llvm-project/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp

443 lines
13 KiB
C++
Raw Normal View History

//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions
//===----------------------------------------------------------------------===//
#include "NVPTXUtilities.h"
#include "NVPTX.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MutexGuard.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
typedef std::map<std::string, std::vector<unsigned> > key_val_pair_t;
typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
typedef std::map<const Module *, global_val_annot_t> per_module_annot_t;
ManagedStatic<per_module_annot_t> annotationCache;
static sys::Mutex Lock;
void llvm::clearAnnotationCache(const llvm::Module *Mod) {
MutexGuard Guard(Lock);
annotationCache->erase(Mod);
}
static void cacheAnnotationFromMD(const MDNode *md, key_val_pair_t &retval) {
MutexGuard Guard(Lock);
assert(md && "Invalid mdnode for annotation");
assert((md->getNumOperands() % 2) == 1 && "Invalid number of operands");
// start index = 1, to skip the global variable key
// increment = 2, to skip the value for each property-value pairs
for (unsigned i = 1, e = md->getNumOperands(); i != e; i += 2) {
// property
const MDString *prop = dyn_cast<MDString>(md->getOperand(i));
assert(prop && "Annotation property not a string");
// value
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(md->getOperand(i + 1));
assert(Val && "Value operand not a constant int");
std::string keyname = prop->getString().str();
if (retval.find(keyname) != retval.end())
retval[keyname].push_back(Val->getZExtValue());
else {
std::vector<unsigned> tmp;
tmp.push_back(Val->getZExtValue());
retval[keyname] = tmp;
}
}
}
static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
MutexGuard Guard(Lock);
NamedMDNode *NMD = m->getNamedMetadata(llvm::NamedMDForAnnotations);
if (!NMD)
return;
key_val_pair_t tmp;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
GlobalValue *entity =
mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
if (entity != gv)
continue;
// accumulate annotations for entity in tmp
cacheAnnotationFromMD(elem, tmp);
}
if (tmp.empty()) // no annotations for this gv
return;
if ((*annotationCache).find(m) != (*annotationCache).end())
(*annotationCache)[m][gv] = std::move(tmp);
else {
global_val_annot_t tmp1;
tmp1[gv] = std::move(tmp);
(*annotationCache)[m] = std::move(tmp1);
}
}
bool llvm::findOneNVVMAnnotation(const GlobalValue *gv, std::string prop,
unsigned &retval) {
MutexGuard Guard(Lock);
const Module *m = gv->getParent();
if ((*annotationCache).find(m) == (*annotationCache).end())
cacheAnnotationFromMD(m, gv);
else if ((*annotationCache)[m].find(gv) == (*annotationCache)[m].end())
cacheAnnotationFromMD(m, gv);
if ((*annotationCache)[m][gv].find(prop) == (*annotationCache)[m][gv].end())
return false;
retval = (*annotationCache)[m][gv][prop][0];
return true;
}
bool llvm::findAllNVVMAnnotation(const GlobalValue *gv, std::string prop,
std::vector<unsigned> &retval) {
MutexGuard Guard(Lock);
const Module *m = gv->getParent();
if ((*annotationCache).find(m) == (*annotationCache).end())
cacheAnnotationFromMD(m, gv);
else if ((*annotationCache)[m].find(gv) == (*annotationCache)[m].end())
cacheAnnotationFromMD(m, gv);
if ((*annotationCache)[m][gv].find(prop) == (*annotationCache)[m][gv].end())
return false;
retval = (*annotationCache)[m][gv][prop];
return true;
}
bool llvm::isTexture(const llvm::Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if (llvm::findOneNVVMAnnotation(
gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISTEXTURE],
annot)) {
assert((annot == 1) && "Unexpected annotation on a texture symbol");
return true;
}
}
return false;
}
bool llvm::isSurface(const llvm::Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if (llvm::findOneNVVMAnnotation(
gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSURFACE],
annot)) {
assert((annot == 1) && "Unexpected annotation on a surface symbol");
return true;
}
}
return false;
}
bool llvm::isSampler(const llvm::Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if (llvm::findOneNVVMAnnotation(
gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSAMPLER],
annot)) {
assert((annot == 1) && "Unexpected annotation on a sampler symbol");
return true;
}
}
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(
func, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSAMPLER],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImageReadOnly(const llvm::Value &val) {
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(func,
llvm::PropertyAnnotationNames[
llvm::PROPERTY_ISREADONLY_IMAGE_PARAM],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImageWriteOnly(const llvm::Value &val) {
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(func,
llvm::PropertyAnnotationNames[
llvm::PROPERTY_ISWRITEONLY_IMAGE_PARAM],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImageReadWrite(const llvm::Value &val) {
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(func,
llvm::PropertyAnnotationNames[
llvm::PROPERTY_ISREADWRITE_IMAGE_PARAM],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImage(const llvm::Value &val) {
return llvm::isImageReadOnly(val) || llvm::isImageWriteOnly(val) ||
llvm::isImageReadWrite(val);
}
bool llvm::isManaged(const llvm::Value &val) {
if(const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if(llvm::findOneNVVMAnnotation(gv,
llvm::PropertyAnnotationNames[llvm::PROPERTY_MANAGED],
annot)) {
assert((annot == 1) && "Unexpected annotation on a managed symbol");
return true;
}
}
return false;
}
std::string llvm::getTextureName(const llvm::Value &val) {
assert(val.hasName() && "Found texture variable with no name");
return val.getName();
}
std::string llvm::getSurfaceName(const llvm::Value &val) {
assert(val.hasName() && "Found surface variable with no name");
return val.getName();
}
std::string llvm::getSamplerName(const llvm::Value &val) {
assert(val.hasName() && "Found sampler variable with no name");
return val.getName();
}
bool llvm::getMaxNTIDx(const Function &F, unsigned &x) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_X], x));
}
bool llvm::getMaxNTIDy(const Function &F, unsigned &y) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_Y], y));
}
bool llvm::getMaxNTIDz(const Function &F, unsigned &z) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_Z], z));
}
bool llvm::getReqNTIDx(const Function &F, unsigned &x) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_X], x));
}
bool llvm::getReqNTIDy(const Function &F, unsigned &y) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_Y], y));
}
bool llvm::getReqNTIDz(const Function &F, unsigned &z) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_Z], z));
}
bool llvm::getMinCTASm(const Function &F, unsigned &x) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MINNCTAPERSM], x));
}
bool llvm::isKernelFunction(const Function &F) {
unsigned x = 0;
bool retval = llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISKERNEL_FUNCTION], x);
if (!retval) {
// There is no NVVM metadata, check the calling convention
return F.getCallingConv() == llvm::CallingConv::PTX_Kernel;
}
return (x == 1);
}
bool llvm::getAlign(const Function &F, unsigned index, unsigned &align) {
std::vector<unsigned> Vs;
bool retval = llvm::findAllNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_ALIGN], Vs);
if (!retval)
return false;
for (int i = 0, e = Vs.size(); i < e; i++) {
unsigned v = Vs[i];
if ((v >> 16) == index) {
align = v & 0xFFFF;
return true;
}
}
return false;
}
bool llvm::getAlign(const CallInst &I, unsigned index, unsigned &align) {
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned v = CI->getZExtValue();
if ((v >> 16) == index) {
align = v & 0xFFFF;
return true;
}
if ((v >> 16) > index) {
return false;
}
}
}
}
return false;
}
// The following are some useful utilities for debugging
BasicBlock *llvm::getParentBlock(Value *v) {
if (BasicBlock *B = dyn_cast<BasicBlock>(v))
return B;
if (Instruction *I = dyn_cast<Instruction>(v))
return I->getParent();
return nullptr;
}
Function *llvm::getParentFunction(Value *v) {
if (Function *F = dyn_cast<Function>(v))
return F;
if (Instruction *I = dyn_cast<Instruction>(v))
return I->getParent()->getParent();
if (BasicBlock *B = dyn_cast<BasicBlock>(v))
return B->getParent();
return nullptr;
}
// Dump a block by name
void llvm::dumpBlock(Value *v, char *blockName) {
Function *F = getParentFunction(v);
if (!F)
return;
for (Function::iterator it = F->begin(), ie = F->end(); it != ie; ++it) {
BasicBlock *B = &*it;
if (strcmp(B->getName().data(), blockName) == 0) {
B->dump();
return;
}
}
}
// Find an instruction by name
Instruction *llvm::getInst(Value *base, char *instName) {
Function *F = getParentFunction(base);
if (!F)
return nullptr;
for (inst_iterator it = inst_begin(F), ie = inst_end(F); it != ie; ++it) {
Instruction *I = &*it;
if (strcmp(I->getName().data(), instName) == 0) {
return I;
}
}
return nullptr;
}
// Dump an instruction by name
void llvm::dumpInst(Value *base, char *instName) {
Instruction *I = getInst(base, instName);
if (I)
I->dump();
}
// Dump an instruction and all dependent instructions
void llvm::dumpInstRec(Value *v, std::set<Instruction *> *visited) {
if (Instruction *I = dyn_cast<Instruction>(v)) {
if (visited->find(I) != visited->end())
return;
visited->insert(I);
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
dumpInstRec(I->getOperand(i), visited);
I->dump();
}
}
// Dump an instruction and all dependent instructions
void llvm::dumpInstRec(Value *v) {
std::set<Instruction *> visited;
//BasicBlock *B = getParentBlock(v);
dumpInstRec(v, &visited);
}
// Dump the parent for Instruction, block or function
void llvm::dumpParent(Value *v) {
if (Instruction *I = dyn_cast<Instruction>(v)) {
I->getParent()->dump();
return;
}
if (BasicBlock *B = dyn_cast<BasicBlock>(v)) {
B->getParent()->dump();
return;
}
if (Function *F = dyn_cast<Function>(v)) {
F->getParent()->dump();
return;
}
}