llvm-project/lld/COFF/Driver.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2283 lines
77 KiB
C++
Raw Normal View History

//===- Driver.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Driver.h"
#include "Config.h"
#include "DebugTypes.h"
#include "ICF.h"
#include "InputFiles.h"
#include "MarkLive.h"
#include "MinGW.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Writer.h"
#include "lld/Common/Args.h"
#include "lld/Common/Driver.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Filesystem.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Timer.h"
#include "lld/Common/Version.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Object/ArchiveWriter.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/COFFModuleDefinition.h"
#include "llvm/Object/WindowsMachineFlag.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ToolDrivers/llvm-lib/LibDriver.h"
#include <algorithm>
#include <future>
#include <memory>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::COFF;
using namespace llvm::sys;
namespace lld {
namespace coff {
static Timer inputFileTimer("Input File Reading", Timer::root());
Configuration *config;
LinkerDriver *driver;
bool link(ArrayRef<const char *> args, bool canExitEarly, raw_ostream &stdoutOS,
raw_ostream &stderrOS) {
lld::stdoutOS = &stdoutOS;
lld::stderrOS = &stderrOS;
errorHandler().cleanupCallback = []() {
Re-land "[PDB] Merge types in parallel when using ghashing" Stored Error objects have to be checked, even if they are success values. This reverts commit 8d250ac3cd48d0f17f9314685a85e77895c05351. Relands commit 49b3459930655d879b2dc190ff8fe11c38a8be5f.. Original commit message: ----------------------------------------- This makes type merging much faster (-24% on chrome.dll) when multiple threads are available, but it slightly increases the time to link (+10%) when /threads:1 is passed. With only one more thread, the new type merging is faster (-11%). The output PDB should be identical to what it was before this change. To give an idea, here is the /time output placed side by side: BEFORE | AFTER Input File Reading: 956 ms | 968 ms Code Layout: 258 ms | 190 ms Commit Output File: 6 ms | 7 ms PDB Emission (Cumulative): 6691 ms | 4253 ms Add Objects: 4341 ms | 2927 ms Type Merging: 2814 ms | 1269 ms -55%! Symbol Merging: 1509 ms | 1645 ms Publics Stream Layout: 111 ms | 112 ms TPI Stream Layout: 764 ms | 26 ms trivial Commit to Disk: 1322 ms | 1036 ms -300ms ----------------------------------------- -------- Total Link Time: 8416 ms 5882 ms -30% overall The main source of the additional overhead in the single-threaded case is the need to iterate all .debug$T sections up front to check which type records should go in the IPI stream. See fillIsItemIndexFromDebugT. With changes to the .debug$H section, we could pre-calculate this info and eliminate the need to do this walk up front. That should restore single-threaded performance back to what it was before this change. This change will cause LLD to be much more parallel than it used to, and for users who do multiple links in parallel, it could regress performance. However, when the user is only doing one link, it's a huge improvement. In the future, we can use NT worker threads to avoid oversaturating the machine with work, but for now, this is such an improvement for the single-link use case that I think we should land this as is. Algorithm ---------- Before this change, we essentially used a DenseMap<GloballyHashedType, TypeIndex> to check if a type has already been seen, and if it hasn't been seen, insert it now and use the next available type index for it in the destination type stream. DenseMap does not support concurrent insertion, and even if it did, the linker must be deterministic: it cannot produce different PDBs by using different numbers of threads. The output type stream must be in the same order regardless of the order of hash table insertions. In order to create a hash table that supports concurrent insertion, the table cells must be small enough that they can be updated atomically. The algorithm I used for updating the table using linear probing is described in this paper, "Concurrent Hash Tables: Fast and General(?)!": https://dl.acm.org/doi/10.1145/3309206 The GHashCell in this change is essentially a pair of 32-bit integer indices: <sourceIndex, typeIndex>. The sourceIndex is the index of the TpiSource object, and it represents an input type stream. The typeIndex is the index of the type in the stream. Together, we have something like a ragged 2D array of ghashes, which can be looked up as: tpiSources[tpiSrcIndex]->ghashes[typeIndex] By using these side tables, we can omit the key data from the hash table, and keep the table cell small. There is a cost to this: resolving hash table collisions requires many more loads than simply looking at the key in the same cache line as the insertion position. However, most supported platforms should have a 64-bit CAS operation to update the cell atomically. To make the result of concurrent insertion deterministic, the cell payloads must have a priority function. Defining one is pretty straightforward: compare the two 32-bit numbers as a combined 64-bit number. This means that types coming from inputs earlier on the command line have a higher priority and are more likely to appear earlier in the final PDB type stream than types from an input appearing later on the link line. After table insertion, the non-empty cells in the table can be copied out of the main table and sorted by priority to determine the ordering of the final type index stream. At this point, item and type records must be separated, either by sorting or by splitting into two arrays, and I chose sorting. This is why the GHashCell must contain the isItem bit. Once the final PDB TPI stream ordering is known, we need to compute a mapping from source type index to PDB type index. To avoid starting over from scratch and looking up every type again by its ghash, we save the insertion position of every hash table insertion during the first insertion phase. Because the table does not support rehashing, the insertion position is stable. Using the array of insertion positions indexed by source type index, we can replace the source type indices in the ghash table cells with the PDB type indices. Once the table cells have been updated to contain PDB type indices, the mapping for each type source can be computed in parallel. Simply iterate the list of cell positions and replace them with the PDB type index, since the insertion positions are no longer needed. Once we have a source to destination type index mapping for every type source, there are no more data dependencies. We know which type records are "unique" (not duplicates), and what their final type indices will be. We can do the remapping in parallel, and accumulate type sizes and type hashes in parallel by type source. Lastly, TPI stream layout must be done serially. Accumulate all the type records, sizes, and hashes, and add them to the PDB. Differential Revision: https://reviews.llvm.org/D87805
2020-10-01 05:55:51 +08:00
TpiSource::clear();
freeArena();
ObjFile::instances.clear();
PDBInputFile::instances.clear();
ImportFile::instances.clear();
BitcodeFile::instances.clear();
memset(MergeChunk::instances, 0, sizeof(MergeChunk::instances));
OutputSection::clear();
};
errorHandler().logName = args::getFilenameWithoutExe(args[0]);
errorHandler().errorLimitExceededMsg =
"too many errors emitted, stopping now"
" (use /errorlimit:0 to see all errors)";
errorHandler().exitEarly = canExitEarly;
stderrOS.enable_colors(stderrOS.has_colors());
config = make<Configuration>();
symtab = make<SymbolTable>();
driver = make<LinkerDriver>();
driver->linkerMain(args);
// Call exit() if we can to avoid calling destructors.
if (canExitEarly)
exitLld(errorCount() ? 1 : 0);
bool ret = errorCount() == 0;
if (!canExitEarly)
errorHandler().reset();
return ret;
}
// Parse options of the form "old;new".
static std::pair<StringRef, StringRef> getOldNewOptions(opt::InputArgList &args,
unsigned id) {
auto *arg = args.getLastArg(id);
if (!arg)
return {"", ""};
StringRef s = arg->getValue();
std::pair<StringRef, StringRef> ret = s.split(';');
if (ret.second.empty())
error(arg->getSpelling() + " expects 'old;new' format, but got " + s);
return ret;
}
// Drop directory components and replace extension with
// ".exe", ".dll" or ".sys".
static std::string getOutputPath(StringRef path) {
StringRef ext = ".exe";
if (config->dll)
ext = ".dll";
else if (config->driver)
ext = ".sys";
return (sys::path::stem(path) + ext).str();
}
// Returns true if S matches /crtend.?\.o$/.
static bool isCrtend(StringRef s) {
if (!s.endswith(".o"))
return false;
s = s.drop_back(2);
if (s.endswith("crtend"))
return true;
return !s.empty() && s.drop_back().endswith("crtend");
}
// ErrorOr is not default constructible, so it cannot be used as the type
// parameter of a future.
// FIXME: We could open the file in createFutureForFile and avoid needing to
// return an error here, but for the moment that would cost us a file descriptor
// (a limited resource on Windows) for the duration that the future is pending.
using MBErrPair = std::pair<std::unique_ptr<MemoryBuffer>, std::error_code>;
// Create a std::future that opens and maps a file using the best strategy for
// the host platform.
static std::future<MBErrPair> createFutureForFile(std::string path) {
#if _WIN32
// On Windows, file I/O is relatively slow so it is best to do this
// asynchronously.
auto strategy = std::launch::async;
#else
auto strategy = std::launch::deferred;
#endif
return std::async(strategy, [=]() {
auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
/*RequiresNullTerminator=*/false);
if (!mbOrErr)
return MBErrPair{nullptr, mbOrErr.getError()};
return MBErrPair{std::move(*mbOrErr), std::error_code()};
});
}
// Symbol names are mangled by prepending "_" on x86.
static StringRef mangle(StringRef sym) {
assert(config->machine != IMAGE_FILE_MACHINE_UNKNOWN);
if (config->machine == I386)
return saver.save("_" + sym);
return sym;
}
static bool findUnderscoreMangle(StringRef sym) {
[COFF] Fix /export:foo=bar when bar is a weak alias Summary: When handling exports from the command line or from .def files, the linker does a "fuzzy" string lookup to allow finding mangled symbols. However, when the symbol is re-exported under a new name, the linker has to transfer the decorations from the exported symbol over to the new name. This is implemented by taking the mangled symbol that was found in the object and replacing the original symbol name with the export name. Before this patch, LLD implemented the fuzzy search by adding an undefined symbol with the unmangled name, and then during symbol resolution, checking if similar mangled symbols had been added after the last round of symbol resolution. If so, LLD makes the original symbol a weak alias of the mangled symbol. Later, to get the original symbol name, LLD would look through the weak alias and forward it on to the import library writer, which copies the symbol decorations. This approach doesn't work when bar is itself a weak alias, as is the case in asan. It's especially bad when the aliasee of bar contains the string "bar", consider "bar_default". In this case, we would end up exporting the symbol "foo_default" when we should've exported just "foo". To fix this, don't look through weak aliases to find the mangled name. Save the mangled name earlier during fuzzy symbol lookup. Fixes PR42074 Reviewers: mstorsjo, ruiu Subscribers: thakis, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62984 llvm-svn: 362849
2019-06-08 06:05:12 +08:00
Symbol *s = symtab->findMangle(mangle(sym));
return s && !isa<Undefined>(s);
}
MemoryBufferRef LinkerDriver::takeBuffer(std::unique_ptr<MemoryBuffer> mb) {
MemoryBufferRef mbref = *mb;
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take ownership
if (driver->tar)
driver->tar->append(relativeToRoot(mbref.getBufferIdentifier()),
mbref.getBuffer());
return mbref;
}
void LinkerDriver::addBuffer(std::unique_ptr<MemoryBuffer> mb,
bool wholeArchive, bool lazy) {
StringRef filename = mb->getBufferIdentifier();
MemoryBufferRef mbref = takeBuffer(std::move(mb));
filePaths.push_back(filename);
// File type is detected by contents, not by file extension.
switch (identify_magic(mbref.getBuffer())) {
case file_magic::windows_resource:
resources.push_back(mbref);
break;
case file_magic::archive:
if (wholeArchive) {
std::unique_ptr<Archive> file =
CHECK(Archive::create(mbref), filename + ": failed to parse archive");
Archive *archive = file.get();
make<std::unique_ptr<Archive>>(std::move(file)); // take ownership
int memberIndex = 0;
for (MemoryBufferRef m : getArchiveMembers(archive))
addArchiveBuffer(m, "<whole-archive>", filename, memberIndex++);
return;
}
symtab->addFile(make<ArchiveFile>(mbref));
break;
case file_magic::bitcode:
if (lazy)
symtab->addFile(make<LazyObjFile>(mbref));
else
symtab->addFile(make<BitcodeFile>(mbref, "", 0));
break;
case file_magic::coff_object:
case file_magic::coff_import_library:
if (lazy)
symtab->addFile(make<LazyObjFile>(mbref));
else
symtab->addFile(make<ObjFile>(mbref));
break;
case file_magic::pdb:
symtab->addFile(make<PDBInputFile>(mbref));
break;
case file_magic::coff_cl_gl_object:
error(filename + ": is not a native COFF file. Recompile without /GL");
break;
case file_magic::pecoff_executable:
if (filename.endswith_lower(".dll")) {
error(filename + ": bad file type. Did you specify a DLL instead of an "
"import library?");
break;
}
LLVM_FALLTHROUGH;
default:
error(mbref.getBufferIdentifier() + ": unknown file type");
break;
}
}
void LinkerDriver::enqueuePath(StringRef path, bool wholeArchive, bool lazy) {
auto future = std::make_shared<std::future<MBErrPair>>(
createFutureForFile(std::string(path)));
std::string pathStr = std::string(path);
enqueueTask([=]() {
auto mbOrErr = future->get();
if (mbOrErr.second) {
std::string msg =
"could not open '" + pathStr + "': " + mbOrErr.second.message();
// Check if the filename is a typo for an option flag. OptTable thinks
// that all args that are not known options and that start with / are
// filenames, but e.g. `/nodefaultlibs` is more likely a typo for
// the option `/nodefaultlib` than a reference to a file in the root
// directory.
std::string nearest;
if (optTable.findNearest(pathStr, nearest) > 1)
error(msg);
else
error(msg + "; did you mean '" + nearest + "'");
} else
driver->addBuffer(std::move(mbOrErr.first), wholeArchive, lazy);
});
}
void LinkerDriver::addArchiveBuffer(MemoryBufferRef mb, StringRef symName,
StringRef parentName,
uint64_t offsetInArchive) {
file_magic magic = identify_magic(mb.getBuffer());
if (magic == file_magic::coff_import_library) {
InputFile *imp = make<ImportFile>(mb);
imp->parentName = parentName;
symtab->addFile(imp);
return;
}
InputFile *obj;
if (magic == file_magic::coff_object) {
obj = make<ObjFile>(mb);
} else if (magic == file_magic::bitcode) {
obj = make<BitcodeFile>(mb, parentName, offsetInArchive);
} else {
error("unknown file type: " + mb.getBufferIdentifier());
return;
}
obj->parentName = parentName;
symtab->addFile(obj);
log("Loaded " + toString(obj) + " for " + symName);
}
void LinkerDriver::enqueueArchiveMember(const Archive::Child &c,
const Archive::Symbol &sym,
StringRef parentName) {
auto reportBufferError = [=](Error &&e, StringRef childName) {
fatal("could not get the buffer for the member defining symbol " +
toCOFFString(sym) + ": " + parentName + "(" + childName + "): " +
toString(std::move(e)));
};
if (!c.getParent()->isThin()) {
uint64_t offsetInArchive = c.getChildOffset();
Expected<MemoryBufferRef> mbOrErr = c.getMemoryBufferRef();
if (!mbOrErr)
reportBufferError(mbOrErr.takeError(), check(c.getFullName()));
MemoryBufferRef mb = mbOrErr.get();
enqueueTask([=]() {
driver->addArchiveBuffer(mb, toCOFFString(sym), parentName,
offsetInArchive);
});
return;
}
std::string childName = CHECK(
c.getFullName(),
"could not get the filename for the member defining symbol " +
toCOFFString(sym));
auto future = std::make_shared<std::future<MBErrPair>>(
createFutureForFile(childName));
enqueueTask([=]() {
auto mbOrErr = future->get();
if (mbOrErr.second)
reportBufferError(errorCodeToError(mbOrErr.second), childName);
// Pass empty string as archive name so that the original filename is
// used as the buffer identifier.
driver->addArchiveBuffer(takeBuffer(std::move(mbOrErr.first)),
toCOFFString(sym), "", /*OffsetInArchive=*/0);
});
}
COFF: Improve dllexported name mangling compatibility. The rules for dllexported symbols are overly complicated due to x86 name decoration, fuzzy symbol resolution, and the fact that one symbol can be resolved by so many different names. The rules are probably intended to be "intuitive", so that users don't have to understand the name mangling schemes, but it seems that it can lead to unintended symbol exports. To make it clear what I'm trying to do with this patch, let me write how the export rules are subtle and complicated. - x86 name decoration: If machine type is i386 and export name is given by a command line option, like /export:foo, the real symbol name the linker has to search for is _foo because all symbols are decorated with "_" prefixes. This doesn't happen on non-x86 machines. This automatic name decoration happens only when the name is not C++ mangled. However, the symbol name exported from DLLs are ones without "_" on all platforms. Moreover, if the option is given via .drectve section, no symbol decoration is done (the reason being that the .drectve section is created by a compiler and the compiler should always know the exact name of the symbol, I guess). - Fuzzy symbol resolution: In addition to x86 name decoration, the linker has to look for cdecl or C++ mangled symbols for a given /export. For example, it searches for not only _foo but also _foo@<number> or ??foo@... for /export:foo. Previous implementation didn't get it right. I'm trying to make it as compatible with MSVC linker as possible with this patch however the rules are. The new code looks a bit messy to me, but I don't think it can be simpler due to the ad-hoc-ness of the rules. llvm-svn: 246424
2015-08-31 16:43:21 +08:00
static bool isDecorated(StringRef sym) {
return sym.startswith("@") || sym.contains("@@") || sym.startswith("?") ||
(!config->mingw && sym.contains('@'));
COFF: Improve dllexported name mangling compatibility. The rules for dllexported symbols are overly complicated due to x86 name decoration, fuzzy symbol resolution, and the fact that one symbol can be resolved by so many different names. The rules are probably intended to be "intuitive", so that users don't have to understand the name mangling schemes, but it seems that it can lead to unintended symbol exports. To make it clear what I'm trying to do with this patch, let me write how the export rules are subtle and complicated. - x86 name decoration: If machine type is i386 and export name is given by a command line option, like /export:foo, the real symbol name the linker has to search for is _foo because all symbols are decorated with "_" prefixes. This doesn't happen on non-x86 machines. This automatic name decoration happens only when the name is not C++ mangled. However, the symbol name exported from DLLs are ones without "_" on all platforms. Moreover, if the option is given via .drectve section, no symbol decoration is done (the reason being that the .drectve section is created by a compiler and the compiler should always know the exact name of the symbol, I guess). - Fuzzy symbol resolution: In addition to x86 name decoration, the linker has to look for cdecl or C++ mangled symbols for a given /export. For example, it searches for not only _foo but also _foo@<number> or ??foo@... for /export:foo. Previous implementation didn't get it right. I'm trying to make it as compatible with MSVC linker as possible with this patch however the rules are. The new code looks a bit messy to me, but I don't think it can be simpler due to the ad-hoc-ness of the rules. llvm-svn: 246424
2015-08-31 16:43:21 +08:00
}
// Parses .drectve section contents and returns a list of files
// specified by /defaultlib.
void LinkerDriver::parseDirectives(InputFile *file) {
StringRef s = file->getDirectives();
if (s.empty())
return;
log("Directives: " + toString(file) + ": " + s);
ArgParser parser;
// .drectve is always tokenized using Windows shell rules.
// /EXPORT: option can appear too many times, processing in fastpath.
ParsedDirectives directives = parser.parseDirectives(s);
for (StringRef e : directives.exports) {
// If a common header file contains dllexported function
// declarations, many object files may end up with having the
// same /EXPORT options. In order to save cost of parsing them,
// we dedup them first.
if (!directivesExports.insert(e).second)
continue;
Export exp = parseExport(e);
if (config->machine == I386 && config->mingw) {
if (!isDecorated(exp.name))
exp.name = saver.save("_" + exp.name);
if (!exp.extName.empty() && !isDecorated(exp.extName))
exp.extName = saver.save("_" + exp.extName);
}
exp.directives = true;
config->exports.push_back(exp);
}
// Handle /include: in bulk.
for (StringRef inc : directives.includes)
addUndefined(inc);
for (auto *arg : directives.args) {
switch (arg->getOption().getID()) {
case OPT_aligncomm:
parseAligncomm(arg->getValue());
break;
case OPT_alternatename:
parseAlternateName(arg->getValue());
break;
case OPT_defaultlib:
if (Optional<StringRef> path = findLib(arg->getValue()))
enqueuePath(*path, false, false);
break;
case OPT_entry:
config->entry = addUndefined(mangle(arg->getValue()));
break;
case OPT_failifmismatch:
checkFailIfMismatch(arg->getValue(), file);
break;
case OPT_incl:
addUndefined(arg->getValue());
break;
case OPT_merge:
parseMerge(arg->getValue());
break;
case OPT_nodefaultlib:
config->noDefaultLibs.insert(doFindLib(arg->getValue()).lower());
break;
case OPT_section:
parseSection(arg->getValue());
break;
case OPT_stack:
parseNumbers(arg->getValue(), &config->stackReserve,
&config->stackCommit);
break;
case OPT_subsystem: {
bool gotVersion = false;
parseSubsystem(arg->getValue(), &config->subsystem,
&config->majorSubsystemVersion,
&config->minorSubsystemVersion, &gotVersion);
if (gotVersion) {
config->majorOSVersion = config->majorSubsystemVersion;
config->minorOSVersion = config->minorSubsystemVersion;
}
break;
}
// Only add flags here that link.exe accepts in
// `#pragma comment(linker, "/flag")`-generated sections.
case OPT_editandcontinue:
case OPT_guardsym:
case OPT_throwingnew:
break;
default:
error(arg->getSpelling() + " is not allowed in .drectve");
}
}
}
// Find file from search paths. You can omit ".obj", this function takes
// care of that. Note that the returned path is not guaranteed to exist.
StringRef LinkerDriver::doFindFile(StringRef filename) {
2016-11-29 12:22:57 +08:00
bool hasPathSep = (filename.find_first_of("/\\") != StringRef::npos);
if (hasPathSep)
return filename;
bool hasExt = filename.contains('.');
for (StringRef dir : searchPaths) {
SmallString<128> path = dir;
sys::path::append(path, filename);
if (sys::fs::exists(path.str()))
return saver.save(path.str());
2016-11-29 12:22:57 +08:00
if (!hasExt) {
path.append(".obj");
if (sys::fs::exists(path.str()))
return saver.save(path.str());
}
}
return filename;
}
static Optional<sys::fs::UniqueID> getUniqueID(StringRef path) {
sys::fs::UniqueID ret;
if (sys::fs::getUniqueID(path, ret))
return None;
return ret;
}
// Resolves a file path. This never returns the same path
// (in that case, it returns None).
Optional<StringRef> LinkerDriver::findFile(StringRef filename) {
StringRef path = doFindFile(filename);
if (Optional<sys::fs::UniqueID> id = getUniqueID(path)) {
bool seen = !visitedFiles.insert(*id).second;
if (seen)
return None;
}
if (path.endswith_lower(".lib"))
visitedLibs.insert(std::string(sys::path::filename(path)));
return path;
}
// MinGW specific. If an embedded directive specified to link to
// foo.lib, but it isn't found, try libfoo.a instead.
StringRef LinkerDriver::doFindLibMinGW(StringRef filename) {
if (filename.contains('/') || filename.contains('\\'))
return filename;
SmallString<128> s = filename;
sys::path::replace_extension(s, ".a");
StringRef libName = saver.save("lib" + s.str());
return doFindFile(libName);
}
// Find library file from search path.
StringRef LinkerDriver::doFindLib(StringRef filename) {
// Add ".lib" to Filename if that has no file extension.
bool hasExt = filename.contains('.');
2016-11-29 12:22:57 +08:00
if (!hasExt)
filename = saver.save(filename + ".lib");
StringRef ret = doFindFile(filename);
// For MinGW, if the find above didn't turn up anything, try
// looking for a MinGW formatted library name.
if (config->mingw && ret == filename)
return doFindLibMinGW(filename);
return ret;
}
// Resolves a library path. /nodefaultlib options are taken into
// consideration. This never returns the same path (in that case,
// it returns None).
Optional<StringRef> LinkerDriver::findLib(StringRef filename) {
if (config->noDefaultLibAll)
return None;
if (!visitedLibs.insert(filename.lower()).second)
return None;
StringRef path = doFindLib(filename);
if (config->noDefaultLibs.count(path.lower()))
return None;
if (Optional<sys::fs::UniqueID> id = getUniqueID(path))
if (!visitedFiles.insert(*id).second)
return None;
return path;
}
// Parses LIB environment which contains a list of search paths.
void LinkerDriver::addLibSearchPaths() {
Optional<std::string> envOpt = Process::GetEnv("LIB");
if (!envOpt.hasValue())
return;
StringRef env = saver.save(*envOpt);
while (!env.empty()) {
StringRef path;
std::tie(path, env) = env.split(';');
searchPaths.push_back(path);
}
}
Symbol *LinkerDriver::addUndefined(StringRef name) {
Symbol *b = symtab->addUndefined(name);
if (!b->isGCRoot) {
b->isGCRoot = true;
config->gcroot.push_back(b);
}
return b;
}
[COFF] Fix /export:foo=bar when bar is a weak alias Summary: When handling exports from the command line or from .def files, the linker does a "fuzzy" string lookup to allow finding mangled symbols. However, when the symbol is re-exported under a new name, the linker has to transfer the decorations from the exported symbol over to the new name. This is implemented by taking the mangled symbol that was found in the object and replacing the original symbol name with the export name. Before this patch, LLD implemented the fuzzy search by adding an undefined symbol with the unmangled name, and then during symbol resolution, checking if similar mangled symbols had been added after the last round of symbol resolution. If so, LLD makes the original symbol a weak alias of the mangled symbol. Later, to get the original symbol name, LLD would look through the weak alias and forward it on to the import library writer, which copies the symbol decorations. This approach doesn't work when bar is itself a weak alias, as is the case in asan. It's especially bad when the aliasee of bar contains the string "bar", consider "bar_default". In this case, we would end up exporting the symbol "foo_default" when we should've exported just "foo". To fix this, don't look through weak aliases to find the mangled name. Save the mangled name earlier during fuzzy symbol lookup. Fixes PR42074 Reviewers: mstorsjo, ruiu Subscribers: thakis, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62984 llvm-svn: 362849
2019-06-08 06:05:12 +08:00
StringRef LinkerDriver::mangleMaybe(Symbol *s) {
// If the plain symbol name has already been resolved, do nothing.
Undefined *unmangled = dyn_cast<Undefined>(s);
if (!unmangled)
[COFF] Fix /export:foo=bar when bar is a weak alias Summary: When handling exports from the command line or from .def files, the linker does a "fuzzy" string lookup to allow finding mangled symbols. However, when the symbol is re-exported under a new name, the linker has to transfer the decorations from the exported symbol over to the new name. This is implemented by taking the mangled symbol that was found in the object and replacing the original symbol name with the export name. Before this patch, LLD implemented the fuzzy search by adding an undefined symbol with the unmangled name, and then during symbol resolution, checking if similar mangled symbols had been added after the last round of symbol resolution. If so, LLD makes the original symbol a weak alias of the mangled symbol. Later, to get the original symbol name, LLD would look through the weak alias and forward it on to the import library writer, which copies the symbol decorations. This approach doesn't work when bar is itself a weak alias, as is the case in asan. It's especially bad when the aliasee of bar contains the string "bar", consider "bar_default". In this case, we would end up exporting the symbol "foo_default" when we should've exported just "foo". To fix this, don't look through weak aliases to find the mangled name. Save the mangled name earlier during fuzzy symbol lookup. Fixes PR42074 Reviewers: mstorsjo, ruiu Subscribers: thakis, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62984 llvm-svn: 362849
2019-06-08 06:05:12 +08:00
return "";
// Otherwise, see if a similar, mangled symbol exists in the symbol table.
Symbol *mangled = symtab->findMangle(unmangled->getName());
if (!mangled)
return "";
// If we find a similar mangled symbol, make this an alias to it and return
// its name.
log(unmangled->getName() + " aliased to " + mangled->getName());
unmangled->weakAlias = symtab->addUndefined(mangled->getName());
return mangled->getName();
}
// Windows specific -- find default entry point name.
//
// There are four different entry point functions for Windows executables,
// each of which corresponds to a user-defined "main" function. This function
// infers an entry point from a user-defined "main" function.
StringRef LinkerDriver::findDefaultEntry() {
assert(config->subsystem != IMAGE_SUBSYSTEM_UNKNOWN &&
"must handle /subsystem before calling this");
if (config->mingw)
return mangle(config->subsystem == IMAGE_SUBSYSTEM_WINDOWS_GUI
? "WinMainCRTStartup"
: "mainCRTStartup");
if (config->subsystem == IMAGE_SUBSYSTEM_WINDOWS_GUI) {
if (findUnderscoreMangle("wWinMain")) {
if (!findUnderscoreMangle("WinMain"))
return mangle("wWinMainCRTStartup");
warn("found both wWinMain and WinMain; using latter");
}
return mangle("WinMainCRTStartup");
}
if (findUnderscoreMangle("wmain")) {
if (!findUnderscoreMangle("main"))
return mangle("wmainCRTStartup");
warn("found both wmain and main; using latter");
}
return mangle("mainCRTStartup");
}
WindowsSubsystem LinkerDriver::inferSubsystem() {
if (config->dll)
return IMAGE_SUBSYSTEM_WINDOWS_GUI;
if (config->mingw)
return IMAGE_SUBSYSTEM_WINDOWS_CUI;
// Note that link.exe infers the subsystem from the presence of these
// functions even if /entry: or /nodefaultlib are passed which causes them
// to not be called.
bool haveMain = findUnderscoreMangle("main");
bool haveWMain = findUnderscoreMangle("wmain");
bool haveWinMain = findUnderscoreMangle("WinMain");
bool haveWWinMain = findUnderscoreMangle("wWinMain");
if (haveMain || haveWMain) {
if (haveWinMain || haveWWinMain) {
warn(std::string("found ") + (haveMain ? "main" : "wmain") + " and " +
(haveWinMain ? "WinMain" : "wWinMain") +
"; defaulting to /subsystem:console");
}
return IMAGE_SUBSYSTEM_WINDOWS_CUI;
}
if (haveWinMain || haveWWinMain)
return IMAGE_SUBSYSTEM_WINDOWS_GUI;
return IMAGE_SUBSYSTEM_UNKNOWN;
}
static uint64_t getDefaultImageBase() {
if (config->is64())
return config->dll ? 0x180000000 : 0x140000000;
return config->dll ? 0x10000000 : 0x400000;
}
static std::string rewritePath(StringRef s) {
if (fs::exists(s))
return relativeToRoot(s);
return std::string(s);
}
// Reconstructs command line arguments so that so that you can re-run
// the same command with the same inputs. This is for --reproduce.
static std::string createResponseFile(const opt::InputArgList &args,
ArrayRef<StringRef> filePaths,
ArrayRef<StringRef> searchPaths) {
SmallString<0> data;
raw_svector_ostream os(data);
for (auto *arg : args) {
switch (arg->getOption().getID()) {
case OPT_linkrepro:
case OPT_reproduce:
case OPT_INPUT:
case OPT_defaultlib:
case OPT_libpath:
case OPT_manifest:
case OPT_manifest_colon:
case OPT_manifestdependency:
case OPT_manifestfile:
case OPT_manifestinput:
case OPT_manifestuac:
break;
case OPT_call_graph_ordering_file:
case OPT_deffile:
case OPT_natvis:
os << arg->getSpelling() << quote(rewritePath(arg->getValue())) << '\n';
break;
case OPT_order: {
StringRef orderFile = arg->getValue();
orderFile.consume_front("@");
os << arg->getSpelling() << '@' << quote(rewritePath(orderFile)) << '\n';
break;
}
case OPT_pdbstream: {
const std::pair<StringRef, StringRef> nameFile =
StringRef(arg->getValue()).split("=");
os << arg->getSpelling() << nameFile.first << '='
<< quote(rewritePath(nameFile.second)) << '\n';
break;
}
case OPT_implib:
case OPT_pdb:
case OPT_pdbstripped:
case OPT_out:
os << arg->getSpelling() << sys::path::filename(arg->getValue()) << "\n";
break;
default:
os << toString(*arg) << "\n";
}
}
for (StringRef path : searchPaths) {
std::string relPath = relativeToRoot(path);
os << "/libpath:" << quote(relPath) << "\n";
}
for (StringRef path : filePaths)
os << quote(relativeToRoot(path)) << "\n";
return std::string(data.str());
}
[PDB] Enable parallel ghash type merging by default Ghashing is probably going to be faster in most cases, even without precomputed ghashes in object files. Here is my table of results linking clang.pdb: ------------------------------- | threads | GHASH | NOGHASH | ------------------------------- | j1 | 51.031s | 25.141s | | j2 | 31.079s | 22.109s | | j4 | 18.609s | 23.156s | | j8 | 11.938s | 21.984s | | j28 | 8.375s | 18.391s | ------------------------------- This shows that ghashing is faster if at least four cores are available. This may make the linker slower if most cores are busy in the middle of a build, but in that case, the linker probably isn't on the critical path of the build. Incremental build performance is arguably more important than highly contended batch build link performance. The -time output indicates that ghash computation is the dominant factor: Input File Reading: 924 ms ( 1.8%) GC: 689 ms ( 1.3%) ICF: 527 ms ( 1.0%) Code Layout: 414 ms ( 0.8%) Commit Output File: 24 ms ( 0.0%) PDB Emission (Cumulative): 49938 ms ( 94.8%) Add Objects: 46783 ms ( 88.8%) Global Type Hashing: 38983 ms ( 74.0%) GHash Type Merging: 5640 ms ( 10.7%) Symbol Merging: 2154 ms ( 4.1%) Publics Stream Layout: 188 ms ( 0.4%) TPI Stream Layout: 18 ms ( 0.0%) Commit to Disk: 2818 ms ( 5.4%) -------------------------------------------------- Total Link Time: 52669 ms (100.0%) We can speed that up with a faster content hash (not SHA1). Differential Revision: https://reviews.llvm.org/D102888
2021-05-21 07:18:18 +08:00
enum class DebugKind {
Unknown,
None,
Full,
FastLink,
GHash,
NoGHash,
Dwarf,
Symtab
};
static DebugKind parseDebugKind(const opt::InputArgList &args) {
auto *a = args.getLastArg(OPT_debug, OPT_debug_opt);
if (!a)
return DebugKind::None;
if (a->getNumValues() == 0)
return DebugKind::Full;
DebugKind debug = StringSwitch<DebugKind>(a->getValue())
[PDB] Enable parallel ghash type merging by default Ghashing is probably going to be faster in most cases, even without precomputed ghashes in object files. Here is my table of results linking clang.pdb: ------------------------------- | threads | GHASH | NOGHASH | ------------------------------- | j1 | 51.031s | 25.141s | | j2 | 31.079s | 22.109s | | j4 | 18.609s | 23.156s | | j8 | 11.938s | 21.984s | | j28 | 8.375s | 18.391s | ------------------------------- This shows that ghashing is faster if at least four cores are available. This may make the linker slower if most cores are busy in the middle of a build, but in that case, the linker probably isn't on the critical path of the build. Incremental build performance is arguably more important than highly contended batch build link performance. The -time output indicates that ghash computation is the dominant factor: Input File Reading: 924 ms ( 1.8%) GC: 689 ms ( 1.3%) ICF: 527 ms ( 1.0%) Code Layout: 414 ms ( 0.8%) Commit Output File: 24 ms ( 0.0%) PDB Emission (Cumulative): 49938 ms ( 94.8%) Add Objects: 46783 ms ( 88.8%) Global Type Hashing: 38983 ms ( 74.0%) GHash Type Merging: 5640 ms ( 10.7%) Symbol Merging: 2154 ms ( 4.1%) Publics Stream Layout: 188 ms ( 0.4%) TPI Stream Layout: 18 ms ( 0.0%) Commit to Disk: 2818 ms ( 5.4%) -------------------------------------------------- Total Link Time: 52669 ms (100.0%) We can speed that up with a faster content hash (not SHA1). Differential Revision: https://reviews.llvm.org/D102888
2021-05-21 07:18:18 +08:00
.CaseLower("none", DebugKind::None)
.CaseLower("full", DebugKind::Full)
.CaseLower("fastlink", DebugKind::FastLink)
// LLD extensions
.CaseLower("ghash", DebugKind::GHash)
.CaseLower("noghash", DebugKind::NoGHash)
.CaseLower("dwarf", DebugKind::Dwarf)
.CaseLower("symtab", DebugKind::Symtab)
.Default(DebugKind::Unknown);
if (debug == DebugKind::FastLink) {
warn("/debug:fastlink unsupported; using /debug:full");
return DebugKind::Full;
}
if (debug == DebugKind::Unknown) {
error("/debug: unknown option: " + Twine(a->getValue()));
return DebugKind::None;
}
return debug;
}
static unsigned parseDebugTypes(const opt::InputArgList &args) {
unsigned debugTypes = static_cast<unsigned>(DebugType::None);
if (auto *a = args.getLastArg(OPT_debugtype)) {
SmallVector<StringRef, 3> types;
StringRef(a->getValue())
.split(types, ',', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
for (StringRef type : types) {
unsigned v = StringSwitch<unsigned>(type.lower())
.Case("cv", static_cast<unsigned>(DebugType::CV))
.Case("pdata", static_cast<unsigned>(DebugType::PData))
.Case("fixup", static_cast<unsigned>(DebugType::Fixup))
.Default(0);
if (v == 0) {
warn("/debugtype: unknown option '" + type + "'");
continue;
}
debugTypes |= v;
}
return debugTypes;
}
// Default debug types
debugTypes = static_cast<unsigned>(DebugType::CV);
if (args.hasArg(OPT_driver))
debugTypes |= static_cast<unsigned>(DebugType::PData);
if (args.hasArg(OPT_profile))
debugTypes |= static_cast<unsigned>(DebugType::Fixup);
return debugTypes;
}
static std::string getMapFile(const opt::InputArgList &args,
opt::OptSpecifier os, opt::OptSpecifier osFile) {
auto *arg = args.getLastArg(os, osFile);
if (!arg)
return "";
if (arg->getOption().getID() == osFile.getID())
return arg->getValue();
assert(arg->getOption().getID() == os.getID());
StringRef outFile = config->outputFile;
return (outFile.substr(0, outFile.rfind('.')) + ".map").str();
}
static std::string getImplibPath() {
if (!config->implib.empty())
return std::string(config->implib);
SmallString<128> out = StringRef(config->outputFile);
sys::path::replace_extension(out, ".lib");
return std::string(out.str());
}
// The import name is calculated as follows:
//
// | LIBRARY w/ ext | LIBRARY w/o ext | no LIBRARY
// -----+----------------+---------------------+------------------
// LINK | {value} | {value}.{.dll/.exe} | {output name}
// LIB | {value} | {value}.dll | {output name}.dll
//
static std::string getImportName(bool asLib) {
SmallString<128> out;
if (config->importName.empty()) {
out.assign(sys::path::filename(config->outputFile));
if (asLib)
sys::path::replace_extension(out, ".dll");
} else {
out.assign(config->importName);
if (!sys::path::has_extension(out))
sys::path::replace_extension(out,
(config->dll || asLib) ? ".dll" : ".exe");
}
return std::string(out.str());
}
static void createImportLibrary(bool asLib) {
std::vector<COFFShortExport> exports;
for (Export &e1 : config->exports) {
COFFShortExport e2;
e2.Name = std::string(e1.name);
e2.SymbolName = std::string(e1.symbolName);
e2.ExtName = std::string(e1.extName);
e2.Ordinal = e1.ordinal;
e2.Noname = e1.noname;
e2.Data = e1.data;
e2.Private = e1.isPrivate;
e2.Constant = e1.constant;
exports.push_back(e2);
}
auto handleError = [](Error &&e) {
handleAllErrors(std::move(e),
[](ErrorInfoBase &eib) { error(eib.message()); });
};
std::string libName = getImportName(asLib);
std::string path = getImplibPath();
if (!config->incremental) {
handleError(writeImportLibrary(libName, path, exports, config->machine,
config->mingw));
return;
}
// If the import library already exists, replace it only if the contents
// have changed.
ErrorOr<std::unique_ptr<MemoryBuffer>> oldBuf = MemoryBuffer::getFile(
path, /*IsText=*/false, /*RequiresNullTerminator=*/false);
if (!oldBuf) {
handleError(writeImportLibrary(libName, path, exports, config->machine,
config->mingw));
return;
}
SmallString<128> tmpName;
if (std::error_code ec =
sys::fs::createUniqueFile(path + ".tmp-%%%%%%%%.lib", tmpName))
fatal("cannot create temporary file for import library " + path + ": " +
ec.message());
if (Error e = writeImportLibrary(libName, tmpName, exports, config->machine,
config->mingw)) {
handleError(std::move(e));
return;
}
std::unique_ptr<MemoryBuffer> newBuf = check(MemoryBuffer::getFile(
tmpName, /*IsText=*/false, /*RequiresNullTerminator=*/false));
if ((*oldBuf)->getBuffer() != newBuf->getBuffer()) {
oldBuf->reset();
handleError(errorCodeToError(sys::fs::rename(tmpName, path)));
} else {
sys::fs::remove(tmpName);
}
}
static void parseModuleDefs(StringRef path) {
std::unique_ptr<MemoryBuffer> mb =
CHECK(MemoryBuffer::getFile(path, /*IsText=*/false,
/*RequiresNullTerminator=*/false,
/*IsVolatile=*/true),
"could not open " + path);
COFFModuleDefinition m = check(parseCOFFModuleDefinition(
mb->getMemBufferRef(), config->machine, config->mingw));
// Include in /reproduce: output if applicable.
driver->takeBuffer(std::move(mb));
if (config->outputFile.empty())
config->outputFile = std::string(saver.save(m.OutputFile));
config->importName = std::string(saver.save(m.ImportName));
if (m.ImageBase)
config->imageBase = m.ImageBase;
if (m.StackReserve)
config->stackReserve = m.StackReserve;
if (m.StackCommit)
config->stackCommit = m.StackCommit;
if (m.HeapReserve)
config->heapReserve = m.HeapReserve;
if (m.HeapCommit)
config->heapCommit = m.HeapCommit;
if (m.MajorImageVersion)
config->majorImageVersion = m.MajorImageVersion;
if (m.MinorImageVersion)
config->minorImageVersion = m.MinorImageVersion;
if (m.MajorOSVersion)
config->majorOSVersion = m.MajorOSVersion;
if (m.MinorOSVersion)
config->minorOSVersion = m.MinorOSVersion;
for (COFFShortExport e1 : m.Exports) {
Export e2;
// In simple cases, only Name is set. Renamed exports are parsed
// and set as "ExtName = Name". If Name has the form "OtherDll.Func",
// it shouldn't be a normal exported function but a forward to another
// DLL instead. This is supported by both MS and GNU linkers.
if (!e1.ExtName.empty() && e1.ExtName != e1.Name &&
StringRef(e1.Name).contains('.')) {
e2.name = saver.save(e1.ExtName);
e2.forwardTo = saver.save(e1.Name);
config->exports.push_back(e2);
continue;
}
e2.name = saver.save(e1.Name);
e2.extName = saver.save(e1.ExtName);
e2.ordinal = e1.Ordinal;
e2.noname = e1.Noname;
e2.data = e1.Data;
e2.isPrivate = e1.Private;
e2.constant = e1.Constant;
config->exports.push_back(e2);
}
}
void LinkerDriver::enqueueTask(std::function<void()> task) {
taskQueue.push_back(std::move(task));
}
bool LinkerDriver::run() {
ScopedTimer t(inputFileTimer);
bool didWork = !taskQueue.empty();
while (!taskQueue.empty()) {
taskQueue.front()();
taskQueue.pop_front();
}
return didWork;
}
// Parse an /order file. If an option is given, the linker places
// COMDAT sections in the same order as their names appear in the
// given file.
static void parseOrderFile(StringRef arg) {
// For some reason, the MSVC linker requires a filename to be
// preceded by "@".
if (!arg.startswith("@")) {
error("malformed /order option: '@' missing");
return;
}
// Get a list of all comdat sections for error checking.
DenseSet<StringRef> set;
for (Chunk *c : symtab->getChunks())
if (auto *sec = dyn_cast<SectionChunk>(c))
if (sec->sym)
set.insert(sec->sym->getName());
// Open a file.
StringRef path = arg.substr(1);
std::unique_ptr<MemoryBuffer> mb =
CHECK(MemoryBuffer::getFile(path, /*IsText=*/false,
/*RequiresNullTerminator=*/false,
/*IsVolatile=*/true),
"could not open " + path);
// Parse a file. An order file contains one symbol per line.
// All symbols that were not present in a given order file are
// considered to have the lowest priority 0 and are placed at
// end of an output section.
for (StringRef arg : args::getLines(mb->getMemBufferRef())) {
std::string s(arg);
if (config->machine == I386 && !isDecorated(s))
s = "_" + s;
if (set.count(s) == 0) {
if (config->warnMissingOrderSymbol)
warn("/order:" + arg + ": missing symbol: " + s + " [LNK4037]");
}
else
config->order[s] = INT_MIN + config->order.size();
}
// Include in /reproduce: output if applicable.
driver->takeBuffer(std::move(mb));
}
static void parseCallGraphFile(StringRef path) {
std::unique_ptr<MemoryBuffer> mb =
CHECK(MemoryBuffer::getFile(path, /*IsText=*/false,
/*RequiresNullTerminator=*/false,
/*IsVolatile=*/true),
"could not open " + path);
// Build a map from symbol name to section.
DenseMap<StringRef, Symbol *> map;
for (ObjFile *file : ObjFile::instances)
for (Symbol *sym : file->getSymbols())
if (sym)
map[sym->getName()] = sym;
auto findSection = [&](StringRef name) -> SectionChunk * {
Symbol *sym = map.lookup(name);
if (!sym) {
if (config->warnMissingOrderSymbol)
warn(path + ": no such symbol: " + name);
return nullptr;
}
if (DefinedCOFF *dr = dyn_cast_or_null<DefinedCOFF>(sym))
return dyn_cast_or_null<SectionChunk>(dr->getChunk());
return nullptr;
};
for (StringRef line : args::getLines(*mb)) {
SmallVector<StringRef, 3> fields;
line.split(fields, ' ');
uint64_t count;
if (fields.size() != 3 || !to_integer(fields[2], count)) {
error(path + ": parse error");
return;
}
if (SectionChunk *from = findSection(fields[0]))
if (SectionChunk *to = findSection(fields[1]))
config->callGraphProfile[{from, to}] += count;
}
// Include in /reproduce: output if applicable.
driver->takeBuffer(std::move(mb));
}
static void readCallGraphsFromObjectFiles() {
for (ObjFile *obj : ObjFile::instances) {
if (obj->callgraphSec) {
ArrayRef<uint8_t> contents;
cantFail(
obj->getCOFFObj()->getSectionContents(obj->callgraphSec, contents));
BinaryStreamReader reader(contents, support::little);
while (!reader.empty()) {
uint32_t fromIndex, toIndex;
uint64_t count;
if (Error err = reader.readInteger(fromIndex))
fatal(toString(obj) + ": Expected 32-bit integer");
if (Error err = reader.readInteger(toIndex))
fatal(toString(obj) + ": Expected 32-bit integer");
if (Error err = reader.readInteger(count))
fatal(toString(obj) + ": Expected 64-bit integer");
auto *fromSym = dyn_cast_or_null<Defined>(obj->getSymbol(fromIndex));
auto *toSym = dyn_cast_or_null<Defined>(obj->getSymbol(toIndex));
if (!fromSym || !toSym)
continue;
auto *from = dyn_cast_or_null<SectionChunk>(fromSym->getChunk());
auto *to = dyn_cast_or_null<SectionChunk>(toSym->getChunk());
if (from && to)
config->callGraphProfile[{from, to}] += count;
}
}
}
}
static void markAddrsig(Symbol *s) {
if (auto *d = dyn_cast_or_null<Defined>(s))
if (SectionChunk *c = dyn_cast_or_null<SectionChunk>(d->getChunk()))
c->keepUnique = true;
}
static void findKeepUniqueSections() {
// Exported symbols could be address-significant in other executables or DSOs,
// so we conservatively mark them as address-significant.
for (Export &r : config->exports)
markAddrsig(r.sym);
// Visit the address-significance table in each object file and mark each
// referenced symbol as address-significant.
for (ObjFile *obj : ObjFile::instances) {
ArrayRef<Symbol *> syms = obj->getSymbols();
if (obj->addrsigSec) {
ArrayRef<uint8_t> contents;
cantFail(
obj->getCOFFObj()->getSectionContents(obj->addrsigSec, contents));
const uint8_t *cur = contents.begin();
while (cur != contents.end()) {
unsigned size;
const char *err;
uint64_t symIndex = decodeULEB128(cur, &size, contents.end(), &err);
if (err)
fatal(toString(obj) + ": could not decode addrsig section: " + err);
if (symIndex >= syms.size())
fatal(toString(obj) + ": invalid symbol index in addrsig section");
markAddrsig(syms[symIndex]);
cur += size;
}
} else {
// If an object file does not have an address-significance table,
// conservatively mark all of its symbols as address-significant.
for (Symbol *s : syms)
markAddrsig(s);
}
}
}
// link.exe replaces each %foo% in altPath with the contents of environment
// variable foo, and adds the two magic env vars _PDB (expands to the basename
// of pdb's output path) and _EXT (expands to the extension of the output
// binary).
// lld only supports %_PDB% and %_EXT% and warns on references to all other env
// vars.
static void parsePDBAltPath(StringRef altPath) {
SmallString<128> buf;
StringRef pdbBasename =
sys::path::filename(config->pdbPath, sys::path::Style::windows);
StringRef binaryExtension =
sys::path::extension(config->outputFile, sys::path::Style::windows);
if (!binaryExtension.empty())
binaryExtension = binaryExtension.substr(1); // %_EXT% does not include '.'.
// Invariant:
// +--------- cursor ('a...' might be the empty string).
// | +----- firstMark
// | | +- secondMark
// v v v
// a...%...%...
size_t cursor = 0;
while (cursor < altPath.size()) {
size_t firstMark, secondMark;
if ((firstMark = altPath.find('%', cursor)) == StringRef::npos ||
(secondMark = altPath.find('%', firstMark + 1)) == StringRef::npos) {
// Didn't find another full fragment, treat rest of string as literal.
buf.append(altPath.substr(cursor));
break;
}
// Found a full fragment. Append text in front of first %, and interpret
// text between first and second % as variable name.
buf.append(altPath.substr(cursor, firstMark - cursor));
StringRef var = altPath.substr(firstMark, secondMark - firstMark + 1);
if (var.equals_lower("%_pdb%"))
buf.append(pdbBasename);
else if (var.equals_lower("%_ext%"))
buf.append(binaryExtension);
else {
warn("only %_PDB% and %_EXT% supported in /pdbaltpath:, keeping " +
var + " as literal");
buf.append(var);
}
cursor = secondMark + 1;
}
config->pdbAltPath = buf;
}
/// Convert resource files and potentially merge input resource object
/// trees into one resource tree.
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
/// Call after ObjFile::Instances is complete.
void LinkerDriver::convertResources() {
std::vector<ObjFile *> resourceObjFiles;
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
for (ObjFile *f : ObjFile::instances) {
if (f->isResourceObjFile())
resourceObjFiles.push_back(f);
}
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
if (!config->mingw &&
(resourceObjFiles.size() > 1 ||
(resourceObjFiles.size() == 1 && !resources.empty()))) {
error((!resources.empty() ? "internal .obj file created from .res files"
: toString(resourceObjFiles[1])) +
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
": more than one resource obj file not allowed, already got " +
toString(resourceObjFiles.front()));
return;
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
}
if (resources.empty() && resourceObjFiles.size() <= 1) {
// No resources to convert, and max one resource object file in
// the input. Keep that preconverted resource section as is.
for (ObjFile *f : resourceObjFiles)
f->includeResourceChunks();
return;
}
ObjFile *f = make<ObjFile>(convertResToCOFF(resources, resourceObjFiles));
symtab->addFile(f);
f->includeResourceChunks();
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
}
// In MinGW, if no symbols are chosen to be exported, then all symbols are
// automatically exported by default. This behavior can be forced by the
// -export-all-symbols option, so that it happens even when exports are
// explicitly specified. The automatic behavior can be disabled using the
// -exclude-all-symbols option, so that lld-link behaves like link.exe rather
// than MinGW in the case that nothing is explicitly exported.
void LinkerDriver::maybeExportMinGWSymbols(const opt::InputArgList &args) {
if (!config->dll)
return;
if (!args.hasArg(OPT_export_all_symbols)) {
if (!config->exports.empty())
return;
if (args.hasArg(OPT_exclude_all_symbols))
return;
}
AutoExporter exporter;
for (auto *arg : args.filtered(OPT_wholearchive_file))
if (Optional<StringRef> path = doFindFile(arg->getValue()))
exporter.addWholeArchive(*path);
symtab->forEachSymbol([&](Symbol *s) {
auto *def = dyn_cast<Defined>(s);
if (!exporter.shouldExport(def))
return;
if (!def->isGCRoot) {
def->isGCRoot = true;
config->gcroot.push_back(def);
}
Export e;
e.name = def->getName();
e.sym = def;
if (Chunk *c = def->getChunk())
if (!(c->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE))
e.data = true;
s->isUsedInRegularObj = true;
config->exports.push_back(e);
});
}
// lld has a feature to create a tar file containing all input files as well as
// all command line options, so that other people can run lld again with exactly
// the same inputs. This feature is accessible via /linkrepro and /reproduce.
//
// /linkrepro and /reproduce are very similar, but /linkrepro takes a directory
// name while /reproduce takes a full path. We have /linkrepro for compatibility
// with Microsoft link.exe.
Optional<std::string> getReproduceFile(const opt::InputArgList &args) {
if (auto *arg = args.getLastArg(OPT_reproduce))
return std::string(arg->getValue());
if (auto *arg = args.getLastArg(OPT_linkrepro)) {
SmallString<64> path = StringRef(arg->getValue());
sys::path::append(path, "repro.tar");
return std::string(path);
}
// This is intentionally not guarded by OPT_lldignoreenv since writing
// a repro tar file doesn't affect the main output.
if (auto *path = getenv("LLD_REPRODUCE"))
return std::string(path);
return None;
}
void LinkerDriver::linkerMain(ArrayRef<const char *> argsArr) {
ScopedTimer rootTimer(Timer::root());
// Needed for LTO.
InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();
// If the first command line argument is "/lib", link.exe acts like lib.exe.
// We call our own implementation of lib.exe that understands bitcode files.
if (argsArr.size() > 1 && (StringRef(argsArr[1]).equals_lower("/lib") ||
StringRef(argsArr[1]).equals_lower("-lib"))) {
if (llvm::libDriverMain(argsArr.slice(1)) != 0)
fatal("lib failed");
return;
}
// Parse command line options.
ArgParser parser;
opt::InputArgList args = parser.parse(argsArr);
// Parse and evaluate -mllvm options.
std::vector<const char *> v;
v.push_back("lld-link (LLVM option parsing)");
for (auto *arg : args.filtered(OPT_mllvm))
v.push_back(arg->getValue());
cl::ResetAllOptionOccurrences();
cl::ParseCommandLineOptions(v.size(), v.data());
// Handle /errorlimit early, because error() depends on it.
if (auto *arg = args.getLastArg(OPT_errorlimit)) {
int n = 20;
StringRef s = arg->getValue();
if (s.getAsInteger(10, n))
error(arg->getSpelling() + " number expected, but got " + s);
errorHandler().errorLimit = n;
}
// Handle /help
if (args.hasArg(OPT_help)) {
printHelp(argsArr[0]);
return;
}
// /threads: takes a positive integer and provides the default value for
// /opt:lldltojobs=.
if (auto *arg = args.getLastArg(OPT_threads)) {
StringRef v(arg->getValue());
unsigned threads = 0;
if (!llvm::to_integer(v, threads, 0) || threads == 0)
error(arg->getSpelling() + ": expected a positive integer, but got '" +
arg->getValue() + "'");
parallel::strategy = hardware_concurrency(threads);
config->thinLTOJobs = v.str();
}
if (args.hasArg(OPT_show_timing))
config->showTiming = true;
config->showSummary = args.hasArg(OPT_summary);
// Handle --version, which is an lld extension. This option is a bit odd
// because it doesn't start with "/", but we deliberately chose "--" to
// avoid conflict with /version and for compatibility with clang-cl.
if (args.hasArg(OPT_dash_dash_version)) {
message(getLLDVersion());
return;
}
// Handle /lldmingw early, since it can potentially affect how other
// options are handled.
config->mingw = args.hasArg(OPT_lldmingw);
// Handle /linkrepro and /reproduce.
if (Optional<std::string> path = getReproduceFile(args)) {
Expected<std::unique_ptr<TarWriter>> errOrWriter =
TarWriter::create(*path, sys::path::stem(*path));
if (errOrWriter) {
tar = std::move(*errOrWriter);
} else {
error("/linkrepro: failed to open " + *path + ": " +
toString(errOrWriter.takeError()));
}
}
if (!args.hasArg(OPT_INPUT, OPT_wholearchive_file)) {
if (args.hasArg(OPT_deffile))
config->noEntry = true;
else
fatal("no input files");
}
// Construct search path list.
searchPaths.push_back("");
for (auto *arg : args.filtered(OPT_libpath))
searchPaths.push_back(arg->getValue());
if (!args.hasArg(OPT_lldignoreenv))
addLibSearchPaths();
// Handle /ignore
for (auto *arg : args.filtered(OPT_ignore)) {
SmallVector<StringRef, 8> vec;
StringRef(arg->getValue()).split(vec, ',');
for (StringRef s : vec) {
if (s == "4037")
config->warnMissingOrderSymbol = false;
else if (s == "4099")
config->warnDebugInfoUnusable = false;
else if (s == "4217")
config->warnLocallyDefinedImported = false;
else if (s == "longsections")
config->warnLongSectionNames = false;
// Other warning numbers are ignored.
}
}
// Handle /out
if (auto *arg = args.getLastArg(OPT_out))
config->outputFile = arg->getValue();
// Handle /verbose
if (args.hasArg(OPT_verbose))
config->verbose = true;
errorHandler().verbose = config->verbose;
// Handle /force or /force:unresolved
if (args.hasArg(OPT_force, OPT_force_unresolved))
config->forceUnresolved = true;
// Handle /force or /force:multiple
if (args.hasArg(OPT_force, OPT_force_multiple))
config->forceMultiple = true;
// Handle /force or /force:multipleres
if (args.hasArg(OPT_force, OPT_force_multipleres))
config->forceMultipleRes = true;
// Handle /debug
DebugKind debug = parseDebugKind(args);
if (debug == DebugKind::Full || debug == DebugKind::Dwarf ||
[PDB] Enable parallel ghash type merging by default Ghashing is probably going to be faster in most cases, even without precomputed ghashes in object files. Here is my table of results linking clang.pdb: ------------------------------- | threads | GHASH | NOGHASH | ------------------------------- | j1 | 51.031s | 25.141s | | j2 | 31.079s | 22.109s | | j4 | 18.609s | 23.156s | | j8 | 11.938s | 21.984s | | j28 | 8.375s | 18.391s | ------------------------------- This shows that ghashing is faster if at least four cores are available. This may make the linker slower if most cores are busy in the middle of a build, but in that case, the linker probably isn't on the critical path of the build. Incremental build performance is arguably more important than highly contended batch build link performance. The -time output indicates that ghash computation is the dominant factor: Input File Reading: 924 ms ( 1.8%) GC: 689 ms ( 1.3%) ICF: 527 ms ( 1.0%) Code Layout: 414 ms ( 0.8%) Commit Output File: 24 ms ( 0.0%) PDB Emission (Cumulative): 49938 ms ( 94.8%) Add Objects: 46783 ms ( 88.8%) Global Type Hashing: 38983 ms ( 74.0%) GHash Type Merging: 5640 ms ( 10.7%) Symbol Merging: 2154 ms ( 4.1%) Publics Stream Layout: 188 ms ( 0.4%) TPI Stream Layout: 18 ms ( 0.0%) Commit to Disk: 2818 ms ( 5.4%) -------------------------------------------------- Total Link Time: 52669 ms (100.0%) We can speed that up with a faster content hash (not SHA1). Differential Revision: https://reviews.llvm.org/D102888
2021-05-21 07:18:18 +08:00
debug == DebugKind::GHash || debug == DebugKind::NoGHash) {
config->debug = true;
config->incremental = true;
}
// Handle /demangle
config->demangle = args.hasFlag(OPT_demangle, OPT_demangle_no);
// Handle /debugtype
config->debugTypes = parseDebugTypes(args);
// Handle /driver[:uponly|:wdm].
config->driverUponly = args.hasArg(OPT_driver_uponly) ||
args.hasArg(OPT_driver_uponly_wdm) ||
args.hasArg(OPT_driver_wdm_uponly);
config->driverWdm = args.hasArg(OPT_driver_wdm) ||
args.hasArg(OPT_driver_uponly_wdm) ||
args.hasArg(OPT_driver_wdm_uponly);
config->driver =
config->driverUponly || config->driverWdm || args.hasArg(OPT_driver);
// Handle /pdb
bool shouldCreatePDB =
[PDB] Enable parallel ghash type merging by default Ghashing is probably going to be faster in most cases, even without precomputed ghashes in object files. Here is my table of results linking clang.pdb: ------------------------------- | threads | GHASH | NOGHASH | ------------------------------- | j1 | 51.031s | 25.141s | | j2 | 31.079s | 22.109s | | j4 | 18.609s | 23.156s | | j8 | 11.938s | 21.984s | | j28 | 8.375s | 18.391s | ------------------------------- This shows that ghashing is faster if at least four cores are available. This may make the linker slower if most cores are busy in the middle of a build, but in that case, the linker probably isn't on the critical path of the build. Incremental build performance is arguably more important than highly contended batch build link performance. The -time output indicates that ghash computation is the dominant factor: Input File Reading: 924 ms ( 1.8%) GC: 689 ms ( 1.3%) ICF: 527 ms ( 1.0%) Code Layout: 414 ms ( 0.8%) Commit Output File: 24 ms ( 0.0%) PDB Emission (Cumulative): 49938 ms ( 94.8%) Add Objects: 46783 ms ( 88.8%) Global Type Hashing: 38983 ms ( 74.0%) GHash Type Merging: 5640 ms ( 10.7%) Symbol Merging: 2154 ms ( 4.1%) Publics Stream Layout: 188 ms ( 0.4%) TPI Stream Layout: 18 ms ( 0.0%) Commit to Disk: 2818 ms ( 5.4%) -------------------------------------------------- Total Link Time: 52669 ms (100.0%) We can speed that up with a faster content hash (not SHA1). Differential Revision: https://reviews.llvm.org/D102888
2021-05-21 07:18:18 +08:00
(debug == DebugKind::Full || debug == DebugKind::GHash ||
debug == DebugKind::NoGHash);
if (shouldCreatePDB) {
if (auto *arg = args.getLastArg(OPT_pdb))
config->pdbPath = arg->getValue();
if (auto *arg = args.getLastArg(OPT_pdbaltpath))
config->pdbAltPath = arg->getValue();
if (args.hasArg(OPT_natvis))
config->natvisFiles = args.getAllArgValues(OPT_natvis);
if (args.hasArg(OPT_pdbstream)) {
for (const StringRef value : args.getAllArgValues(OPT_pdbstream)) {
const std::pair<StringRef, StringRef> nameFile = value.split("=");
const StringRef name = nameFile.first;
const std::string file = nameFile.second.str();
config->namedStreams[name] = file;
}
}
if (auto *arg = args.getLastArg(OPT_pdb_source_path))
config->pdbSourcePath = arg->getValue();
}
// Handle /pdbstripped
if (args.hasArg(OPT_pdbstripped))
warn("ignoring /pdbstripped flag, it is not yet supported");
// Handle /noentry
if (args.hasArg(OPT_noentry)) {
if (args.hasArg(OPT_dll))
config->noEntry = true;
else
error("/noentry must be specified with /dll");
}
// Handle /dll
if (args.hasArg(OPT_dll)) {
config->dll = true;
config->manifestID = 2;
}
// Handle /dynamicbase and /fixed. We can't use hasFlag for /dynamicbase
// because we need to explicitly check whether that option or its inverse was
// present in the argument list in order to handle /fixed.
auto *dynamicBaseArg = args.getLastArg(OPT_dynamicbase, OPT_dynamicbase_no);
if (dynamicBaseArg &&
dynamicBaseArg->getOption().getID() == OPT_dynamicbase_no)
config->dynamicBase = false;
// MSDN claims "/FIXED:NO is the default setting for a DLL, and /FIXED is the
// default setting for any other project type.", but link.exe defaults to
// /FIXED:NO for exe outputs as well. Match behavior, not docs.
bool fixed = args.hasFlag(OPT_fixed, OPT_fixed_no, false);
if (fixed) {
if (dynamicBaseArg &&
dynamicBaseArg->getOption().getID() == OPT_dynamicbase) {
error("/fixed must not be specified with /dynamicbase");
} else {
config->relocatable = false;
config->dynamicBase = false;
}
}
// Handle /appcontainer
config->appContainer =
args.hasFlag(OPT_appcontainer, OPT_appcontainer_no, false);
// Handle /machine
if (auto *arg = args.getLastArg(OPT_machine)) {
config->machine = getMachineType(arg->getValue());
if (config->machine == IMAGE_FILE_MACHINE_UNKNOWN)
fatal(Twine("unknown /machine argument: ") + arg->getValue());
}
// Handle /nodefaultlib:<filename>
for (auto *arg : args.filtered(OPT_nodefaultlib))
config->noDefaultLibs.insert(doFindLib(arg->getValue()).lower());
// Handle /nodefaultlib
if (args.hasArg(OPT_nodefaultlib_all))
config->noDefaultLibAll = true;
// Handle /base
if (auto *arg = args.getLastArg(OPT_base))
parseNumbers(arg->getValue(), &config->imageBase);
2015-05-30 00:21:11 +08:00
// Handle /filealign
if (auto *arg = args.getLastArg(OPT_filealign)) {
parseNumbers(arg->getValue(), &config->fileAlign);
if (!isPowerOf2_64(config->fileAlign))
error("/filealign: not a power of two: " + Twine(config->fileAlign));
}
2015-05-30 00:21:11 +08:00
// Handle /stack
if (auto *arg = args.getLastArg(OPT_stack))
parseNumbers(arg->getValue(), &config->stackReserve, &config->stackCommit);
// Handle /guard:cf
if (auto *arg = args.getLastArg(OPT_guard))
parseGuard(arg->getValue());
// Handle /heap
if (auto *arg = args.getLastArg(OPT_heap))
parseNumbers(arg->getValue(), &config->heapReserve, &config->heapCommit);
// Handle /version
if (auto *arg = args.getLastArg(OPT_version))
parseVersion(arg->getValue(), &config->majorImageVersion,
&config->minorImageVersion);
// Handle /subsystem
if (auto *arg = args.getLastArg(OPT_subsystem))
parseSubsystem(arg->getValue(), &config->subsystem,
&config->majorSubsystemVersion,
&config->minorSubsystemVersion);
// Handle /osversion
if (auto *arg = args.getLastArg(OPT_osversion)) {
parseVersion(arg->getValue(), &config->majorOSVersion,
&config->minorOSVersion);
} else {
config->majorOSVersion = config->majorSubsystemVersion;
config->minorOSVersion = config->minorSubsystemVersion;
}
// Handle /timestamp
if (llvm::opt::Arg *arg = args.getLastArg(OPT_timestamp, OPT_repro)) {
if (arg->getOption().getID() == OPT_repro) {
config->timestamp = 0;
config->repro = true;
} else {
config->repro = false;
StringRef value(arg->getValue());
if (value.getAsInteger(0, config->timestamp))
fatal(Twine("invalid timestamp: ") + value +
". Expected 32-bit integer");
}
} else {
config->repro = false;
config->timestamp = time(nullptr);
}
// Handle /alternatename
for (auto *arg : args.filtered(OPT_alternatename))
parseAlternateName(arg->getValue());
// Handle /include
for (auto *arg : args.filtered(OPT_incl))
addUndefined(arg->getValue());
// Handle /implib
if (auto *arg = args.getLastArg(OPT_implib))
config->implib = arg->getValue();
// Handle /opt.
bool doGC = debug == DebugKind::None || args.hasArg(OPT_profile);
Optional<ICFLevel> icfLevel = None;
if (args.hasArg(OPT_profile))
icfLevel = ICFLevel::None;
unsigned tailMerge = 1;
bool ltoNewPM = LLVM_ENABLE_NEW_PASS_MANAGER;
bool ltoDebugPM = false;
for (auto *arg : args.filtered(OPT_opt)) {
std::string str = StringRef(arg->getValue()).lower();
SmallVector<StringRef, 1> vec;
StringRef(str).split(vec, ',');
for (StringRef s : vec) {
if (s == "ref") {
doGC = true;
} else if (s == "noref") {
doGC = false;
} else if (s == "icf" || s.startswith("icf=")) {
icfLevel = ICFLevel::All;
} else if (s == "safeicf") {
icfLevel = ICFLevel::Safe;
} else if (s == "noicf") {
icfLevel = ICFLevel::None;
} else if (s == "lldtailmerge") {
tailMerge = 2;
} else if (s == "nolldtailmerge") {
tailMerge = 0;
} else if (s == "ltonewpassmanager") {
ltoNewPM = true;
} else if (s == "noltonewpassmanager") {
ltoNewPM = false;
} else if (s == "ltodebugpassmanager") {
ltoDebugPM = true;
} else if (s == "noltodebugpassmanager") {
ltoDebugPM = false;
} else if (s.startswith("lldlto=")) {
StringRef optLevel = s.substr(7);
if (optLevel.getAsInteger(10, config->ltoo) || config->ltoo > 3)
error("/opt:lldlto: invalid optimization level: " + optLevel);
} else if (s.startswith("lldltojobs=")) {
StringRef jobs = s.substr(11);
if (!get_threadpool_strategy(jobs))
error("/opt:lldltojobs: invalid job count: " + jobs);
config->thinLTOJobs = jobs.str();
} else if (s.startswith("lldltopartitions=")) {
StringRef n = s.substr(17);
if (n.getAsInteger(10, config->ltoPartitions) ||
config->ltoPartitions == 0)
error("/opt:lldltopartitions: invalid partition count: " + n);
} else if (s != "lbr" && s != "nolbr")
error("/opt: unknown option: " + s);
}
}
if (!icfLevel)
icfLevel = doGC ? ICFLevel::All : ICFLevel::None;
config->doGC = doGC;
config->doICF = icfLevel.getValue();
config->tailMerge =
(tailMerge == 1 && config->doICF != ICFLevel::None) || tailMerge == 2;
config->ltoNewPassManager = ltoNewPM;
config->ltoDebugPassManager = ltoDebugPM;
// Handle /lldsavetemps
if (args.hasArg(OPT_lldsavetemps))
config->saveTemps = true;
// Handle /kill-at
if (args.hasArg(OPT_kill_at))
config->killAt = true;
// Handle /lldltocache
if (auto *arg = args.getLastArg(OPT_lldltocache))
config->ltoCache = arg->getValue();
// Handle /lldsavecachepolicy
if (auto *arg = args.getLastArg(OPT_lldltocachepolicy))
config->ltoCachePolicy = CHECK(
parseCachePruningPolicy(arg->getValue()),
Twine("/lldltocachepolicy: invalid cache policy: ") + arg->getValue());
// Handle /failifmismatch
for (auto *arg : args.filtered(OPT_failifmismatch))
checkFailIfMismatch(arg->getValue(), nullptr);
// Handle /merge
for (auto *arg : args.filtered(OPT_merge))
parseMerge(arg->getValue());
// Add default section merging rules after user rules. User rules take
// precedence, but we will emit a warning if there is a conflict.
parseMerge(".idata=.rdata");
parseMerge(".didat=.rdata");
parseMerge(".edata=.rdata");
parseMerge(".xdata=.rdata");
parseMerge(".bss=.data");
if (config->mingw) {
parseMerge(".ctors=.rdata");
parseMerge(".dtors=.rdata");
parseMerge(".CRT=.rdata");
}
// Handle /section
for (auto *arg : args.filtered(OPT_section))
parseSection(arg->getValue());
// Handle /align
if (auto *arg = args.getLastArg(OPT_align)) {
parseNumbers(arg->getValue(), &config->align);
if (!isPowerOf2_64(config->align))
error("/align: not a power of two: " + StringRef(arg->getValue()));
if (!args.hasArg(OPT_driver))
warn("/align specified without /driver; image may not run");
}
// Handle /aligncomm
for (auto *arg : args.filtered(OPT_aligncomm))
parseAligncomm(arg->getValue());
// Handle /manifestdependency. This enables /manifest unless /manifest:no is
// also passed.
if (auto *arg = args.getLastArg(OPT_manifestdependency)) {
config->manifestDependency = arg->getValue();
config->manifest = Configuration::SideBySide;
}
// Handle /manifest and /manifest:
if (auto *arg = args.getLastArg(OPT_manifest, OPT_manifest_colon)) {
if (arg->getOption().getID() == OPT_manifest)
config->manifest = Configuration::SideBySide;
else
parseManifest(arg->getValue());
}
// Handle /manifestuac
if (auto *arg = args.getLastArg(OPT_manifestuac))
parseManifestUAC(arg->getValue());
// Handle /manifestfile
if (auto *arg = args.getLastArg(OPT_manifestfile))
config->manifestFile = arg->getValue();
// Handle /manifestinput
for (auto *arg : args.filtered(OPT_manifestinput))
config->manifestInput.push_back(arg->getValue());
if (!config->manifestInput.empty() &&
config->manifest != Configuration::Embed) {
fatal("/manifestinput: requires /manifest:embed");
}
config->thinLTOEmitImportsFiles = args.hasArg(OPT_thinlto_emit_imports_files);
config->thinLTOIndexOnly = args.hasArg(OPT_thinlto_index_only) ||
args.hasArg(OPT_thinlto_index_only_arg);
config->thinLTOIndexOnlyArg =
args.getLastArgValue(OPT_thinlto_index_only_arg);
config->thinLTOPrefixReplace =
getOldNewOptions(args, OPT_thinlto_prefix_replace);
config->thinLTOObjectSuffixReplace =
getOldNewOptions(args, OPT_thinlto_object_suffix_replace);
config->ltoObjPath = args.getLastArgValue(OPT_lto_obj_path);
config->ltoCSProfileGenerate = args.hasArg(OPT_lto_cs_profile_generate);
config->ltoCSProfileFile = args.getLastArgValue(OPT_lto_cs_profile_file);
// Handle miscellaneous boolean flags.
config->allowBind = args.hasFlag(OPT_allowbind, OPT_allowbind_no, true);
config->allowIsolation =
args.hasFlag(OPT_allowisolation, OPT_allowisolation_no, true);
config->incremental =
args.hasFlag(OPT_incremental, OPT_incremental_no,
!config->doGC && config->doICF == ICFLevel::None &&
!args.hasArg(OPT_order) && !args.hasArg(OPT_profile));
config->integrityCheck =
args.hasFlag(OPT_integritycheck, OPT_integritycheck_no, false);
config->cetCompat = args.hasFlag(OPT_cetcompat, OPT_cetcompat_no, false);
config->nxCompat = args.hasFlag(OPT_nxcompat, OPT_nxcompat_no, true);
for (auto *arg : args.filtered(OPT_swaprun))
parseSwaprun(arg->getValue());
config->terminalServerAware =
!config->dll && args.hasFlag(OPT_tsaware, OPT_tsaware_no, true);
config->debugDwarf = debug == DebugKind::Dwarf;
[PDB] Enable parallel ghash type merging by default Ghashing is probably going to be faster in most cases, even without precomputed ghashes in object files. Here is my table of results linking clang.pdb: ------------------------------- | threads | GHASH | NOGHASH | ------------------------------- | j1 | 51.031s | 25.141s | | j2 | 31.079s | 22.109s | | j4 | 18.609s | 23.156s | | j8 | 11.938s | 21.984s | | j28 | 8.375s | 18.391s | ------------------------------- This shows that ghashing is faster if at least four cores are available. This may make the linker slower if most cores are busy in the middle of a build, but in that case, the linker probably isn't on the critical path of the build. Incremental build performance is arguably more important than highly contended batch build link performance. The -time output indicates that ghash computation is the dominant factor: Input File Reading: 924 ms ( 1.8%) GC: 689 ms ( 1.3%) ICF: 527 ms ( 1.0%) Code Layout: 414 ms ( 0.8%) Commit Output File: 24 ms ( 0.0%) PDB Emission (Cumulative): 49938 ms ( 94.8%) Add Objects: 46783 ms ( 88.8%) Global Type Hashing: 38983 ms ( 74.0%) GHash Type Merging: 5640 ms ( 10.7%) Symbol Merging: 2154 ms ( 4.1%) Publics Stream Layout: 188 ms ( 0.4%) TPI Stream Layout: 18 ms ( 0.0%) Commit to Disk: 2818 ms ( 5.4%) -------------------------------------------------- Total Link Time: 52669 ms (100.0%) We can speed that up with a faster content hash (not SHA1). Differential Revision: https://reviews.llvm.org/D102888
2021-05-21 07:18:18 +08:00
config->debugGHashes = debug == DebugKind::GHash || debug == DebugKind::Full;
config->debugSymtab = debug == DebugKind::Symtab;
config->autoImport =
args.hasFlag(OPT_auto_import, OPT_auto_import_no, config->mingw);
config->pseudoRelocs = args.hasFlag(
OPT_runtime_pseudo_reloc, OPT_runtime_pseudo_reloc_no, config->mingw);
config->callGraphProfileSort = args.hasFlag(
OPT_call_graph_profile_sort, OPT_call_graph_profile_sort_no, true);
// Don't warn about long section names, such as .debug_info, for mingw or
// when -debug:dwarf is requested.
if (config->mingw || config->debugDwarf)
config->warnLongSectionNames = false;
config->lldmapFile = getMapFile(args, OPT_lldmap, OPT_lldmap_file);
config->mapFile = getMapFile(args, OPT_map, OPT_map_file);
if (config->lldmapFile != "" && config->lldmapFile == config->mapFile) {
warn("/lldmap and /map have the same output file '" + config->mapFile +
"'.\n>>> ignoring /lldmap");
config->lldmapFile.clear();
}
if (config->incremental && args.hasArg(OPT_profile)) {
warn("ignoring '/incremental' due to '/profile' specification");
config->incremental = false;
}
if (config->incremental && args.hasArg(OPT_order)) {
warn("ignoring '/incremental' due to '/order' specification");
config->incremental = false;
}
if (config->incremental && config->doGC) {
warn("ignoring '/incremental' because REF is enabled; use '/opt:noref' to "
"disable");
config->incremental = false;
}
if (config->incremental && config->doICF != ICFLevel::None) {
warn("ignoring '/incremental' because ICF is enabled; use '/opt:noicf' to "
"disable");
config->incremental = false;
}
if (errorCount())
return;
std::set<sys::fs::UniqueID> wholeArchives;
for (auto *arg : args.filtered(OPT_wholearchive_file))
if (Optional<StringRef> path = doFindFile(arg->getValue()))
if (Optional<sys::fs::UniqueID> id = getUniqueID(*path))
wholeArchives.insert(*id);
// A predicate returning true if a given path is an argument for
// /wholearchive:, or /wholearchive is enabled globally.
// This function is a bit tricky because "foo.obj /wholearchive:././foo.obj"
// needs to be handled as "/wholearchive:foo.obj foo.obj".
auto isWholeArchive = [&](StringRef path) -> bool {
if (args.hasArg(OPT_wholearchive_flag))
return true;
if (Optional<sys::fs::UniqueID> id = getUniqueID(path))
return wholeArchives.count(*id);
return false;
};
// Create a list of input files. These can be given as OPT_INPUT options
// and OPT_wholearchive_file options, and we also need to track OPT_start_lib
// and OPT_end_lib.
bool inLib = false;
for (auto *arg : args) {
switch (arg->getOption().getID()) {
case OPT_end_lib:
if (!inLib)
error("stray " + arg->getSpelling());
inLib = false;
break;
case OPT_start_lib:
if (inLib)
error("nested " + arg->getSpelling());
inLib = true;
break;
case OPT_wholearchive_file:
if (Optional<StringRef> path = findFile(arg->getValue()))
enqueuePath(*path, true, inLib);
break;
case OPT_INPUT:
if (Optional<StringRef> path = findFile(arg->getValue()))
enqueuePath(*path, isWholeArchive(*path), inLib);
break;
default:
// Ignore other options.
break;
}
}
// Process files specified as /defaultlib. These should be enequeued after
// other files, which is why they are in a separate loop.
for (auto *arg : args.filtered(OPT_defaultlib))
if (Optional<StringRef> path = findLib(arg->getValue()))
enqueuePath(*path, false, false);
// Windows specific -- Create a resource file containing a manifest file.
if (config->manifest == Configuration::Embed)
addBuffer(createManifestRes(), false, false);
// Read all input files given via the command line.
run();
if (errorCount())
return;
// We should have inferred a machine type by now from the input files, but if
// not we assume x64.
if (config->machine == IMAGE_FILE_MACHINE_UNKNOWN) {
warn("/machine is not specified. x64 is assumed");
config->machine = AMD64;
}
config->wordsize = config->is64() ? 8 : 4;
// Handle /safeseh, x86 only, on by default, except for mingw.
if (config->machine == I386) {
config->safeSEH = args.hasFlag(OPT_safeseh, OPT_safeseh_no, !config->mingw);
config->noSEH = args.hasArg(OPT_noseh);
}
// Handle /functionpadmin
for (auto *arg : args.filtered(OPT_functionpadmin, OPT_functionpadmin_opt))
parseFunctionPadMin(arg, config->machine);
if (tar)
tar->append("response.txt",
createResponseFile(args, filePaths,
ArrayRef<StringRef>(searchPaths).slice(1)));
// Handle /largeaddressaware
config->largeAddressAware = args.hasFlag(
OPT_largeaddressaware, OPT_largeaddressaware_no, config->is64());
// Handle /highentropyva
config->highEntropyVA =
config->is64() &&
args.hasFlag(OPT_highentropyva, OPT_highentropyva_no, true);
if (!config->dynamicBase &&
(config->machine == ARMNT || config->machine == ARM64))
error("/dynamicbase:no is not compatible with " +
machineToStr(config->machine));
// Handle /export
for (auto *arg : args.filtered(OPT_export)) {
Export e = parseExport(arg->getValue());
COFF: Improve dllexported name mangling compatibility. The rules for dllexported symbols are overly complicated due to x86 name decoration, fuzzy symbol resolution, and the fact that one symbol can be resolved by so many different names. The rules are probably intended to be "intuitive", so that users don't have to understand the name mangling schemes, but it seems that it can lead to unintended symbol exports. To make it clear what I'm trying to do with this patch, let me write how the export rules are subtle and complicated. - x86 name decoration: If machine type is i386 and export name is given by a command line option, like /export:foo, the real symbol name the linker has to search for is _foo because all symbols are decorated with "_" prefixes. This doesn't happen on non-x86 machines. This automatic name decoration happens only when the name is not C++ mangled. However, the symbol name exported from DLLs are ones without "_" on all platforms. Moreover, if the option is given via .drectve section, no symbol decoration is done (the reason being that the .drectve section is created by a compiler and the compiler should always know the exact name of the symbol, I guess). - Fuzzy symbol resolution: In addition to x86 name decoration, the linker has to look for cdecl or C++ mangled symbols for a given /export. For example, it searches for not only _foo but also _foo@<number> or ??foo@... for /export:foo. Previous implementation didn't get it right. I'm trying to make it as compatible with MSVC linker as possible with this patch however the rules are. The new code looks a bit messy to me, but I don't think it can be simpler due to the ad-hoc-ness of the rules. llvm-svn: 246424
2015-08-31 16:43:21 +08:00
if (config->machine == I386) {
if (!isDecorated(e.name))
e.name = saver.save("_" + e.name);
COFF: Improve dllexported name mangling compatibility. The rules for dllexported symbols are overly complicated due to x86 name decoration, fuzzy symbol resolution, and the fact that one symbol can be resolved by so many different names. The rules are probably intended to be "intuitive", so that users don't have to understand the name mangling schemes, but it seems that it can lead to unintended symbol exports. To make it clear what I'm trying to do with this patch, let me write how the export rules are subtle and complicated. - x86 name decoration: If machine type is i386 and export name is given by a command line option, like /export:foo, the real symbol name the linker has to search for is _foo because all symbols are decorated with "_" prefixes. This doesn't happen on non-x86 machines. This automatic name decoration happens only when the name is not C++ mangled. However, the symbol name exported from DLLs are ones without "_" on all platforms. Moreover, if the option is given via .drectve section, no symbol decoration is done (the reason being that the .drectve section is created by a compiler and the compiler should always know the exact name of the symbol, I guess). - Fuzzy symbol resolution: In addition to x86 name decoration, the linker has to look for cdecl or C++ mangled symbols for a given /export. For example, it searches for not only _foo but also _foo@<number> or ??foo@... for /export:foo. Previous implementation didn't get it right. I'm trying to make it as compatible with MSVC linker as possible with this patch however the rules are. The new code looks a bit messy to me, but I don't think it can be simpler due to the ad-hoc-ness of the rules. llvm-svn: 246424
2015-08-31 16:43:21 +08:00
if (!e.extName.empty() && !isDecorated(e.extName))
e.extName = saver.save("_" + e.extName);
COFF: Improve dllexported name mangling compatibility. The rules for dllexported symbols are overly complicated due to x86 name decoration, fuzzy symbol resolution, and the fact that one symbol can be resolved by so many different names. The rules are probably intended to be "intuitive", so that users don't have to understand the name mangling schemes, but it seems that it can lead to unintended symbol exports. To make it clear what I'm trying to do with this patch, let me write how the export rules are subtle and complicated. - x86 name decoration: If machine type is i386 and export name is given by a command line option, like /export:foo, the real symbol name the linker has to search for is _foo because all symbols are decorated with "_" prefixes. This doesn't happen on non-x86 machines. This automatic name decoration happens only when the name is not C++ mangled. However, the symbol name exported from DLLs are ones without "_" on all platforms. Moreover, if the option is given via .drectve section, no symbol decoration is done (the reason being that the .drectve section is created by a compiler and the compiler should always know the exact name of the symbol, I guess). - Fuzzy symbol resolution: In addition to x86 name decoration, the linker has to look for cdecl or C++ mangled symbols for a given /export. For example, it searches for not only _foo but also _foo@<number> or ??foo@... for /export:foo. Previous implementation didn't get it right. I'm trying to make it as compatible with MSVC linker as possible with this patch however the rules are. The new code looks a bit messy to me, but I don't think it can be simpler due to the ad-hoc-ness of the rules. llvm-svn: 246424
2015-08-31 16:43:21 +08:00
}
config->exports.push_back(e);
}
// Handle /def
if (auto *arg = args.getLastArg(OPT_deffile)) {
// parseModuleDefs mutates Config object.
parseModuleDefs(arg->getValue());
}
// Handle generation of import library from a def file.
if (!args.hasArg(OPT_INPUT, OPT_wholearchive_file)) {
fixupExports();
createImportLibrary(/*asLib=*/true);
return;
}
// Windows specific -- if no /subsystem is given, we need to infer
// that from entry point name. Must happen before /entry handling,
// and after the early return when just writing an import library.
if (config->subsystem == IMAGE_SUBSYSTEM_UNKNOWN) {
config->subsystem = inferSubsystem();
if (config->subsystem == IMAGE_SUBSYSTEM_UNKNOWN)
fatal("subsystem must be defined");
}
// Handle /entry and /dll
if (auto *arg = args.getLastArg(OPT_entry)) {
config->entry = addUndefined(mangle(arg->getValue()));
} else if (!config->entry && !config->noEntry) {
if (args.hasArg(OPT_dll)) {
StringRef s = (config->machine == I386) ? "__DllMainCRTStartup@12"
: "_DllMainCRTStartup";
config->entry = addUndefined(s);
} else if (config->driverWdm) {
// /driver:wdm implies /entry:_NtProcessStartup
config->entry = addUndefined(mangle("_NtProcessStartup"));
} else {
// Windows specific -- If entry point name is not given, we need to
// infer that from user-defined entry name.
StringRef s = findDefaultEntry();
if (s.empty())
fatal("entry point must be defined");
config->entry = addUndefined(s);
log("Entry name inferred: " + s);
}
}
// Handle /delayload
for (auto *arg : args.filtered(OPT_delayload)) {
config->delayLoads.insert(StringRef(arg->getValue()).lower());
if (config->machine == I386) {
config->delayLoadHelper = addUndefined("___delayLoadHelper2@8");
} else {
config->delayLoadHelper = addUndefined("__delayLoadHelper2");
}
}
// Set default image name if neither /out or /def set it.
if (config->outputFile.empty()) {
config->outputFile = getOutputPath(
(*args.filtered(OPT_INPUT, OPT_wholearchive_file).begin())->getValue());
}
// Fail early if an output file is not writable.
if (auto e = tryCreateFile(config->outputFile)) {
error("cannot open output file " + config->outputFile + ": " + e.message());
return;
}
if (shouldCreatePDB) {
// Put the PDB next to the image if no /pdb flag was passed.
if (config->pdbPath.empty()) {
config->pdbPath = config->outputFile;
sys::path::replace_extension(config->pdbPath, ".pdb");
}
// The embedded PDB path should be the absolute path to the PDB if no
// /pdbaltpath flag was passed.
if (config->pdbAltPath.empty()) {
config->pdbAltPath = config->pdbPath;
// It's important to make the path absolute and remove dots. This path
// will eventually be written into the PE header, and certain Microsoft
// tools won't work correctly if these assumptions are not held.
sys::fs::make_absolute(config->pdbAltPath);
sys::path::remove_dots(config->pdbAltPath);
} else {
// Don't do this earlier, so that Config->OutputFile is ready.
parsePDBAltPath(config->pdbAltPath);
}
}
// Set default image base if /base is not given.
if (config->imageBase == uint64_t(-1))
config->imageBase = getDefaultImageBase();
symtab->addSynthetic(mangle("__ImageBase"), nullptr);
if (config->machine == I386) {
symtab->addAbsolute("___safe_se_handler_table", 0);
symtab->addAbsolute("___safe_se_handler_count", 0);
}
symtab->addAbsolute(mangle("__guard_fids_count"), 0);
symtab->addAbsolute(mangle("__guard_fids_table"), 0);
symtab->addAbsolute(mangle("__guard_flags"), 0);
symtab->addAbsolute(mangle("__guard_iat_count"), 0);
symtab->addAbsolute(mangle("__guard_iat_table"), 0);
symtab->addAbsolute(mangle("__guard_longjmp_count"), 0);
symtab->addAbsolute(mangle("__guard_longjmp_table"), 0);
// Needed for MSVC 2017 15.5 CRT.
symtab->addAbsolute(mangle("__enclave_config"), 0);
// Needed for MSVC 2019 16.8 CRT.
symtab->addAbsolute(mangle("__guard_eh_cont_count"), 0);
symtab->addAbsolute(mangle("__guard_eh_cont_table"), 0);
if (config->pseudoRelocs) {
[COFF] Support MinGW automatic dllimport of data Normally, in order to reference exported data symbols from a different DLL, the declarations need to have the dllimport attribute, in order to use the __imp_<var> symbol (which contains an address to the actual variable) instead of the variable itself directly. This isn't an issue in the same way for functions, since any reference to the function without the dllimport attribute will end up as a reference to a thunk which loads the actual target function from the import address table (IAT). GNU ld, in MinGW environments, supports automatically importing data symbols from DLLs, even if the references didn't have the appropriate dllimport attribute. Since the PE/COFF format doesn't support the kind of relocations that this would require, the MinGW's CRT startup code has an custom framework of their own for manually fixing the missing relocations once module is loaded and the target addresses in the IAT are known. For this to work, the linker (originall in GNU ld) creates a list of remaining references needing fixup, which the runtime processes on startup before handing over control to user code. While this feature is rather controversial, it's one of the main features allowing unix style libraries to be used on windows without any extra porting effort. Some sort of automatic fixing of data imports is also necessary for the itanium C++ ABI on windows (as clang implements it right now) for importing vtable pointers in certain cases, see D43184 for some discussion on that. The runtime pseudo relocation handler supports 8/16/32/64 bit addresses, either PC relative references (like IMAGE_REL_*_REL32*) or absolute references (IMAGE_REL_AMD64_ADDR32, IMAGE_REL_AMD64_ADDR32, IMAGE_REL_I386_DIR32). On linking, the relocation is handled as a relocation against the corresponding IAT slot. For the absolute references, a normal base relocation is created, to update the embedded address in case the image is loaded at a different address. The list of runtime pseudo relocations contains the RVA of the imported symbol (the IAT slot), the RVA of the location the relocation should be applied to, and a size of the memory location. When the relocations are fixed at runtime, the difference between the actual IAT slot value and the IAT slot address is added to the reference, doing the right thing for both absolute and relative references. With this patch alone, things work fine for i386 binaries, and mostly for x86_64 binaries, with feature parity with GNU ld. Despite this, there are a few gotchas: - References to data from within code works fine on both x86 architectures, since their relocations consist of plain 32 or 64 bit absolute/relative references. On ARM and AArch64, references to data doesn't consist of a plain 32 or 64 bit embedded address or offset in the code. On ARMNT, it's usually a MOVW+MOVT instruction pair represented by a IMAGE_REL_ARM_MOV32T relocation, each instruction containing 16 bit of the target address), on AArch64, it's usually an ADRP+ADD/LDR/STR instruction pair with an even more complex encoding, storing a PC relative address (with a range of +/- 4 GB). This could theoretically be remedied by extending the runtime pseudo relocation handler with new relocation types, to support these instruction encodings. This isn't an issue for GCC/GNU ld since they don't support windows on ARMNT/AArch64. - For x86_64, if references in code are encoded as 32 bit PC relative offsets, the runtime relocation will fail if the target turns out to be out of range for a 32 bit offset. - Fixing up the relocations at runtime requires making sections writable if necessary, with the VirtualProtect function. In Windows Store/UWP apps, this function is forbidden. These limitations are addressed by a few later patches in lld and llvm. Differential Revision: https://reviews.llvm.org/D50917 llvm-svn: 340726
2018-08-27 16:43:31 +08:00
symtab->addAbsolute(mangle("__RUNTIME_PSEUDO_RELOC_LIST__"), 0);
symtab->addAbsolute(mangle("__RUNTIME_PSEUDO_RELOC_LIST_END__"), 0);
}
if (config->mingw) {
[COFF] Provide __CTOR_LIST__ and __DTOR_LIST__ symbols for MinGW MinGW uses these kind of list terminator symbols for traversing the constructor/destructor lists. These list terminators are actual pointers entries in the lists, with the values 0 and (uintptr_t)-1 (instead of just symbols pointing to the start/end of the list). (This mechanism exists in both the mingw-w64 crt startup code and in libgcc; normally the mingw-w64 one is used, but a DLL build of libgcc uses the libgcc one. Therefore it's not trivial to change the mechanism without lots of cross-project synchronization and potentially invalidating some combinations of old/new versions of them.) When mingw-w64 has been used with lld so far, the CRT startup object files have so far provided these symbols, ending up with different, incompatible builds of the CRT startup object files depending on whether binutils or lld are going to be used. In order to avoid the need of different configuration of the CRT startup object files depending on what linker to be used, provide these symbols in lld instead. (Mingw-w64 checks at build time whether the linker provides these symbols or not.) This unifies this particular detail between the two linkers. This does disallow the use of the very latest lld with older versions of mingw-w64 (the configure check for the list was added recently; earlier it simply checked whether the CRT was built with gcc or clang), and requires rebuilding the mingw-w64 CRT. But the number of users of lld+mingw still is low enough that such a change should be tolerable, and unifies this aspect of the toolchains, easing interoperability between the toolchains for the future. The actual test for this feature is added in ctors_dtors_priority.s, but a number of other tests that checked absolute output addresses are updated. Differential Revision: https://reviews.llvm.org/D52053 llvm-svn: 342294
2018-09-15 06:26:59 +08:00
symtab->addAbsolute(mangle("__CTOR_LIST__"), 0);
symtab->addAbsolute(mangle("__DTOR_LIST__"), 0);
[COFF] Support MinGW automatic dllimport of data Normally, in order to reference exported data symbols from a different DLL, the declarations need to have the dllimport attribute, in order to use the __imp_<var> symbol (which contains an address to the actual variable) instead of the variable itself directly. This isn't an issue in the same way for functions, since any reference to the function without the dllimport attribute will end up as a reference to a thunk which loads the actual target function from the import address table (IAT). GNU ld, in MinGW environments, supports automatically importing data symbols from DLLs, even if the references didn't have the appropriate dllimport attribute. Since the PE/COFF format doesn't support the kind of relocations that this would require, the MinGW's CRT startup code has an custom framework of their own for manually fixing the missing relocations once module is loaded and the target addresses in the IAT are known. For this to work, the linker (originall in GNU ld) creates a list of remaining references needing fixup, which the runtime processes on startup before handing over control to user code. While this feature is rather controversial, it's one of the main features allowing unix style libraries to be used on windows without any extra porting effort. Some sort of automatic fixing of data imports is also necessary for the itanium C++ ABI on windows (as clang implements it right now) for importing vtable pointers in certain cases, see D43184 for some discussion on that. The runtime pseudo relocation handler supports 8/16/32/64 bit addresses, either PC relative references (like IMAGE_REL_*_REL32*) or absolute references (IMAGE_REL_AMD64_ADDR32, IMAGE_REL_AMD64_ADDR32, IMAGE_REL_I386_DIR32). On linking, the relocation is handled as a relocation against the corresponding IAT slot. For the absolute references, a normal base relocation is created, to update the embedded address in case the image is loaded at a different address. The list of runtime pseudo relocations contains the RVA of the imported symbol (the IAT slot), the RVA of the location the relocation should be applied to, and a size of the memory location. When the relocations are fixed at runtime, the difference between the actual IAT slot value and the IAT slot address is added to the reference, doing the right thing for both absolute and relative references. With this patch alone, things work fine for i386 binaries, and mostly for x86_64 binaries, with feature parity with GNU ld. Despite this, there are a few gotchas: - References to data from within code works fine on both x86 architectures, since their relocations consist of plain 32 or 64 bit absolute/relative references. On ARM and AArch64, references to data doesn't consist of a plain 32 or 64 bit embedded address or offset in the code. On ARMNT, it's usually a MOVW+MOVT instruction pair represented by a IMAGE_REL_ARM_MOV32T relocation, each instruction containing 16 bit of the target address), on AArch64, it's usually an ADRP+ADD/LDR/STR instruction pair with an even more complex encoding, storing a PC relative address (with a range of +/- 4 GB). This could theoretically be remedied by extending the runtime pseudo relocation handler with new relocation types, to support these instruction encodings. This isn't an issue for GCC/GNU ld since they don't support windows on ARMNT/AArch64. - For x86_64, if references in code are encoded as 32 bit PC relative offsets, the runtime relocation will fail if the target turns out to be out of range for a 32 bit offset. - Fixing up the relocations at runtime requires making sections writable if necessary, with the VirtualProtect function. In Windows Store/UWP apps, this function is forbidden. These limitations are addressed by a few later patches in lld and llvm. Differential Revision: https://reviews.llvm.org/D50917 llvm-svn: 340726
2018-08-27 16:43:31 +08:00
}
// This code may add new undefined symbols to the link, which may enqueue more
// symbol resolution tasks, so we need to continue executing tasks until we
// converge.
do {
// Windows specific -- if entry point is not found,
// search for its mangled names.
if (config->entry)
[COFF] Fix /export:foo=bar when bar is a weak alias Summary: When handling exports from the command line or from .def files, the linker does a "fuzzy" string lookup to allow finding mangled symbols. However, when the symbol is re-exported under a new name, the linker has to transfer the decorations from the exported symbol over to the new name. This is implemented by taking the mangled symbol that was found in the object and replacing the original symbol name with the export name. Before this patch, LLD implemented the fuzzy search by adding an undefined symbol with the unmangled name, and then during symbol resolution, checking if similar mangled symbols had been added after the last round of symbol resolution. If so, LLD makes the original symbol a weak alias of the mangled symbol. Later, to get the original symbol name, LLD would look through the weak alias and forward it on to the import library writer, which copies the symbol decorations. This approach doesn't work when bar is itself a weak alias, as is the case in asan. It's especially bad when the aliasee of bar contains the string "bar", consider "bar_default". In this case, we would end up exporting the symbol "foo_default" when we should've exported just "foo". To fix this, don't look through weak aliases to find the mangled name. Save the mangled name earlier during fuzzy symbol lookup. Fixes PR42074 Reviewers: mstorsjo, ruiu Subscribers: thakis, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62984 llvm-svn: 362849
2019-06-08 06:05:12 +08:00
mangleMaybe(config->entry);
// Windows specific -- Make sure we resolve all dllexported symbols.
for (Export &e : config->exports) {
if (!e.forwardTo.empty())
continue;
e.sym = addUndefined(e.name);
if (!e.directives)
[COFF] Fix /export:foo=bar when bar is a weak alias Summary: When handling exports from the command line or from .def files, the linker does a "fuzzy" string lookup to allow finding mangled symbols. However, when the symbol is re-exported under a new name, the linker has to transfer the decorations from the exported symbol over to the new name. This is implemented by taking the mangled symbol that was found in the object and replacing the original symbol name with the export name. Before this patch, LLD implemented the fuzzy search by adding an undefined symbol with the unmangled name, and then during symbol resolution, checking if similar mangled symbols had been added after the last round of symbol resolution. If so, LLD makes the original symbol a weak alias of the mangled symbol. Later, to get the original symbol name, LLD would look through the weak alias and forward it on to the import library writer, which copies the symbol decorations. This approach doesn't work when bar is itself a weak alias, as is the case in asan. It's especially bad when the aliasee of bar contains the string "bar", consider "bar_default". In this case, we would end up exporting the symbol "foo_default" when we should've exported just "foo". To fix this, don't look through weak aliases to find the mangled name. Save the mangled name earlier during fuzzy symbol lookup. Fixes PR42074 Reviewers: mstorsjo, ruiu Subscribers: thakis, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D62984 llvm-svn: 362849
2019-06-08 06:05:12 +08:00
e.symbolName = mangleMaybe(e.sym);
}
// Add weak aliases. Weak aliases is a mechanism to give remaining
// undefined symbols final chance to be resolved successfully.
for (auto pair : config->alternateNames) {
StringRef from = pair.first;
StringRef to = pair.second;
Symbol *sym = symtab->find(from);
if (!sym)
continue;
if (auto *u = dyn_cast<Undefined>(sym))
if (!u->weakAlias)
u->weakAlias = symtab->addUndefined(to);
}
// If any inputs are bitcode files, the LTO code generator may create
// references to library functions that are not explicit in the bitcode
// file's symbol table. If any of those library functions are defined in a
// bitcode file in an archive member, we need to arrange to use LTO to
// compile those archive members by adding them to the link beforehand.
if (!BitcodeFile::instances.empty())
for (auto *s : lto::LTO::getRuntimeLibcallSymbols())
symtab->addLibcall(s);
// Windows specific -- if __load_config_used can be resolved, resolve it.
if (symtab->findUnderscore("_load_config_used"))
addUndefined(mangle("_load_config_used"));
} while (run());
if (args.hasArg(OPT_include_optional)) {
// Handle /includeoptional
for (auto *arg : args.filtered(OPT_include_optional))
if (dyn_cast_or_null<LazyArchive>(symtab->find(arg->getValue())))
addUndefined(arg->getValue());
while (run());
}
// Create wrapped symbols for -wrap option.
std::vector<WrappedSymbol> wrapped = addWrappedSymbols(args);
// Load more object files that might be needed for wrapped symbols.
if (!wrapped.empty())
while (run());
if (config->autoImport) {
// MinGW specific.
[COFF] Support MinGW automatic dllimport of data Normally, in order to reference exported data symbols from a different DLL, the declarations need to have the dllimport attribute, in order to use the __imp_<var> symbol (which contains an address to the actual variable) instead of the variable itself directly. This isn't an issue in the same way for functions, since any reference to the function without the dllimport attribute will end up as a reference to a thunk which loads the actual target function from the import address table (IAT). GNU ld, in MinGW environments, supports automatically importing data symbols from DLLs, even if the references didn't have the appropriate dllimport attribute. Since the PE/COFF format doesn't support the kind of relocations that this would require, the MinGW's CRT startup code has an custom framework of their own for manually fixing the missing relocations once module is loaded and the target addresses in the IAT are known. For this to work, the linker (originall in GNU ld) creates a list of remaining references needing fixup, which the runtime processes on startup before handing over control to user code. While this feature is rather controversial, it's one of the main features allowing unix style libraries to be used on windows without any extra porting effort. Some sort of automatic fixing of data imports is also necessary for the itanium C++ ABI on windows (as clang implements it right now) for importing vtable pointers in certain cases, see D43184 for some discussion on that. The runtime pseudo relocation handler supports 8/16/32/64 bit addresses, either PC relative references (like IMAGE_REL_*_REL32*) or absolute references (IMAGE_REL_AMD64_ADDR32, IMAGE_REL_AMD64_ADDR32, IMAGE_REL_I386_DIR32). On linking, the relocation is handled as a relocation against the corresponding IAT slot. For the absolute references, a normal base relocation is created, to update the embedded address in case the image is loaded at a different address. The list of runtime pseudo relocations contains the RVA of the imported symbol (the IAT slot), the RVA of the location the relocation should be applied to, and a size of the memory location. When the relocations are fixed at runtime, the difference between the actual IAT slot value and the IAT slot address is added to the reference, doing the right thing for both absolute and relative references. With this patch alone, things work fine for i386 binaries, and mostly for x86_64 binaries, with feature parity with GNU ld. Despite this, there are a few gotchas: - References to data from within code works fine on both x86 architectures, since their relocations consist of plain 32 or 64 bit absolute/relative references. On ARM and AArch64, references to data doesn't consist of a plain 32 or 64 bit embedded address or offset in the code. On ARMNT, it's usually a MOVW+MOVT instruction pair represented by a IMAGE_REL_ARM_MOV32T relocation, each instruction containing 16 bit of the target address), on AArch64, it's usually an ADRP+ADD/LDR/STR instruction pair with an even more complex encoding, storing a PC relative address (with a range of +/- 4 GB). This could theoretically be remedied by extending the runtime pseudo relocation handler with new relocation types, to support these instruction encodings. This isn't an issue for GCC/GNU ld since they don't support windows on ARMNT/AArch64. - For x86_64, if references in code are encoded as 32 bit PC relative offsets, the runtime relocation will fail if the target turns out to be out of range for a 32 bit offset. - Fixing up the relocations at runtime requires making sections writable if necessary, with the VirtualProtect function. In Windows Store/UWP apps, this function is forbidden. These limitations are addressed by a few later patches in lld and llvm. Differential Revision: https://reviews.llvm.org/D50917 llvm-svn: 340726
2018-08-27 16:43:31 +08:00
// Load any further object files that might be needed for doing automatic
// imports.
//
// For cases with no automatically imported symbols, this iterates once
// over the symbol table and doesn't do anything.
//
// For the normal case with a few automatically imported symbols, this
// should only need to be run once, since each new object file imported
// is an import library and wouldn't add any new undefined references,
// but there's nothing stopping the __imp_ symbols from coming from a
// normal object file as well (although that won't be used for the
// actual autoimport later on). If this pass adds new undefined references,
// we won't iterate further to resolve them.
symtab->loadMinGWAutomaticImports();
run();
}
// At this point, we should not have any symbols that cannot be resolved.
// If we are going to do codegen for link-time optimization, check for
// unresolvable symbols first, so we don't spend time generating code that
// will fail to link anyway.
if (!BitcodeFile::instances.empty() && !config->forceUnresolved)
symtab->reportUnresolvable();
if (errorCount())
return;
config->hadExplicitExports = !config->exports.empty();
if (config->mingw) {
// In MinGW, all symbols are automatically exported if no symbols
// are chosen to be exported.
maybeExportMinGWSymbols(args);
}
// Do LTO by compiling bitcode input files to a set of native COFF files then
// link those files (unless -thinlto-index-only was given, in which case we
// resolve symbols and write indices, but don't generate native code or link).
symtab->addCombinedLTOObjects();
// If -thinlto-index-only is given, we should create only "index
// files" and not object files. Index file creation is already done
// in addCombinedLTOObject, so we are done if that's the case.
if (config->thinLTOIndexOnly)
return;
// If we generated native object files from bitcode files, this resolves
// references to the symbols we use from them.
run();
// Apply symbol renames for -wrap.
if (!wrapped.empty())
wrapSymbols(wrapped);
// Resolve remaining undefined symbols and warn about imported locals.
symtab->resolveRemainingUndefines();
if (errorCount())
return;
if (config->mingw) {
// Make sure the crtend.o object is the last object file. This object
// file can contain terminating section chunks that need to be placed
// last. GNU ld processes files and static libraries explicitly in the
// order provided on the command line, while lld will pull in needed
// files from static libraries only after the last object file on the
// command line.
for (auto i = ObjFile::instances.begin(), e = ObjFile::instances.end();
i != e; i++) {
ObjFile *file = *i;
if (isCrtend(file->getName())) {
ObjFile::instances.erase(i);
ObjFile::instances.push_back(file);
break;
}
}
}
// Windows specific -- when we are creating a .dll file, we also
// need to create a .lib file. In MinGW mode, we only do that when the
// -implib option is given explicitly, for compatibility with GNU ld.
if (!config->exports.empty() || config->dll) {
fixupExports();
if (!config->mingw || !config->implib.empty())
createImportLibrary(/*asLib=*/false);
assignExportOrdinals();
}
// Handle /output-def (MinGW specific).
if (auto *arg = args.getLastArg(OPT_output_def))
writeDefFile(arg->getValue());
// Set extra alignment for .comm symbols
for (auto pair : config->alignComm) {
StringRef name = pair.first;
uint32_t alignment = pair.second;
Symbol *sym = symtab->find(name);
if (!sym) {
warn("/aligncomm symbol " + name + " not found");
continue;
}
// If the symbol isn't common, it must have been replaced with a regular
// symbol, which will carry its own alignment.
auto *dc = dyn_cast<DefinedCommon>(sym);
if (!dc)
continue;
CommonChunk *c = dc->getChunk();
c->setAlignment(std::max(c->getAlignment(), alignment));
}
// Windows specific -- Create a side-by-side manifest file.
if (config->manifest == Configuration::SideBySide)
createSideBySideManifest();
// Handle /order. We want to do this at this moment because we
// need a complete list of comdat sections to warn on nonexistent
// functions.
if (auto *arg = args.getLastArg(OPT_order)) {
if (args.hasArg(OPT_call_graph_ordering_file))
error("/order and /call-graph-order-file may not be used together");
parseOrderFile(arg->getValue());
config->callGraphProfileSort = false;
}
// Handle /call-graph-ordering-file and /call-graph-profile-sort (default on).
if (config->callGraphProfileSort) {
if (auto *arg = args.getLastArg(OPT_call_graph_ordering_file)) {
parseCallGraphFile(arg->getValue());
}
readCallGraphsFromObjectFiles();
}
// Handle /print-symbol-order.
if (auto *arg = args.getLastArg(OPT_print_symbol_order))
config->printSymbolOrder = arg->getValue();
// Identify unreferenced COMDAT sections.
if (config->doGC) {
if (config->mingw) {
// markLive doesn't traverse .eh_frame, but the personality function is
// only reached that way. The proper solution would be to parse and
// traverse the .eh_frame section, like the ELF linker does.
// For now, just manually try to retain the known possible personality
// functions. This doesn't bring in more object files, but only marks
// functions that already have been included to be retained.
for (const char *n : {"__gxx_personality_v0", "__gcc_personality_v0"}) {
Defined *d = dyn_cast_or_null<Defined>(symtab->findUnderscore(n));
if (d && !d->isGCRoot) {
d->isGCRoot = true;
config->gcroot.push_back(d);
}
}
}
markLive(symtab->getChunks());
}
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
// Needs to happen after the last call to addFile().
convertResources();
lld-link: Reject more than one resource .obj file Users are exepcted to pass all .res files to the linker, which then merges all the resource in all .res files into a tree structure and then converts the final tree structure to a .obj file with .rsrc$01 and .rsrc$02 sections and then links that. If the user instead passes several .obj files containing such resources, the correct thing to do would be to have custom code to merge the trees in the resource sections instead of doing normal section merging -- but link.exe rejects if multiple resource obj files are passed in with LNK4078, so let lld-link do that too instead of silently writing broken .rsrc sections in that case. The only real way to run into this is if users manually convert .res files to .obj files by running cvtres and then handing the resulting .obj files to lld-link instead, which in practice likely never happens. (lld-link is slightly stricter than link.exe now: If link.exe is passed one .obj file created by cvtres, and a .res file, for some reason it just emits a warning instead of an error and outputs strange looking data. lld-link now errors out on mixed input like this.) One way users could accidentally run into this is the following scenario: If a .res file is passed to lib.exe, then lib.exe calls cvtres.exe on the .res file before putting it in the output .lib. (llvm-lib currently doesn't do this.) link.exe's /wholearchive seems to only add obj files referenced from the static library index, but lld-link current really adds all files in the archive. So if lld-link /wholearchive is used with .lib files produced by lib.exe and .res files were among the files handed to lib.exe, we previously silently produced invalid output, but now we error out. link.exe's /wholearchive semantics on the other hand mean that it wouldn't load the resource object files from the .lib file at all. Since this scenario is probably still an unlikely corner case, the difference in behavior here seems fine -- and lld-link might have to change to use link.exe's /wholearchive semantics in the future anyways. Vaguely related to PR42180. Differential Revision: https://reviews.llvm.org/D63109 llvm-svn: 363078
2019-06-11 23:22:28 +08:00
// Identify identical COMDAT sections to merge them.
if (config->doICF != ICFLevel::None) {
findKeepUniqueSections();
doICF(symtab->getChunks(), config->doICF);
}
// Write the result.
writeResult();
// Stop early so we can print the results.
rootTimer.stop();
if (config->showTiming)
Timer::root().print();
}
} // namespace coff
} // namespace lld