llvm-project/lldb/source/Target/ThreadPlanCallUserExpressio...

129 lines
4.1 KiB
C++
Raw Normal View History

//===-- ThreadPlanCallUserExpression.cpp ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/ThreadPlanCallUserExpression.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Breakpoint/Breakpoint.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Stream.h"
#include "lldb/Expression/DiagnosticManager.h"
#include "lldb/Expression/IRDynamicChecks.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlanRunToAddress.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// ThreadPlanCallUserExpression: Plan to call a single function
//----------------------------------------------------------------------
ThreadPlanCallUserExpression::ThreadPlanCallUserExpression (Thread &thread,
Address &function,
llvm::ArrayRef<lldb::addr_t> args,
const EvaluateExpressionOptions &options,
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
lldb::UserExpressionSP &user_expression_sp) :
ThreadPlanCallFunction (thread, function, CompilerType(), args, options),
m_user_expression_sp (user_expression_sp)
{
// User expressions are generally "User generated" so we should set them up to stop when done.
SetIsMasterPlan (true);
SetOkayToDiscard(false);
}
ThreadPlanCallUserExpression::~ThreadPlanCallUserExpression ()
{
}
void
ThreadPlanCallUserExpression::GetDescription (Stream *s, lldb::DescriptionLevel level)
{
if (level == eDescriptionLevelBrief)
s->Printf("User Expression thread plan");
else
ThreadPlanCallFunction::GetDescription (s, level);
}
void
ThreadPlanCallUserExpression::WillPop ()
{
ThreadPlanCallFunction::WillPop();
if (m_user_expression_sp)
m_user_expression_sp.reset();
}
bool
ThreadPlanCallUserExpression::MischiefManaged ()
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
if (IsPlanComplete())
{
if (log)
log->Printf("ThreadPlanCallFunction(%p): Completed call function plan.",
static_cast<void*>(this));
if (m_manage_materialization && PlanSucceeded() && m_user_expression_sp)
{
lldb::addr_t function_stack_top;
lldb::addr_t function_stack_bottom;
lldb::addr_t function_stack_pointer = GetFunctionStackPointer();
function_stack_bottom = function_stack_pointer - HostInfo::GetPageSize();
function_stack_top = function_stack_pointer;
DiagnosticManager diagnostics;
ExecutionContext exe_ctx(GetThread());
m_user_expression_sp->FinalizeJITExecution(diagnostics, exe_ctx, m_result_var_sp, function_stack_bottom,
function_stack_top);
}
ThreadPlan::MischiefManaged();
return true;
}
else
{
return false;
}
}
StopInfoSP
ThreadPlanCallUserExpression::GetRealStopInfo()
{
StopInfoSP stop_info_sp = ThreadPlanCallFunction::GetRealStopInfo();
if (stop_info_sp)
{
lldb::addr_t addr = GetStopAddress();
DynamicCheckerFunctions *checkers = m_thread.GetProcess()->GetDynamicCheckers();
StreamString s;
if (checkers && checkers->DoCheckersExplainStop(addr, s))
stop_info_sp->SetDescription(s.GetData());
}
return stop_info_sp;
}