llvm-project/mlir/lib/Parser/Parser.cpp

2535 lines
83 KiB
C++
Raw Normal View History

//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//
#include "mlir/Parser.h"
#include "Lexer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/SourceMgr.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLFunction.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSet.h"
#include "mlir/IR/Statements.h"
#include "mlir/IR/Types.h"
using namespace mlir;
using llvm::SMLoc;
using llvm::SourceMgr;
/// Simple enum to make code read better in cases that would otherwise return a
/// bool value. Failure is "true" in a boolean context.
enum ParseResult { ParseSuccess, ParseFailure };
namespace {
class Parser;
/// This class refers to all of the state maintained globally by the parser,
/// such as the current lexer position etc. The Parser base class provides
/// methods to access this.
class ParserState {
public:
ParserState(llvm::SourceMgr &sourceMgr, Module *module,
SMDiagnosticHandlerTy errorReporter)
: context(module->getContext()), module(module),
lex(sourceMgr, errorReporter), curToken(lex.lexToken()),
errorReporter(errorReporter), operationSet(OperationSet::get(context)) {
}
// A map from affine map identifier to AffineMap.
llvm::StringMap<AffineMap *> affineMapDefinitions;
private:
ParserState(const ParserState &) = delete;
void operator=(const ParserState &) = delete;
friend class Parser;
// The context we're parsing into.
MLIRContext *const context;
// This is the module we are parsing into.
Module *const module;
// The lexer for the source file we're parsing.
Lexer lex;
// This is the next token that hasn't been consumed yet.
Token curToken;
// The diagnostic error reporter.
SMDiagnosticHandlerTy const errorReporter;
// The active OperationSet we're parsing with.
OperationSet &operationSet;
};
} // end anonymous namespace
namespace {
typedef std::function<Operation *(Identifier, ArrayRef<SSAValue *>,
ArrayRef<Type *>, ArrayRef<NamedAttribute>)>
CreateOperationFunction;
/// This class implement support for parsing global entities like types and
/// shared entities like SSA names. It is intended to be subclassed by
/// specialized subparsers that include state, e.g. when a local symbol table.
class Parser {
public:
Builder builder;
Parser(ParserState &state) : builder(state.context), state(state) {}
// Helper methods to get stuff from the parser-global state.
ParserState &getState() const { return state; }
MLIRContext *getContext() const { return state.context; }
Module *getModule() { return state.module; }
OperationSet &getOperationSet() const { return state.operationSet; }
/// Return the current token the parser is inspecting.
const Token &getToken() const { return state.curToken; }
StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
/// Emit an error and return failure.
ParseResult emitError(const Twine &message) {
return emitError(state.curToken.getLoc(), message);
}
ParseResult emitError(SMLoc loc, const Twine &message);
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(state.curToken.isNot(Token::eof, Token::error) &&
"shouldn't advance past EOF or errors");
state.curToken = state.lex.lexToken();
}
/// Advance the current lexer onto the next token, asserting what the expected
/// current token is. This is preferred to the above method because it leads
/// to more self-documenting code with better checking.
void consumeToken(Token::Kind kind) {
assert(state.curToken.is(kind) && "consumed an unexpected token");
consumeToken();
}
/// If the current token has the specified kind, consume it and return true.
/// If not, return false.
bool consumeIf(Token::Kind kind) {
if (state.curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
/// Parse a comma-separated list of elements up until the specified end token.
ParseResult
parseCommaSeparatedListUntil(Token::Kind rightToken,
const std::function<ParseResult()> &parseElement,
bool allowEmptyList = true);
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult
parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);
// We have two forms of parsing methods - those that return a non-null
// pointer on success, and those that return a ParseResult to indicate whether
// they returned a failure. The second class fills in by-reference arguments
// as the results of their action.
// Type parsing.
VectorType *parseVectorType();
ParseResult parseDimensionListRanked(SmallVectorImpl<int> &dimensions);
Type *parseTensorType();
Type *parseMemRefType();
Type *parseFunctionType();
Type *parseType();
ParseResult parseTypeListNoParens(SmallVectorImpl<Type *> &elements);
ParseResult parseTypeList(SmallVectorImpl<Type *> &elements);
// Attribute parsing.
Attribute *parseAttribute();
ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);
// Polyhedral structures.
AffineMap *parseAffineMapInline();
AffineMap *parseAffineMapReference();
private:
// The Parser is subclassed and reinstantiated. Do not add additional
// non-trivial state here, add it to the ParserState class.
ParserState &state;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
ParseResult Parser::emitError(SMLoc loc, const Twine &message) {
// If we hit a parse error in response to a lexer error, then the lexer
// already reported the error.
if (getToken().is(Token::error))
return ParseFailure;
auto &sourceMgr = state.lex.getSourceMgr();
state.errorReporter(sourceMgr.GetMessage(loc, SourceMgr::DK_Error, message));
return ParseFailure;
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
const Twine &message) {
if (consumeIf(expectedToken))
return ParseSuccess;
return emitError(message);
}
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult Parser::parseCommaSeparatedList(
const std::function<ParseResult()> &parseElement) {
// Non-empty case starts with an element.
if (parseElement())
return ParseFailure;
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::comma)) {
if (parseElement())
return ParseFailure;
}
return ParseSuccess;
}
/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token. This allows empty lists if allowEmptyList is true.
///
/// abstract-list ::= rightToken // if allowEmptyList == true
/// abstract-list ::= element (',' element)* rightToken
///
ParseResult Parser::parseCommaSeparatedListUntil(
Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (getToken().is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return ParseSuccess;
}
if (parseCommaSeparatedList(parseElement) ||
parseToken(rightToken, "expected ',' or '" +
Token::getTokenSpelling(rightToken) + "'"))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//
/// Parse an arbitrary type.
///
/// type ::= integer-type
/// | float-type
/// | other-type
/// | vector-type
/// | tensor-type
/// | memref-type
/// | function-type
///
/// float-type ::= `f16` | `bf16` | `f32` | `f64`
/// other-type ::= `affineint` | `tf_control`
///
Type *Parser::parseType() {
switch (getToken().getKind()) {
default:
return (emitError("expected type"), nullptr);
case Token::kw_memref:
return parseMemRefType();
case Token::kw_tensor:
return parseTensorType();
case Token::kw_vector:
return parseVectorType();
case Token::l_paren:
return parseFunctionType();
// integer-type
case Token::inttype: {
auto width = getToken().getIntTypeBitwidth();
if (!width.hasValue())
return (emitError("invalid integer width"), nullptr);
consumeToken(Token::inttype);
return builder.getIntegerType(width.getValue());
}
// float-type
case Token::kw_bf16:
consumeToken(Token::kw_bf16);
return builder.getBF16Type();
case Token::kw_f16:
consumeToken(Token::kw_f16);
return builder.getF16Type();
case Token::kw_f32:
consumeToken(Token::kw_f32);
return builder.getF32Type();
case Token::kw_f64:
consumeToken(Token::kw_f64);
return builder.getF64Type();
// other-type
case Token::kw_affineint:
consumeToken(Token::kw_affineint);
return builder.getAffineIntType();
case Token::kw_tf_control:
consumeToken(Token::kw_tf_control);
return builder.getTFControlType();
case Token::kw_tf_string:
consumeToken(Token::kw_tf_string);
return builder.getTFStringType();
}
}
/// Parse a vector type.
///
/// vector-type ::= `vector` `<` const-dimension-list primitive-type `>`
/// const-dimension-list ::= (integer-literal `x`)+
///
VectorType *Parser::parseVectorType() {
consumeToken(Token::kw_vector);
if (parseToken(Token::less, "expected '<' in vector type"))
return nullptr;
if (getToken().isNot(Token::integer))
return (emitError("expected dimension size in vector type"), nullptr);
SmallVector<unsigned, 4> dimensions;
while (getToken().is(Token::integer)) {
// Make sure this integer value is in bound and valid.
auto dimension = getToken().getUnsignedIntegerValue();
if (!dimension.hasValue())
return (emitError("invalid dimension in vector type"), nullptr);
dimensions.push_back(dimension.getValue());
consumeToken(Token::integer);
// Make sure we have an 'x' or something like 'xbf32'.
if (getToken().isNot(Token::bare_identifier) ||
getTokenSpelling()[0] != 'x')
return (emitError("expected 'x' in vector dimension list"), nullptr);
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
if (getTokenSpelling().size() != 1)
state.lex.resetPointer(getTokenSpelling().data() + 1);
// Consume the 'x'.
consumeToken(Token::bare_identifier);
}
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto *elementType = parseType();
if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
return nullptr;
if (!isa<FloatType>(elementType) && !isa<IntegerType>(elementType))
return (emitError(typeLoc, "invalid vector element type"), nullptr);
return VectorType::get(dimensions, elementType);
}
/// Parse a dimension list of a tensor or memref type. This populates the
/// dimension list, returning -1 for the '?' dimensions.
///
/// dimension-list-ranked ::= (dimension `x`)*
/// dimension ::= `?` | integer-literal
///
ParseResult Parser::parseDimensionListRanked(SmallVectorImpl<int> &dimensions) {
while (getToken().isAny(Token::integer, Token::question)) {
if (consumeIf(Token::question)) {
dimensions.push_back(-1);
} else {
// Make sure this integer value is in bound and valid.
auto dimension = getToken().getUnsignedIntegerValue();
if (!dimension.hasValue() || (int)dimension.getValue() < 0)
return emitError("invalid dimension");
dimensions.push_back((int)dimension.getValue());
consumeToken(Token::integer);
}
// Make sure we have an 'x' or something like 'xbf32'.
if (getToken().isNot(Token::bare_identifier) ||
getTokenSpelling()[0] != 'x')
return emitError("expected 'x' in dimension list");
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
if (getTokenSpelling().size() != 1)
state.lex.resetPointer(getTokenSpelling().data() + 1);
// Consume the 'x'.
consumeToken(Token::bare_identifier);
}
return ParseSuccess;
}
/// Parse a tensor type.
///
/// tensor-type ::= `tensor` `<` dimension-list element-type `>`
/// dimension-list ::= dimension-list-ranked | `??`
///
Type *Parser::parseTensorType() {
consumeToken(Token::kw_tensor);
if (parseToken(Token::less, "expected '<' in tensor type"))
return nullptr;
bool isUnranked;
SmallVector<int, 4> dimensions;
if (consumeIf(Token::questionquestion)) {
isUnranked = true;
} else {
isUnranked = false;
if (parseDimensionListRanked(dimensions))
return nullptr;
}
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto *elementType = parseType();
if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
return nullptr;
if (!isa<IntegerType>(elementType) && !isa<FloatType>(elementType) &&
!isa<VectorType>(elementType))
return (emitError(typeLoc, "invalid tensor element type"), nullptr);
if (isUnranked)
return builder.getTensorType(elementType);
return builder.getTensorType(dimensions, elementType);
}
/// Parse a memref type.
///
/// memref-type ::= `memref` `<` dimension-list-ranked element-type
/// (`,` semi-affine-map-composition)? (`,` memory-space)? `>`
///
/// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
/// memory-space ::= integer-literal /* | TODO: address-space-id */
///
Type *Parser::parseMemRefType() {
consumeToken(Token::kw_memref);
if (parseToken(Token::less, "expected '<' in memref type"))
return nullptr;
SmallVector<int, 4> dimensions;
if (parseDimensionListRanked(dimensions))
return nullptr;
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto *elementType = parseType();
if (!elementType)
return nullptr;
if (!isa<IntegerType>(elementType) && !isa<FloatType>(elementType) &&
!isa<VectorType>(elementType))
return (emitError(typeLoc, "invalid memref element type"), nullptr);
// Parse semi-affine-map-composition.
SmallVector<AffineMap *, 2> affineMapComposition;
unsigned memorySpace = 0;
bool parsedMemorySpace = false;
auto parseElt = [&]() -> ParseResult {
if (getToken().is(Token::integer)) {
// Parse memory space.
if (parsedMemorySpace)
return emitError("multiple memory spaces specified in memref type");
auto v = getToken().getUnsignedIntegerValue();
if (!v.hasValue())
return emitError("invalid memory space in memref type");
memorySpace = v.getValue();
consumeToken(Token::integer);
parsedMemorySpace = true;
} else {
// Parse affine map.
if (parsedMemorySpace)
return emitError("affine map after memory space in memref type");
auto *affineMap = parseAffineMapReference();
if (affineMap == nullptr)
return ParseFailure;
affineMapComposition.push_back(affineMap);
}
return ParseSuccess;
};
// Parse a list of mappings and address space if present.
if (consumeIf(Token::comma)) {
// Parse comma separated list of affine maps, followed by memory space.
if (parseCommaSeparatedListUntil(Token::greater, parseElt,
/*allowEmptyList=*/false)) {
return nullptr;
}
} else {
if (parseToken(Token::greater, "expected ',' or '>' in memref type"))
return nullptr;
}
return MemRefType::get(dimensions, elementType, affineMapComposition,
memorySpace);
}
/// Parse a function type.
///
/// function-type ::= type-list-parens `->` type-list
///
Type *Parser::parseFunctionType() {
assert(getToken().is(Token::l_paren));
SmallVector<Type *, 4> arguments, results;
if (parseTypeList(arguments) ||
parseToken(Token::arrow, "expected '->' in function type") ||
parseTypeList(results))
return nullptr;
return builder.getFunctionType(arguments, results);
}
/// Parse a list of types without an enclosing parenthesis. The list must have
/// at least one member.
///
/// type-list-no-parens ::= type (`,` type)*
///
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type *> &elements) {
auto parseElt = [&]() -> ParseResult {
auto elt = parseType();
elements.push_back(elt);
return elt ? ParseSuccess : ParseFailure;
};
return parseCommaSeparatedList(parseElt);
}
/// Parse a "type list", which is a singular type, or a parenthesized list of
/// types.
///
/// type-list ::= type-list-parens | type
/// type-list-parens ::= `(` `)`
/// | `(` type-list-no-parens `)`
///
ParseResult Parser::parseTypeList(SmallVectorImpl<Type *> &elements) {
auto parseElt = [&]() -> ParseResult {
auto elt = parseType();
elements.push_back(elt);
return elt ? ParseSuccess : ParseFailure;
};
// If there is no parens, then it must be a singular type.
if (!consumeIf(Token::l_paren))
return parseElt();
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Attribute parsing.
//===----------------------------------------------------------------------===//
/// Attribute parsing.
///
/// attribute-value ::= bool-literal
/// | integer-literal
/// | float-literal
/// | string-literal
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
///
Attribute *Parser::parseAttribute() {
switch (getToken().getKind()) {
case Token::kw_true:
consumeToken(Token::kw_true);
return builder.getBoolAttr(true);
case Token::kw_false:
consumeToken(Token::kw_false);
return builder.getBoolAttr(false);
case Token::floatliteral: {
auto val = getToken().getFloatingPointValue();
if (!val.hasValue())
return (emitError("floating point value too large for attribute"),
nullptr);
consumeToken(Token::floatliteral);
return builder.getFloatAttr(val.getValue());
}
case Token::integer: {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("integer too large for attribute"), nullptr);
consumeToken(Token::integer);
return builder.getIntegerAttr((int64_t)val.getValue());
}
case Token::minus: {
consumeToken(Token::minus);
if (getToken().is(Token::integer)) {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)-val.getValue() >= 0)
return (emitError("integer too large for attribute"), nullptr);
consumeToken(Token::integer);
return builder.getIntegerAttr((int64_t)-val.getValue());
}
if (getToken().is(Token::floatliteral)) {
auto val = getToken().getFloatingPointValue();
if (!val.hasValue())
return (emitError("floating point value too large for attribute"),
nullptr);
consumeToken(Token::floatliteral);
return builder.getFloatAttr(-val.getValue());
}
return (emitError("expected constant integer or floating point value"),
nullptr);
}
case Token::string: {
auto val = getToken().getStringValue();
consumeToken(Token::string);
return builder.getStringAttr(val);
}
case Token::l_square: {
consumeToken(Token::l_square);
SmallVector<Attribute *, 4> elements;
auto parseElt = [&]() -> ParseResult {
elements.push_back(parseAttribute());
return elements.back() ? ParseSuccess : ParseFailure;
};
if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
return nullptr;
return builder.getArrayAttr(elements);
}
default:
// Try to parse affine map reference.
auto *affineMap = parseAffineMapReference();
if (affineMap != nullptr)
return builder.getAffineMapAttr(affineMap);
return (emitError("expected constant attribute value"), nullptr);
}
}
/// Attribute dictionary.
///
/// attribute-dict ::= `{` `}`
/// | `{` attribute-entry (`,` attribute-entry)* `}`
/// attribute-entry ::= bare-id `:` attribute-value
///
ParseResult
Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
consumeToken(Token::l_brace);
auto parseElt = [&]() -> ParseResult {
// We allow keywords as attribute names.
if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
!getToken().isKeyword())
return emitError("expected attribute name");
auto nameId = builder.getIdentifier(getTokenSpelling());
consumeToken();
if (parseToken(Token::colon, "expected ':' in attribute list"))
return ParseFailure;
auto attr = parseAttribute();
if (!attr)
return ParseFailure;
attributes.push_back({nameId, attr});
return ParseSuccess;
};
if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Polyhedral structures.
//===----------------------------------------------------------------------===//
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false in
/// the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
namespace {
/// This is a specialized parser for AffineMap's, maintaining the state
/// transient to their bodies.
class AffineMapParser : public Parser {
public:
explicit AffineMapParser(ParserState &state) : Parser(state) {}
AffineMap *parseAffineMapInline();
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// Identifier lists for polyhedral structures.
ParseResult parseDimIdList(unsigned &numDims);
ParseResult parseSymbolIdList(unsigned &numSymbols);
ParseResult parseIdentifierDefinition(AffineExpr *idExpr);
AffineExpr *parseAffineExpr();
AffineExpr *parseParentheticalExpr();
AffineExpr *parseNegateExpression(AffineExpr *lhs);
AffineExpr *parseIntegerExpr();
AffineExpr *parseBareIdExpr();
AffineExpr *getBinaryAffineOpExpr(AffineHighPrecOp op, AffineExpr *lhs,
AffineExpr *rhs, SMLoc opLoc);
AffineExpr *getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr *lhs,
AffineExpr *rhs);
AffineExpr *parseAffineOperandExpr(AffineExpr *lhs);
AffineExpr *parseAffineLowPrecOpExpr(AffineExpr *llhs,
AffineLowPrecOp llhsOp);
AffineExpr *parseAffineHighPrecOpExpr(AffineExpr *llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc);
private:
SmallVector<std::pair<StringRef, AffineExpr *>, 4> dimsAndSymbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr *AffineMapParser::getBinaryAffineOpExpr(AffineHighPrecOp op,
AffineExpr *lhs,
AffineExpr *rhs,
SMLoc opLoc) {
// TODO: make the error location info accurate.
switch (op) {
case Mul:
if (!lhs->isSymbolicOrConstant() && !rhs->isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return builder.getMulExpr(lhs, rhs);
case FloorDiv:
if (!rhs->isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return builder.getFloorDivExpr(lhs, rhs);
case CeilDiv:
if (!rhs->isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return builder.getCeilDivExpr(lhs, rhs);
case Mod:
if (!rhs->isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return builder.getModExpr(lhs, rhs);
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr *AffineMapParser::getBinaryAffineOpExpr(AffineLowPrecOp op,
AffineExpr *lhs,
AffineExpr *rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return builder.getAddExpr(lhs, rhs);
case AffineLowPrecOp::Sub:
return builder.getAddExpr(
lhs, builder.getMulExpr(rhs, builder.getConstantExpr(-1)));
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
}
/// Consume this token if it is a lower precedence affine op (there are only two
/// precedence levels).
AffineLowPrecOp AffineMapParser::consumeIfLowPrecOp() {
switch (getToken().getKind()) {
case Token::plus:
consumeToken(Token::plus);
return AffineLowPrecOp::Add;
case Token::minus:
consumeToken(Token::minus);
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineMapParser::consumeIfHighPrecOp() {
switch (getToken().getKind()) {
case Token::star:
consumeToken(Token::star);
return Mul;
case Token::kw_floordiv:
consumeToken(Token::kw_floordiv);
return FloorDiv;
case Token::kw_ceildiv:
consumeToken(Token::kw_ceildiv);
return CeilDiv;
case Token::kw_mod:
consumeToken(Token::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr *AffineMapParser::parseAffineHighPrecOpExpr(AffineExpr *llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr *lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr *expr = getBinaryAffineOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getBinaryAffineOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr *AffineMapParser::parseParentheticalExpr() {
if (parseToken(Token::l_paren, "expected '('"))
return nullptr;
if (getToken().is(Token::r_paren))
return (emitError("no expression inside parentheses"), nullptr);
auto *expr = parseAffineExpr();
if (!expr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')'"))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr *AffineMapParser::parseNegateExpression(AffineExpr *lhs) {
if (parseToken(Token::minus, "expected '-'"))
return nullptr;
AffineExpr *operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return (emitError("missing operand of negation"), nullptr);
auto *minusOne = builder.getConstantExpr(-1);
return builder.getMulExpr(minusOne, operand);
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr *AffineMapParser::parseBareIdExpr() {
if (getToken().isNot(Token::bare_identifier))
return (emitError("expected bare identifier"), nullptr);
StringRef sRef = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == sRef) {
consumeToken(Token::bare_identifier);
return entry.second;
}
}
return (emitError("use of undeclared identifier"), nullptr);
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr *AffineMapParser::parseIntegerExpr() {
// No need to handle negative numbers separately here. They are naturally
// handled via the unary negation operator, although (FIXME) MININT_64 still
// not correctly handled.
if (getToken().isNot(Token::integer))
return (emitError("expected integer"), nullptr);
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0) {
return (emitError("constant too large for affineint"), nullptr);
}
consumeToken(Token::integer);
return builder.getConstantExpr((int64_t)val.getValue());
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and -l
// are valid operands that will be parsed by this function.
AffineExpr *AffineMapParser::parseAffineOperandExpr(AffineExpr *lhs) {
switch (getToken().getKind()) {
case Token::bare_identifier:
return parseBareIdExpr();
case Token::integer:
return parseIntegerExpr();
case Token::l_paren:
return parseParentheticalExpr();
case Token::minus:
return parseNegateExpression(lhs);
case Token::kw_ceildiv:
case Token::kw_floordiv:
case Token::kw_mod:
case Token::plus:
case Token::star:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned if
/// llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where (e2*e3)
/// will be parsed using parseAffineHighPrecOpExpr().
AffineExpr *AffineMapParser::parseAffineLowPrecOpExpr(AffineExpr *llhs,
AffineLowPrecOp llhsOp) {
AffineExpr *lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr *sum = getBinaryAffineOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr *highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr *expr =
llhs ? getBinaryAffineOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getBinaryAffineOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg., one
/// of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr *AffineMapParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
/// Parse a dim or symbol from the lists appearing before the actual expressions
/// of the affine map. Update our state to store the dimensional/symbolic
/// identifier.
ParseResult AffineMapParser::parseIdentifierDefinition(AffineExpr *idExpr) {
if (getToken().isNot(Token::bare_identifier))
return emitError("expected bare identifier");
auto name = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == name)
return emitError("redefinition of identifier '" + Twine(name) + "'");
}
consumeToken(Token::bare_identifier);
dimsAndSymbols.push_back({name, idExpr});
return ParseSuccess;
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineMapParser::parseSymbolIdList(unsigned &numSymbols) {
consumeToken(Token::l_square);
auto parseElt = [&]() -> ParseResult {
auto *symbol = AffineSymbolExpr::get(numSymbols++, getContext());
return parseIdentifierDefinition(symbol);
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt);
}
/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineMapParser::parseDimIdList(unsigned &numDims) {
if (parseToken(Token::l_paren,
"expected '(' at start of dimensional identifiers list"))
return ParseFailure;
auto parseElt = [&]() -> ParseResult {
auto *dimension = AffineDimExpr::get(numDims++, getContext());
return parseIdentifierDefinition(dimension);
};
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse an affine map definition.
///
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
/// (`size` `(` dim-size (`,` dim-size)* `)`)?
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
///
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
AffineMap *AffineMapParser::parseAffineMapInline() {
unsigned numDims = 0, numSymbols = 0;
// List of dimensional identifiers.
if (parseDimIdList(numDims))
return nullptr;
// Symbols are optional.
if (getToken().is(Token::l_square)) {
if (parseSymbolIdList(numSymbols))
return nullptr;
}
if (parseToken(Token::arrow, "expected '->' or '['") ||
parseToken(Token::l_paren, "expected '(' at start of affine map range"))
return nullptr;
SmallVector<AffineExpr *, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto *elt = parseAffineExpr();
ParseResult res = elt ? ParseSuccess : ParseFailure;
exprs.push_back(elt);
return res;
};
// Parse a multi-dimensional affine expression (a comma-separated list of 1-d
// affine expressions); the list cannot be empty.
// Grammar: multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, false))
return nullptr;
// Parse optional range sizes.
// range-sizes ::= (`size` `(` dim-size (`,` dim-size)* `)`)?
// dim-size ::= affine-expr | `min` `(` affine-expr (`,` affine-expr)+ `)`
// TODO(bondhugula): support for min of several affine expressions.
// TODO: check if sizes are non-negative whenever they are constant.
SmallVector<AffineExpr *, 4> rangeSizes;
if (consumeIf(Token::kw_size)) {
// Location of the l_paren token (if it exists) for error reporting later.
auto loc = getToken().getLoc();
if (parseToken(Token::l_paren, "expected '(' at start of affine map range"))
return nullptr;
auto parseRangeSize = [&]() -> ParseResult {
auto loc = getToken().getLoc();
auto *elt = parseAffineExpr();
if (!elt)
return ParseFailure;
if (!elt->isSymbolicOrConstant())
return emitError(loc,
"size expressions cannot refer to dimension values");
rangeSizes.push_back(elt);
return ParseSuccess;
};
if (parseCommaSeparatedListUntil(Token::r_paren, parseRangeSize, false))
return nullptr;
if (exprs.size() > rangeSizes.size())
return (emitError(loc, "fewer range sizes than range expressions"),
nullptr);
if (exprs.size() < rangeSizes.size())
return (emitError(loc, "more range sizes than range expressions"),
nullptr);
}
// Parsed a valid affine map.
return builder.getAffineMap(numDims, numSymbols, exprs, rangeSizes);
}
AffineMap *Parser::parseAffineMapInline() {
return AffineMapParser(state).parseAffineMapInline();
}
AffineMap *Parser::parseAffineMapReference() {
if (getToken().is(Token::hash_identifier)) {
// Parse affine map identifier and verify that it exists.
StringRef affineMapId = getTokenSpelling().drop_front();
if (getState().affineMapDefinitions.count(affineMapId) == 0)
return (emitError("undefined affine map id '" + affineMapId + "'"),
nullptr);
consumeToken(Token::hash_identifier);
return getState().affineMapDefinitions[affineMapId];
}
// Try to parse inline affine map.
return parseAffineMapInline();
}
//===----------------------------------------------------------------------===//
// FunctionParser
//===----------------------------------------------------------------------===//
namespace {
/// This class contains parser state that is common across CFG and ML functions,
/// notably for dealing with operations and SSA values.
class FunctionParser : public Parser {
public:
enum class Kind { CFGFunc, MLFunc };
Kind getKind() const { return kind; }
/// After the function is finished parsing, this function checks to see if
/// there are any remaining issues.
ParseResult finalizeFunction(Function *func, SMLoc loc);
/// This represents a use of an SSA value in the program. The first two
/// entries in the tuple are the name and result number of a reference. The
/// third is the location of the reference, which is used in case this ends up
/// being a use of an undefined value.
struct SSAUseInfo {
StringRef name; // Value name, e.g. %42 or %abc
unsigned number; // Number, specified with #12
SMLoc loc; // Location of first definition or use.
};
/// Given a reference to an SSA value and its type, return a reference. This
/// returns null on failure.
SSAValue *resolveSSAUse(SSAUseInfo useInfo, Type *type);
/// Register a definition of a value with the symbol table.
ParseResult addDefinition(SSAUseInfo useInfo, SSAValue *value);
// SSA parsing productions.
ParseResult parseSSAUse(SSAUseInfo &result);
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
template <typename ResultType>
ResultType parseSSADefOrUseAndType(
const std::function<ResultType(SSAUseInfo, Type *)> &action);
SSAValue *parseSSAUseAndType() {
return parseSSADefOrUseAndType<SSAValue *>(
[&](SSAUseInfo useInfo, Type *type) -> SSAValue * {
return resolveSSAUse(useInfo, type);
});
}
template <typename ValueTy>
ParseResult
parseOptionalSSAUseAndTypeList(SmallVectorImpl<ValueTy *> &results,
bool isParenthesized);
// Operations
ParseResult parseOperation(const CreateOperationFunction &createOpFunc);
Operation *parseVerboseOperation(const CreateOperationFunction &createOpFunc);
Operation *parseCustomOperation(const CreateOperationFunction &createOpFunc);
protected:
FunctionParser(ParserState &state, Kind kind) : Parser(state), kind(kind) {}
private:
/// Kind indicates if this is CFG or ML function parser.
Kind kind;
/// This keeps track of all of the SSA values we are tracking, indexed by
/// their name. This has one entry per result number.
llvm::StringMap<SmallVector<std::pair<SSAValue *, SMLoc>, 1>> values;
/// These are all of the placeholders we've made along with the location of
/// their first reference, to allow checking for use of undefined values.
DenseMap<SSAValue *, SMLoc> forwardReferencePlaceholders;
SSAValue *createForwardReferencePlaceholder(SMLoc loc, Type *type);
/// Return true if this is a forward reference.
bool isForwardReferencePlaceholder(SSAValue *value) {
return forwardReferencePlaceholders.count(value);
}
};
} // end anonymous namespace
/// Create and remember a new placeholder for a forward reference.
SSAValue *FunctionParser::createForwardReferencePlaceholder(SMLoc loc,
Type *type) {
// Forward references are always created as instructions, even in ML
// functions, because we just need something with a def/use chain.
//
// We create these placeholders as having an empty name, which we know cannot
// be created through normal user input, allowing us to distinguish them.
auto name = Identifier::get("placeholder", getContext());
auto *inst = OperationInst::create(name, /*operands*/ {}, type, /*attrs*/ {},
getContext());
forwardReferencePlaceholders[inst->getResult(0)] = loc;
return inst->getResult(0);
}
/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies. This returns null on failure.
SSAValue *FunctionParser::resolveSSAUse(SSAUseInfo useInfo, Type *type) {
auto &entries = values[useInfo.name];
// If we have already seen a value of this name, return it.
if (useInfo.number < entries.size() && entries[useInfo.number].first) {
auto *result = entries[useInfo.number].first;
// Check that the type matches the other uses.
if (result->getType() == type)
return result;
emitError(useInfo.loc, "use of value '" + useInfo.name.str() +
"' expects different type than prior uses");
emitError(entries[useInfo.number].second, "prior use here");
return nullptr;
}
// Make sure we have enough slots for this.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If the value has already been defined and this is an overly large result
// number, diagnose that.
if (entries[0].first && !isForwardReferencePlaceholder(entries[0].first))
return (emitError(useInfo.loc, "reference to invalid result number"),
nullptr);
// Otherwise, this is a forward reference. If we are in ML function return
// an error. In CFG function, create a placeholder and remember
// that we did so.
if (getKind() == Kind::MLFunc)
return (
emitError(useInfo.loc, "use of undefined SSA value " + useInfo.name),
nullptr);
auto *result = createForwardReferencePlaceholder(useInfo.loc, type);
entries[useInfo.number].first = result;
entries[useInfo.number].second = useInfo.loc;
return result;
}
/// Register a definition of a value with the symbol table.
ParseResult FunctionParser::addDefinition(SSAUseInfo useInfo, SSAValue *value) {
auto &entries = values[useInfo.name];
// Make sure there is a slot for this value.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If we already have an entry for this, check to see if it was a definition
// or a forward reference.
if (auto *existing = entries[useInfo.number].first) {
if (!isForwardReferencePlaceholder(existing)) {
emitError(useInfo.loc,
"redefinition of SSA value '" + useInfo.name + "'");
return emitError(entries[useInfo.number].second,
"previously defined here");
}
// If it was a forward reference, update everything that used it to use the
// actual definition instead, delete the forward ref, and remove it from our
// set of forward references we track.
existing->replaceAllUsesWith(value);
existing->getDefiningInst()->destroy();
forwardReferencePlaceholders.erase(existing);
}
entries[useInfo.number].first = value;
entries[useInfo.number].second = useInfo.loc;
return ParseSuccess;
}
/// After the function is finished parsing, this function checks to see if
/// there are any remaining issues.
ParseResult FunctionParser::finalizeFunction(Function *func, SMLoc loc) {
// Check for any forward references that are left. If we find any, error out.
if (!forwardReferencePlaceholders.empty()) {
SmallVector<std::pair<const char *, SSAValue *>, 4> errors;
// Iteration over the map isn't determinstic, so sort by source location.
for (auto entry : forwardReferencePlaceholders)
errors.push_back({entry.second.getPointer(), entry.first});
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors)
emitError(SMLoc::getFromPointer(entry.first),
"use of undeclared SSA value name");
return ParseFailure;
}
// Run the verifier on this function. If an error is detected, report it.
std::string errorString;
if (func->verify(&errorString))
return emitError(loc, errorString);
return ParseSuccess;
}
/// Parse a SSA operand for an instruction or statement.
///
/// ssa-use ::= ssa-id
///
ParseResult FunctionParser::parseSSAUse(SSAUseInfo &result) {
result.name = getTokenSpelling();
result.number = 0;
result.loc = getToken().getLoc();
if (parseToken(Token::percent_identifier, "expected SSA operand"))
return ParseFailure;
// If we have an affine map ID, it is a result number.
if (getToken().is(Token::hash_identifier)) {
if (auto value = getToken().getHashIdentifierNumber())
result.number = value.getValue();
else
return emitError("invalid SSA value result number");
consumeToken(Token::hash_identifier);
}
return ParseSuccess;
}
/// Parse a (possibly empty) list of SSA operands.
///
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
/// ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
FunctionParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
if (getToken().isNot(Token::percent_identifier))
return ParseSuccess;
return parseCommaSeparatedList([&]() -> ParseResult {
SSAUseInfo result;
if (parseSSAUse(result))
return ParseFailure;
results.push_back(result);
return ParseSuccess;
});
}
/// Parse an SSA use with an associated type.
///
/// ssa-use-and-type ::= ssa-use `:` type
template <typename ResultType>
ResultType FunctionParser::parseSSADefOrUseAndType(
const std::function<ResultType(SSAUseInfo, Type *)> &action) {
SSAUseInfo useInfo;
if (parseSSAUse(useInfo) ||
parseToken(Token::colon, "expected ':' and type for SSA operand"))
return nullptr;
auto *type = parseType();
if (!type)
return nullptr;
return action(useInfo, type);
}
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list. If hasParens is true, then the operands are
/// surrounded by parens.
///
/// ssa-use-and-type-list[parens]
/// ::= `(` ssa-use-list `)` ':' type-list-no-parens
///
/// ssa-use-and-type-list[!parens]
/// ::= ssa-use-list ':' type-list-no-parens
///
template <typename ValueTy>
ParseResult FunctionParser::parseOptionalSSAUseAndTypeList(
SmallVectorImpl<ValueTy *> &results, bool isParenthesized) {
// If we are in the parenthesized form and no paren exists, then we succeed
// with an empty list.
if (isParenthesized && !consumeIf(Token::l_paren))
return ParseSuccess;
SmallVector<SSAUseInfo, 4> valueIDs;
if (parseOptionalSSAUseList(valueIDs))
return ParseFailure;
if (isParenthesized && !consumeIf(Token::r_paren))
return emitError("expected ')' in operand list");
// If there were no operands, then there is no colon or type lists.
if (valueIDs.empty())
return ParseSuccess;
SmallVector<Type *, 4> types;
if (parseToken(Token::colon, "expected ':' in operand list") ||
parseTypeListNoParens(types))
return ParseFailure;
if (valueIDs.size() != types.size())
return emitError("expected " + Twine(valueIDs.size()) +
" types to match operand list");
results.reserve(valueIDs.size());
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
if (auto *value = resolveSSAUse(valueIDs[i], types[i]))
results.push_back(cast<ValueTy>(value));
else
return ParseFailure;
}
return ParseSuccess;
}
/// Parse the CFG or MLFunc operation.
///
/// operation ::=
/// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict?
/// `:` function-type
///
ParseResult
FunctionParser::parseOperation(const CreateOperationFunction &createOpFunc) {
auto loc = getToken().getLoc();
StringRef resultID;
if (getToken().is(Token::percent_identifier)) {
resultID = getTokenSpelling();
consumeToken(Token::percent_identifier);
if (parseToken(Token::equal, "expected '=' after SSA name"))
return ParseFailure;
}
Operation *op;
if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
op = parseCustomOperation(createOpFunc);
else if (getToken().is(Token::string))
op = parseVerboseOperation(createOpFunc);
else
return emitError("expected operation name in quotes");
// If parsing of the basic operation failed, then this whole thing fails.
if (!op)
return ParseFailure;
// We just parsed an operation. If it is a recognized one, verify that it
// is structurally as we expect. If not, produce an error with a reasonable
// source location.
if (auto *opInfo = op->getAbstractOperation()) {
if (auto error = opInfo->verifyInvariants(op))
return emitError(loc, Twine("'") + op->getName().str() + "' op " + error);
}
// If the instruction had a name, register it.
if (!resultID.empty()) {
if (op->getNumResults() == 0)
return emitError(loc, "cannot name an operation with no results");
for (unsigned i = 0, e = op->getNumResults(); i != e; ++i)
addDefinition({resultID, i, loc}, op->getResult(i));
}
return ParseSuccess;
}
Operation *FunctionParser::parseVerboseOperation(
const CreateOperationFunction &createOpFunc) {
auto name = getToken().getStringValue();
if (name.empty())
return (emitError("empty operation name is invalid"), nullptr);
consumeToken(Token::string);
// Parse the operand list.
SmallVector<SSAUseInfo, 8> operandInfos;
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
parseOptionalSSAUseList(operandInfos) ||
parseToken(Token::r_paren, "expected ')' to end operand list")) {
return nullptr;
}
SmallVector<NamedAttribute, 4> attributes;
if (getToken().is(Token::l_brace)) {
if (parseAttributeDict(attributes))
return nullptr;
}
if (parseToken(Token::colon, "expected ':' followed by instruction type"))
return nullptr;
auto typeLoc = getToken().getLoc();
auto type = parseType();
if (!type)
return nullptr;
auto fnType = dyn_cast<FunctionType>(type);
if (!fnType)
return (emitError(typeLoc, "expected function type"), nullptr);
// Check that we have the right number of types for the operands.
auto operandTypes = fnType->getInputs();
if (operandTypes.size() != operandInfos.size()) {
auto plural = "s"[operandInfos.size() == 1];
return (emitError(typeLoc, "expected " + llvm::utostr(operandInfos.size()) +
" operand type" + plural + " but had " +
llvm::utostr(operandTypes.size())),
nullptr);
}
// Resolve all of the operands.
SmallVector<SSAValue *, 8> operands;
for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
if (!operands.back())
return nullptr;
}
auto nameId = builder.getIdentifier(name);
return createOpFunc(nameId, operands, fnType->getResults(), attributes);
}
namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
CustomOpAsmParser(SMLoc nameLoc, StringRef opName, FunctionParser &parser)
: nameLoc(nameLoc), opName(opName), parser(parser) {}
/// This is an internal helper to parser a colon, we don't want to expose
/// this to clients.
bool internalParseColon(llvm::SMLoc *loc) {
if (loc)
*loc = parser.getToken().getLoc();
return parser.parseToken(Token::colon, "expected ':'");
}
//===--------------------------------------------------------------------===//
// High level parsing methods.
//===--------------------------------------------------------------------===//
bool parseComma(llvm::SMLoc *loc = nullptr) override {
if (loc)
*loc = parser.getToken().getLoc();
return parser.parseToken(Token::comma, "expected ','");
}
bool parseColonType(Type *&result, llvm::SMLoc *loc = nullptr) override {
return internalParseColon(loc) || !(result = parser.parseType());
}
bool parseColonTypeList(SmallVectorImpl<Type *> &result,
llvm::SMLoc *loc = nullptr) override {
if (internalParseColon(loc))
return true;
do {
if (auto *type = parser.parseType())
result.push_back(type);
else
return true;
} while (parser.consumeIf(Token::comma));
return false;
}
/// Parse an arbitrary attribute and return it in result. This also adds the
/// attribute to the specified attribute list with the specified name. this
/// captures the location of the attribute in 'loc' if it is non-null.
bool parseAttribute(Attribute *&result, const char *attrName,
SmallVectorImpl<NamedAttribute> &attrs,
llvm::SMLoc *loc = nullptr) override {
if (loc)
*loc = parser.getToken().getLoc();
result = parser.parseAttribute();
if (!result)
return true;
attrs.push_back(
NamedAttribute(parser.builder.getIdentifier(attrName), result));
return false;
}
/// If a named attribute list is present, parse is into result.
bool parseOptionalAttributeDict(SmallVectorImpl<NamedAttribute> &result,
llvm::SMLoc *loc = nullptr) override {
if (parser.getToken().isNot(Token::l_brace))
return false;
if (loc)
*loc = parser.getToken().getLoc();
return parser.parseAttributeDict(result) == ParseFailure;
}
bool parseOperand(OperandType &result) override {
FunctionParser::SSAUseInfo useInfo;
if (parser.parseSSAUse(useInfo))
return true;
result = {useInfo.loc, useInfo.name, useInfo.number};
return false;
}
bool parseOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
auto startLoc = parser.getToken().getLoc();
// Handle delimiters.
switch (delimiter) {
case Delimiter::None:
break;
case Delimiter::OptionalParen:
if (parser.getToken().isNot(Token::l_paren))
return false;
LLVM_FALLTHROUGH;
case Delimiter::Paren:
if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
return true;
break;
case Delimiter::OptionalSquare:
if (parser.getToken().isNot(Token::l_square))
return false;
LLVM_FALLTHROUGH;
case Delimiter::Square:
if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
return true;
break;
}
// Check for zero operands.
if (parser.getToken().is(Token::percent_identifier)) {
do {
OperandType operand;
if (parseOperand(operand))
return true;
result.push_back(operand);
} while (parser.consumeIf(Token::comma));
}
// Handle delimiters. If we reach here, the optional delimiters were
// present, so we need to parse their closing one.
switch (delimiter) {
case Delimiter::None:
break;
case Delimiter::OptionalParen:
case Delimiter::Paren:
if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
return true;
break;
case Delimiter::OptionalSquare:
case Delimiter::Square:
if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
return true;
break;
}
if (requiredOperandCount != -1 && result.size() != requiredOperandCount)
emitError(startLoc,
"expected " + Twine(requiredOperandCount) + " operands");
return false;
}
//===--------------------------------------------------------------------===//
// Methods for interacting with the parser
//===--------------------------------------------------------------------===//
Builder &getBuilder() const override { return parser.builder; }
llvm::SMLoc getNameLoc() const override { return nameLoc; }
bool resolveOperand(OperandType operand, Type *type,
SSAValue *&result) override {
FunctionParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
result = parser.resolveSSAUse(operandInfo, type);
return result == nullptr;
}
/// Emit a diagnostic at the specified location.
void emitError(llvm::SMLoc loc, const Twine &message) override {
parser.emitError(loc, "custom op '" + Twine(opName) + "' " + message);
emittedError = true;
}
bool didEmitError() const { return emittedError; }
private:
SMLoc nameLoc;
StringRef opName;
FunctionParser &parser;
bool emittedError = false;
};
} // end anonymous namespace.
Operation *FunctionParser::parseCustomOperation(
const CreateOperationFunction &createOpFunc) {
auto opLoc = getToken().getLoc();
auto opName = getTokenSpelling();
CustomOpAsmParser opAsmParser(opLoc, opName, *this);
auto *opDefinition = getOperationSet().lookup(opName);
if (!opDefinition) {
opAsmParser.emitError(opLoc, "is unknown");
return nullptr;
}
consumeToken();
// Have the op implementation take a crack and parsing this.
auto result = opDefinition->parseAssembly(&opAsmParser);
// If it emitted an error, we failed.
if (opAsmParser.didEmitError())
return nullptr;
// Otherwise, we succeeded. Use the state it parsed as our op information.
auto nameId = builder.getIdentifier(opName);
return createOpFunc(nameId, result.operands, result.types, result.attributes);
}
//===----------------------------------------------------------------------===//
// CFG Functions
//===----------------------------------------------------------------------===//
namespace {
/// This is a specialized parser for CFGFunction's, maintaining the state
/// transient to their bodies.
class CFGFunctionParser : public FunctionParser {
public:
CFGFunctionParser(ParserState &state, CFGFunction *function)
: FunctionParser(state, Kind::CFGFunc), function(function),
builder(function) {}
ParseResult parseFunctionBody();
private:
CFGFunction *function;
llvm::StringMap<std::pair<BasicBlock *, SMLoc>> blocksByName;
/// This builder intentionally shadows the builder in the base class, with a
/// more specific builder type.
CFGFuncBuilder builder;
/// Get the basic block with the specified name, creating it if it doesn't
/// already exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
BasicBlock *getBlockNamed(StringRef name, SMLoc loc) {
auto &blockAndLoc = blocksByName[name];
if (!blockAndLoc.first) {
blockAndLoc.first = new BasicBlock();
blockAndLoc.second = loc;
}
return blockAndLoc.first;
}
ParseResult
parseOptionalBasicBlockArgList(SmallVectorImpl<BBArgument *> &results,
BasicBlock *owner);
ParseResult parseBranchBlockAndUseList(BasicBlock *&block,
SmallVectorImpl<CFGValue *> &values);
ParseResult parseBasicBlock();
OperationInst *parseCFGOperation();
TerminatorInst *parseTerminator();
};
} // end anonymous namespace
/// Parse a (possibly empty) list of SSA operands with types as basic block
/// arguments.
///
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult CFGFunctionParser::parseOptionalBasicBlockArgList(
SmallVectorImpl<BBArgument *> &results, BasicBlock *owner) {
if (getToken().is(Token::r_brace))
return ParseSuccess;
return parseCommaSeparatedList([&]() -> ParseResult {
auto type = parseSSADefOrUseAndType<Type *>(
[&](SSAUseInfo useInfo, Type *type) -> Type * {
BBArgument *arg = owner->addArgument(type);
if (addDefinition(useInfo, arg) == ParseFailure)
return nullptr;
return type;
});
return type ? ParseSuccess : ParseFailure;
});
}
ParseResult CFGFunctionParser::parseFunctionBody() {
auto braceLoc = getToken().getLoc();
if (parseToken(Token::l_brace, "expected '{' in CFG function"))
return ParseFailure;
// Make sure we have at least one block.
if (getToken().is(Token::r_brace))
return emitError("CFG functions must have at least one basic block");
// Parse the list of blocks.
while (!consumeIf(Token::r_brace))
if (parseBasicBlock())
return ParseFailure;
// Verify that all referenced blocks were defined. Iteration over a
// StringMap isn't determinstic, but this is good enough for our purposes.
for (auto &elt : blocksByName) {
auto *bb = elt.second.first;
if (!bb->getFunction())
return emitError(elt.second.second,
"reference to an undefined basic block '" + elt.first() +
"'");
}
getModule()->getFunctions().push_back(function);
return finalizeFunction(function, braceLoc);
}
/// Basic block declaration.
///
/// basic-block ::= bb-label instruction* terminator-stmt
/// bb-label ::= bb-id bb-arg-list? `:`
/// bb-id ::= bare-id
/// bb-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult CFGFunctionParser::parseBasicBlock() {
SMLoc nameLoc = getToken().getLoc();
auto name = getTokenSpelling();
if (parseToken(Token::bare_identifier, "expected basic block name"))
return ParseFailure;
auto *block = getBlockNamed(name, nameLoc);
// If this block has already been parsed, then this is a redefinition with the
// same block name.
if (block->getFunction())
return emitError(nameLoc, "redefinition of block '" + name.str() + "'");
// If an argument list is present, parse it.
if (consumeIf(Token::l_paren)) {
SmallVector<BBArgument *, 8> bbArgs;
if (parseOptionalBasicBlockArgList(bbArgs, block) ||
parseToken(Token::r_paren, "expected ')' to end argument list"))
return ParseFailure;
}
// Add the block to the function.
function->push_back(block);
if (parseToken(Token::colon, "expected ':' after basic block name"))
return ParseFailure;
// Set the insertion point to the block we want to insert new operations into.
builder.setInsertionPoint(block);
auto createOpFunc = [&](Identifier name, ArrayRef<SSAValue *> operands,
ArrayRef<Type *> resultTypes,
ArrayRef<NamedAttribute> attrs) -> Operation * {
SmallVector<CFGValue *, 8> cfgOperands;
cfgOperands.reserve(operands.size());
for (auto *op : operands)
cfgOperands.push_back(cast<CFGValue>(op));
return builder.createOperation(name, cfgOperands, resultTypes, attrs);
};
// Parse the list of operations that make up the body of the block.
while (getToken().isNot(Token::kw_return, Token::kw_br, Token::kw_cond_br)) {
if (parseOperation(createOpFunc))
return ParseFailure;
}
if (!parseTerminator())
return ParseFailure;
return ParseSuccess;
}
ParseResult CFGFunctionParser::parseBranchBlockAndUseList(
BasicBlock *&block, SmallVectorImpl<CFGValue *> &values) {
block = getBlockNamed(getTokenSpelling(), getToken().getLoc());
if (parseToken(Token::bare_identifier, "expected basic block name"))
return ParseFailure;
if (!consumeIf(Token::l_paren))
return ParseSuccess;
if (parseOptionalSSAUseAndTypeList(values, /*isParenthesized*/ false) ||
parseToken(Token::r_paren, "expected ')' to close argument list"))
return ParseFailure;
return ParseSuccess;
}
/// Parse the terminator instruction for a basic block.
///
/// terminator-stmt ::= `br` bb-id branch-use-list?
/// branch-use-list ::= `(` ssa-use-list `)` ':' type-list-no-parens
/// terminator-stmt ::=
/// `cond_br` ssa-use `,` bb-id branch-use-list? `,` bb-id branch-use-list?
/// terminator-stmt ::= `return` ssa-use-and-type-list?
///
TerminatorInst *CFGFunctionParser::parseTerminator() {
switch (getToken().getKind()) {
default:
return (emitError("expected terminator at end of basic block"), nullptr);
case Token::kw_return: {
consumeToken(Token::kw_return);
// Parse any operands.
SmallVector<CFGValue *, 8> operands;
if (parseOptionalSSAUseAndTypeList(operands, /*isParenthesized*/ false))
return nullptr;
return builder.createReturnInst(operands);
}
case Token::kw_br: {
consumeToken(Token::kw_br);
BasicBlock *destBB;
SmallVector<CFGValue *, 4> values;
if (parseBranchBlockAndUseList(destBB, values))
return nullptr;
auto branch = builder.createBranchInst(destBB);
branch->addOperands(values);
return branch;
}
case Token::kw_cond_br: {
consumeToken(Token::kw_cond_br);
SSAUseInfo ssaUse;
if (parseSSAUse(ssaUse))
return nullptr;
auto *cond = resolveSSAUse(ssaUse, builder.getIntegerType(1));
if (!cond)
return (emitError("expected type was boolean (i1)"), nullptr);
if (parseToken(Token::comma, "expected ',' in conditional branch"))
return nullptr;
BasicBlock *trueBlock;
SmallVector<CFGValue *, 4> trueOperands;
if (parseBranchBlockAndUseList(trueBlock, trueOperands))
return nullptr;
if (parseToken(Token::comma, "expected ',' in conditional branch"))
return nullptr;
BasicBlock *falseBlock;
SmallVector<CFGValue *, 4> falseOperands;
if (parseBranchBlockAndUseList(falseBlock, falseOperands))
return nullptr;
auto branch = builder.createCondBranchInst(cast<CFGValue>(cond), trueBlock,
falseBlock);
branch->addTrueOperands(trueOperands);
branch->addFalseOperands(falseOperands);
return branch;
}
}
}
//===----------------------------------------------------------------------===//
// ML Functions
//===----------------------------------------------------------------------===//
namespace {
/// Refined parser for MLFunction bodies.
class MLFunctionParser : public FunctionParser {
public:
MLFunctionParser(ParserState &state, MLFunction *function)
: FunctionParser(state, Kind::MLFunc), function(function),
builder(function) {}
ParseResult parseFunctionBody();
private:
MLFunction *function;
/// This builder intentionally shadows the builder in the base class, with a
/// more specific builder type.
MLFuncBuilder builder;
ParseResult parseForStmt();
AffineConstantExpr *parseIntConstant();
ParseResult parseIfStmt();
ParseResult parseElseClause(IfClause *elseClause);
ParseResult parseStatements(StmtBlock *block);
ParseResult parseStmtBlock(StmtBlock *block);
};
} // end anonymous namespace
ParseResult MLFunctionParser::parseFunctionBody() {
auto braceLoc = getToken().getLoc();
// Parse statements in this function
if (parseToken(Token::l_brace, "expected '{' in ML function") ||
parseStatements(function)) {
return ParseFailure;
}
// TODO: store return operands in the IR.
SmallVector<SSAUseInfo, 4> dummyUseInfo;
if (parseToken(Token::kw_return,
"ML function must end with return statement") ||
parseOptionalSSAUseList(dummyUseInfo) ||
parseToken(Token::r_brace, "expected '}' to end mlfunc"))
return ParseFailure;
getModule()->getFunctions().push_back(function);
return finalizeFunction(function, braceLoc);
}
/// For statement.
///
/// ml-for-stmt ::= `for` ssa-id `=` lower-bound `to` upper-bound
/// (`step` integer-literal)? `{` ml-stmt* `}`
///
ParseResult MLFunctionParser::parseForStmt() {
consumeToken(Token::kw_for);
// Parse induction variable
if (getToken().isNot(Token::percent_identifier))
return emitError("expected SSA identifier for the loop variable");
auto loc = getToken().getLoc();
StringRef inductionVariableName = getTokenSpelling();
consumeToken(Token::percent_identifier);
if (parseToken(Token::equal, "expected ="))
return ParseFailure;
// Parse loop bounds
AffineConstantExpr *lowerBound = parseIntConstant();
if (!lowerBound)
return ParseFailure;
if (parseToken(Token::kw_to, "expected 'to' between bounds"))
return ParseFailure;
AffineConstantExpr *upperBound = parseIntConstant();
if (!upperBound)
return ParseFailure;
// Parse step
AffineConstantExpr *step = nullptr;
if (consumeIf(Token::kw_step)) {
step = parseIntConstant();
if (!step)
return ParseFailure;
}
// Create for statement.
ForStmt *forStmt = builder.createFor(lowerBound, upperBound, step);
// Create SSA value definition for the induction variable.
addDefinition({inductionVariableName, 0, loc}, forStmt);
// If parsing of the for statement body fails,
// MLIR contains for statement with those nested statements that have been
// successfully parsed.
if (parseStmtBlock(forStmt))
return ParseFailure;
// Reset insertion point to the current block.
builder.setInsertionPoint(forStmt->getBlock());
// TODO: remove definition of the induction variable.
return ParseSuccess;
}
// This method is temporary workaround to parse simple loop bounds and
// step.
// TODO: remove this method once it's no longer used.
AffineConstantExpr *MLFunctionParser::parseIntConstant() {
if (getToken().isNot(Token::integer))
return (emitError("expected non-negative integer for now"), nullptr);
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0) {
return (emitError("constant too large for affineint"), nullptr);
}
consumeToken(Token::integer);
return builder.getConstantExpr((int64_t)val.getValue());
}
/// If statement.
///
/// ml-if-head ::= `if` ml-if-cond `{` ml-stmt* `}`
/// | ml-if-head `else` `if` ml-if-cond `{` ml-stmt* `}`
/// ml-if-stmt ::= ml-if-head
/// | ml-if-head `else` `{` ml-stmt* `}`
///
ParseResult MLFunctionParser::parseIfStmt() {
consumeToken(Token::kw_if);
if (parseToken(Token::l_paren, "expected ("))
return ParseFailure;
// TODO: parse condition
if (parseToken(Token::r_paren, "expected )"))
return ParseFailure;
IfStmt *ifStmt = builder.createIf();
IfClause *thenClause = ifStmt->getThenClause();
// When parsing of an if statement body fails, the IR contains
// the if statement with the portion of the body that has been
// successfully parsed.
if (parseStmtBlock(thenClause))
return ParseFailure;
if (consumeIf(Token::kw_else)) {
auto *elseClause = ifStmt->createElseClause();
if (parseElseClause(elseClause))
return ParseFailure;
}
// Reset insertion point to the current block.
builder.setInsertionPoint(ifStmt->getBlock());
return ParseSuccess;
}
ParseResult MLFunctionParser::parseElseClause(IfClause *elseClause) {
if (getToken().is(Token::kw_if)) {
builder.setInsertionPoint(elseClause);
return parseIfStmt();
}
return parseStmtBlock(elseClause);
}
///
/// Parse a list of statements ending with `return` or `}`
///
ParseResult MLFunctionParser::parseStatements(StmtBlock *block) {
auto createOpFunc = [&](Identifier name, ArrayRef<SSAValue *> operands,
ArrayRef<Type *> resultTypes,
ArrayRef<NamedAttribute> attrs) -> Operation * {
SmallVector<MLValue *, 8> stmtOperands;
stmtOperands.reserve(operands.size());
for (auto *op : operands)
stmtOperands.push_back(cast<MLValue>(op));
return builder.createOperation(name, stmtOperands, resultTypes, attrs);
};
builder.setInsertionPoint(block);
while (getToken().isNot(Token::kw_return, Token::r_brace)) {
switch (getToken().getKind()) {
default:
if (parseOperation(createOpFunc))
return ParseFailure;
break;
case Token::kw_for:
if (parseForStmt())
return ParseFailure;
break;
case Token::kw_if:
if (parseIfStmt())
return ParseFailure;
break;
} // end switch
}
return ParseSuccess;
}
///
/// Parse `{` ml-stmt* `}`
///
ParseResult MLFunctionParser::parseStmtBlock(StmtBlock *block) {
if (parseToken(Token::l_brace, "expected '{' before statement list") ||
parseStatements(block) ||
parseToken(Token::r_brace,
"expected '}' at the end of the statement block"))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//
namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class ModuleParser : public Parser {
public:
explicit ModuleParser(ParserState &state) : Parser(state) {}
ParseResult parseModule();
private:
ParseResult parseAffineMapDef();
// Functions.
ParseResult parseMLArgumentList(SmallVectorImpl<Type *> &argTypes,
SmallVectorImpl<StringRef> &argNames);
ParseResult parseFunctionSignature(StringRef &name, FunctionType *&type,
SmallVectorImpl<StringRef> *argNames);
ParseResult parseExtFunc();
ParseResult parseCFGFunc();
ParseResult parseMLFunc();
};
} // end anonymous namespace
/// Affine map declaration.
///
/// affine-map-def ::= affine-map-id `=` affine-map-inline
///
ParseResult ModuleParser::parseAffineMapDef() {
assert(getToken().is(Token::hash_identifier));
StringRef affineMapId = getTokenSpelling().drop_front();
// Check for redefinitions.
auto *&entry = getState().affineMapDefinitions[affineMapId];
if (entry)
return emitError("redefinition of affine map id '" + affineMapId + "'");
consumeToken(Token::hash_identifier);
// Parse the '='
if (parseToken(Token::equal,
"expected '=' in affine map outlined definition"))
return ParseFailure;
entry = parseAffineMapInline();
if (!entry)
return ParseFailure;
return ParseSuccess;
}
/// Parse a (possibly empty) list of MLFunction arguments with types.
///
/// ml-argument ::= ssa-id `:` type
/// ml-argument-list ::= ml-argument (`,` ml-argument)* | /*empty*/
///
ParseResult
ModuleParser::parseMLArgumentList(SmallVectorImpl<Type *> &argTypes,
SmallVectorImpl<StringRef> &argNames) {
consumeToken(Token::l_paren);
auto parseElt = [&]() -> ParseResult {
// Parse argument name
if (getToken().isNot(Token::percent_identifier))
return emitError("expected SSA identifier");
StringRef name = getTokenSpelling().drop_front();
consumeToken(Token::percent_identifier);
argNames.push_back(name);
if (parseToken(Token::colon, "expected ':'"))
return ParseFailure;
// Parse argument type
auto elt = parseType();
if (!elt)
return ParseFailure;
argTypes.push_back(elt);
return ParseSuccess;
};
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse a function signature, starting with a name and including the parameter
/// list.
///
/// argument-list ::= type (`,` type)* | /*empty*/ | ml-argument-list
/// function-signature ::= function-id `(` argument-list `)` (`->` type-list)?
///
ParseResult
ModuleParser::parseFunctionSignature(StringRef &name, FunctionType *&type,
SmallVectorImpl<StringRef> *argNames) {
if (getToken().isNot(Token::at_identifier))
return emitError("expected a function identifier like '@foo'");
name = getTokenSpelling().drop_front();
consumeToken(Token::at_identifier);
if (getToken().isNot(Token::l_paren))
return emitError("expected '(' in function signature");
SmallVector<Type *, 4> argTypes;
ParseResult parseResult;
if (argNames)
parseResult = parseMLArgumentList(argTypes, *argNames);
else
parseResult = parseTypeList(argTypes);
if (parseResult)
return ParseFailure;
// Parse the return type if present.
SmallVector<Type *, 4> results;
if (consumeIf(Token::arrow)) {
if (parseTypeList(results))
return ParseFailure;
}
type = builder.getFunctionType(argTypes, results);
return ParseSuccess;
}
/// External function declarations.
///
/// ext-func ::= `extfunc` function-signature
///
ParseResult ModuleParser::parseExtFunc() {
consumeToken(Token::kw_extfunc);
StringRef name;
FunctionType *type = nullptr;
if (parseFunctionSignature(name, type, /*arguments*/ nullptr))
return ParseFailure;
// Okay, the external function definition was parsed correctly.
getModule()->getFunctions().push_back(new ExtFunction(name, type));
return ParseSuccess;
}
/// CFG function declarations.
///
/// cfg-func ::= `cfgfunc` function-signature `{` basic-block+ `}`
///
ParseResult ModuleParser::parseCFGFunc() {
consumeToken(Token::kw_cfgfunc);
StringRef name;
FunctionType *type = nullptr;
if (parseFunctionSignature(name, type, /*arguments*/ nullptr))
return ParseFailure;
// Okay, the CFG function signature was parsed correctly, create the function.
auto function = new CFGFunction(name, type);
return CFGFunctionParser(getState(), function).parseFunctionBody();
}
/// ML function declarations.
///
/// ml-func ::= `mlfunc` ml-func-signature `{` ml-stmt* ml-return-stmt `}`
///
ParseResult ModuleParser::parseMLFunc() {
consumeToken(Token::kw_mlfunc);
StringRef name;
FunctionType *type = nullptr;
SmallVector<StringRef, 4> argNames;
// FIXME: Parse ML function signature (args + types)
// by passing pointer to SmallVector<identifier> into parseFunctionSignature
if (parseFunctionSignature(name, type, &argNames))
return ParseFailure;
// Okay, the ML function signature was parsed correctly, create the function.
auto function = new MLFunction(name, type);
return MLFunctionParser(getState(), function).parseFunctionBody();
}
/// This is the top-level module parser.
ParseResult ModuleParser::parseModule() {
while (1) {
switch (getToken().getKind()) {
default:
emitError("expected a top level entity");
return ParseFailure;
// If we got to the end of the file, then we're done.
case Token::eof:
return ParseSuccess;
// If we got an error token, then the lexer already emitted an error, just
// stop. Someday we could introduce error recovery if there was demand for
// it.
case Token::error:
return ParseFailure;
case Token::hash_identifier:
if (parseAffineMapDef())
return ParseFailure;
break;
case Token::kw_extfunc:
if (parseExtFunc())
return ParseFailure;
break;
case Token::kw_cfgfunc:
if (parseCFGFunc())
return ParseFailure;
break;
case Token::kw_mlfunc:
if (parseMLFunc())
return ParseFailure;
break;
}
}
}
//===----------------------------------------------------------------------===//
void mlir::defaultErrorReporter(const llvm::SMDiagnostic &error) {
const auto &sourceMgr = *error.getSourceMgr();
sourceMgr.PrintMessage(error.getLoc(), error.getKind(), error.getMessage());
}
/// This parses the file specified by the indicated SourceMgr and returns an
/// MLIR module if it was valid. If not, it emits diagnostics and returns null.
Module *mlir::parseSourceFile(llvm::SourceMgr &sourceMgr, MLIRContext *context,
SMDiagnosticHandlerTy errorReporter) {
// This is the result module we are parsing into.
std::unique_ptr<Module> module(new Module(context));
ParserState state(sourceMgr, module.get(),
errorReporter ? errorReporter : defaultErrorReporter);
if (ModuleParser(state).parseModule())
return nullptr;
// Make sure the parse module has no other structural problems detected by the
// verifier.
module->verify();
return module.release();
}