCQualifiedIdType();
const ObjCQualifiedInterfaceType *rhsQI = 0;
if (!rhsQID) {
// Not comparing two ObjCQualifiedIdType's?
if (!rhs->isPointerType()) return false;
QualType rtype = rhs->getAsPointerType()->getPointeeType();
rhsQI = rtype->getAsObjCQualifiedInterfaceType();
if (rhsQI == 0) {
// If the RHS is an interface pointer ('NSString*'), handle it.
if (const ObjCInterfaceType *IT = rtype->getAsObjCInterfaceType()) {
ObjCInterfaceDecl *rhsID = IT->getDecl();
for (unsigned i = 0; i != lhsQID->getNumProtocols(); ++i) {
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
if (!ClassImplementsProtocol(lhsQID->getProtocols(i), rhsID, true))
return false;
}
return true;
}
}
}
ObjCQualifiedIdType::qual_iterator RHSProtoI, RHSProtoE;
if (rhsQI) {
RHSProtoI = rhsQI->qual_begin();
RHSProtoE = rhsQI->qual_end();
} else if (rhsQID) {
RHSProtoI = rhsQID->qual_begin();
RHSProtoE = rhsQID->qual_end();
} else {
return false;
}
for (unsigned i =0; i < lhsQID->getNumProtocols(); i++) {
ObjCProtocolDecl *lhsProto = lhsQID->getProtocols(i);
bool match = false;
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
for (; RHSProtoI != RHSProtoE; ++RHSProtoI) {
ObjCProtocolDecl *rhsProto = *RHSProtoI;
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
const ObjCQualifiedIdType *rhsQID = rhs->getAsObjCQualifiedIdType();
assert(rhsQID && "One of the LHS/RHS should be id<x>");
if (!lhs->isPointerType())
return false;
QualType ltype = lhs->getAsPointerType()->getPointeeType();
if (const ObjCQualifiedInterfaceType *lhsQI =
ltype->getAsObjCQualifiedInterfaceType()) {
ObjCQualifiedIdType::qual_iterator LHSProtoI = lhsQI->qual_begin();
ObjCQualifiedIdType::qual_iterator LHSProtoE = lhsQI->qual_end();
for (; LHSProtoI != LHSProtoE; ++LHSProtoI) {
bool match = false;
ObjCProtocolDecl *lhsProto = *LHSProtoI;
for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
if (const ObjCInterfaceType *IT = ltype->getAsObjCInterfaceType()) {
// for static type vs. qualified 'id' type, check that class implements
// all of 'id's protocols.
ObjCInterfaceDecl *lhsID = IT->getDecl();
for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
if (!ClassImplementsProtocol(rhsProto, lhsID, compare))
return false;
}
return true;
}
return false;
}