llvm-project/llvm/lib/ExecutionEngine/CMakeLists.txt

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

39 lines
805 B
CMake
Raw Normal View History

[cmake] Explicitly mark libraries defined in lib/ as "Component Libraries" Summary: Most libraries are defined in the lib/ directory but there are also a few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining "Component Libraries" as libraries defined in lib/ that may be included in libLLVM.so. Explicitly marking the libraries in lib/ as component libraries allows us to remove some fragile checks that attempt to differentiate between lib/ libraries and tools/ libraires: 1. In tools/llvm-shlib, because llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of all libraries defined in the whole project, there was custom code needed to filter out libraries defined in tools/, none of which should be included in libLLVM.so. This code assumed that any library defined as static was from lib/ and everything else should be excluded. With this change, llvm_map_components_to_libnames(LIB_NAMES, "all") only returns libraries that have been added to the LLVM_COMPONENT_LIBS global cmake property, so this custom filtering logic can be removed. Doing this also fixes the build with BUILD_SHARED_LIBS=ON and LLVM_BUILD_LLVM_DYLIB=ON. 2. There was some code in llvm_add_library that assumed that libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or ARG_LINK_COMPONENTS set. This is only true because libraries defined lib lib/ use LLVMBuild.txt and don't set these values. This code has been fixed now to check if the library has been explicitly marked as a component library, which should now make it easier to remove LLVMBuild at some point in the future. I have tested this patch on Windows, MacOS and Linux with release builds and the following combinations of CMake options: - "" (No options) - -DLLVM_BUILD_LLVM_DYLIB=ON - -DLLVM_LINK_LLVM_DYLIB=ON - -DBUILD_SHARED_LIBS=ON - -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON - -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON Reviewers: beanz, smeenai, compnerd, phosek Reviewed By: beanz Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D70179
2019-11-14 13:39:58 +08:00
add_llvm_component_library(LLVMExecutionEngine
ExecutionEngine.cpp
ExecutionEngineBindings.cpp
GDBRegistrationListener.cpp
SectionMemoryManager.cpp
TargetSelect.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/ExecutionEngine
DEPENDS
intrinsics_gen
)
[cmake] Expose the dependencies of ExecutionEngine as PUBLIC Expose the dependencies of LLVMExecutionEngine library as PUBLIC rather than PRIVATE when building a shared library. This is necessary because the library is not contained but exposes API of other LLVM libraries via its headers. This causes other libraries to fail to link if the linker verifies for correctness of -l flags (i.e. fails on indirect dependencies). This e.g. happens when building LLDB against shared LLVM: lib64/liblldbExpression.a(IRExecutionUnit.cpp.o):(.data.rel.ro._ZTIN4llvm18MCJITMemoryManagerE[_ZTIN4llvm18MCJITMemoryManagerE]+0x10): undefined reference to `typeinfo for llvm::RuntimeDyld::MemoryManager' lib64/liblldbExpression.a(IRExecutionUnit.cpp.o):(.data.rel.ro._ZTVN4llvm18MCJITMemoryManagerE[_ZTVN4llvm18MCJITMemoryManagerE]+0x60): undefined reference to `llvm::RuntimeDyld::MemoryManager::anchor()' lib64/liblldbExpression.a(IRExecutionUnit.cpp.o):(.data.rel.ro._ZTVN12lldb_private15IRExecutionUnit13MemoryManagerE[_ZTVN12lldb_private15IRExecutionUnit13MemoryManagerE]+0x48): undefined reference to `llvm::RTDyldMemoryManager::deregisterEHFrames()' lib64/liblldbExpression.a(IRExecutionUnit.cpp.o):(.data.rel.ro._ZTVN12lldb_private15IRExecutionUnit13MemoryManagerE[_ZTVN12lldb_private15IRExecutionUnit13MemoryManagerE]+0x60): undefined reference to `llvm::RuntimeDyld::MemoryManager::anchor()' lib64/liblldbExpression.a(IRExecutionUnit.cpp.o):(.data.rel.ro._ZTVN12lldb_private15IRExecutionUnit13MemoryManagerE[_ZTVN12lldb_private15IRExecutionUnit13MemoryManagerE]+0xd0): undefined reference to `llvm::JITSymbolResolver::anchor()' collect2: error: ld returned 1 exit status Declaring the dependencies as PUBLIC guarantees that any package using the ExecutionEngine library will also get explicit -l flags for the dependent libraries guaranteeing that the symbols exposed in headers could be resolved. Patch originally written by NAKAMURA Takumi. Differential Revision: https://reviews.llvm.org/D36211 llvm-svn: 310712
2017-08-11 21:25:20 +08:00
if(BUILD_SHARED_LIBS)
target_link_libraries(LLVMExecutionEngine PUBLIC LLVMRuntimeDyld)
endif()
add_subdirectory(Interpreter)
Initial implementation of JITLink - A replacement for RuntimeDyld. Summary: JITLink is a jit-linker that performs the same high-level task as RuntimeDyld: it parses relocatable object files and makes their contents runnable in a target process. JITLink aims to improve on RuntimeDyld in several ways: (1) A clear design intended to maximize code-sharing while minimizing coupling. RuntimeDyld has been developed in an ad-hoc fashion for a number of years and this had led to intermingling of code for multiple architectures (e.g. in RuntimeDyldELF::processRelocationRef) in a way that makes the code more difficult to read, reason about, extend. JITLink is designed to isolate format and architecture specific code, while still sharing generic code. (2) Support for native code models. RuntimeDyld required the use of large code models (where calls to external functions are made indirectly via registers) for many of platforms due to its restrictive model for stub generation (one "stub" per symbol). JITLink allows arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be added naturally. (3) Native support for asynchronous linking. JITLink uses asynchronous calls for symbol resolution and finalization: these callbacks are passed a continuation function that they must call to complete the linker's work. This allows for cleaner interoperation with the new concurrent ORC JIT APIs, while still being easily implementable in synchronous style if asynchrony is not needed. To maximise sharing, the design has a hierarchy of common code: (1) Generic atom-graph data structure and algorithms (e.g. dead stripping and | memory allocation) that are intended to be shared by all architectures. | + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to | atom-graph parsing. | + -- (3) Architecture specific code that uses (1) and (2). E.g. JITLinkerMachO_x86_64, which adds x86-64 specific relocation support to (2) to build and patch up the atom graph. To support asynchronous symbol resolution and finalization, the callbacks for these operations take continuations as arguments: using JITLinkAsyncLookupContinuation = std::function<void(Expected<AsyncLookupResult> LR)>; using JITLinkAsyncLookupFunction = std::function<void(const DenseSet<StringRef> &Symbols, JITLinkAsyncLookupContinuation LookupContinuation)>; using FinalizeContinuation = std::function<void(Error)>; virtual void finalizeAsync(FinalizeContinuation OnFinalize); In addition to its headline features, JITLink also makes other improvements: - Dead stripping support: symbols that are not used (e.g. redundant ODR definitions) are discarded, and take up no memory in the target process (In contrast, RuntimeDyld supported pointer equality for weak definitions, but the redundant definitions stayed resident in memory). - Improved exception handling support. JITLink provides a much more extensive eh-frame parser than RuntimeDyld, and is able to correctly fix up many eh-frame sections that RuntimeDyld currently (silently) fails on. - More extensive validation and error handling throughout. This initial patch supports linking MachO/x86-64 only. Work on support for other architectures and formats will happen in-tree. Differential Revision: https://reviews.llvm.org/D58704 llvm-svn: 358818
2019-04-21 01:10:34 +08:00
add_subdirectory(JITLink)
add_subdirectory(MCJIT)
add_subdirectory(OrcError)
add_subdirectory(Orc)
add_subdirectory(RuntimeDyld)
if( LLVM_USE_OPROFILE )
add_subdirectory(OProfileJIT)
endif( LLVM_USE_OPROFILE )
if( LLVM_USE_INTEL_JITEVENTS )
add_subdirectory(IntelJITEvents)
endif( LLVM_USE_INTEL_JITEVENTS )
Add PerfJITEventListener for perf profiling support. This new JIT event listener supports generating profiling data for the linux 'perf' profiling tool, allowing it to generate function and instruction level profiles. Currently this functionality is not enabled by default, but must be enabled with LLVM_USE_PERF=yes. Given that the listener has no dependencies, it might be sensible to enable by default once the initial issues have been shaken out. I followed existing precedent in registering the listener by default in lli. Should there be a decision to enable this by default on linux, that should probably be changed. Please note that until https://reviews.llvm.org/D47343 is resolved, using this functionality with mcjit rather than orcjit will not reliably work. Disregarding the previous comment, here's an example: $ cat /tmp/expensive_loop.c bool stupid_isprime(uint64_t num) { if (num == 2) return true; if (num < 1 || num % 2 == 0) return false; for(uint64_t i = 3; i < num / 2; i+= 2) { if (num % i == 0) return false; } return true; } int main(int argc, char **argv) { int numprimes = 0; for (uint64_t num = argc; num < 100000; num++) { if (stupid_isprime(num)) numprimes++; } return numprimes; } $ clang -ggdb -S -c -emit-llvm /tmp/expensive_loop.c -o /tmp/expensive_loop.ll $ perf record -o perf.data -g -k 1 ./bin/lli -jit-kind=mcjit /tmp/expensive_loop.ll 1 $ perf inject --jit -i perf.data -o perf.jit.data $ perf report -i perf.jit.data - 92.59% lli jitted-5881-2.so [.] stupid_isprime stupid_isprime main llvm::MCJIT::runFunction llvm::ExecutionEngine::runFunctionAsMain main __libc_start_main 0x4bf6258d4c544155 + 0.85% lli ld-2.27.so [.] do_lookup_x And line-level annotations also work: │ for(uint64_t i = 3; i < num / 2; i+= 2) { │1 30: movq $0x3,-0x18(%rbp) 0.03 │1 38: mov -0x18(%rbp),%rax 0.03 │ mov -0x10(%rbp),%rcx │ shr $0x1,%rcx 3.63 │ ┌──cmp %rcx,%rax │ ├──jae 6f │ │ if (num % i == 0) 0.03 │ │ mov -0x10(%rbp),%rax │ │ xor %edx,%edx 89.00 │ │ divq -0x18(%rbp) │ │ cmp $0x0,%rdx 0.22 │ │↓ jne 5f │ │ return false; │ │ movb $0x0,-0x1(%rbp) │ │↓ jmp 73 │ │ } 3.22 │1 5f:│↓ jmp 61 │ │ for(uint64_t i = 3; i < num / 2; i+= 2) { Subscribers: mgorny, llvm-commits Differential Revision: https://reviews.llvm.org/D44892 llvm-svn: 337789
2018-07-24 08:54:06 +08:00
if( LLVM_USE_PERF )
add_subdirectory(PerfJITEvents)
endif( LLVM_USE_PERF )