llvm-project/clang/tools/libclang/RecursiveASTVisitor.h

2385 lines
82 KiB
C
Raw Normal View History

//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RecursiveASTVisitor interface, which recursively
// traverses the entire AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
#define LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
// The following three macros are used for meta programming. The code
// using them is responsible for defining macro OPERATOR().
// All unary operators.
#define UNARYOP_LIST() \
OPERATOR(PostInc) OPERATOR(PostDec) \
OPERATOR(PreInc) OPERATOR(PreDec) \
OPERATOR(AddrOf) OPERATOR(Deref) \
OPERATOR(Plus) OPERATOR(Minus) \
OPERATOR(Not) OPERATOR(LNot) \
OPERATOR(Real) OPERATOR(Imag) \
OPERATOR(Extension)
// All binary operators (excluding compound assign operators).
#define BINOP_LIST() \
OPERATOR(PtrMemD) OPERATOR(PtrMemI) \
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \
OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \
OPERATOR(Shr) \
\
OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \
OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \
OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \
OPERATOR(LAnd) OPERATOR(LOr) \
\
OPERATOR(Assign) \
OPERATOR(Comma)
// All compound assign operators.
#define CAO_LIST() \
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \
OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor)
namespace clang {
namespace cxindex {
// A helper macro to implement short-circuiting when recursing. It
// invokes CALL_EXPR, which must be a method call, on the derived
// object (s.t. a user of RecursiveASTVisitor can override the method
// in CALL_EXPR).
#define TRY_TO(CALL_EXPR) \
do { if (!getDerived().CALL_EXPR) return false; } while (0)
/// \brief A class that does preorder depth-first traversal on the
/// entire Clang AST and visits each node.
///
/// This class performs three distinct tasks:
/// 1. traverse the AST (i.e. go to each node);
/// 2. at a given node, walk up the class hierarchy, starting from
/// the node's dynamic type, until the top-most class (e.g. Stmt,
/// Decl, or Type) is reached.
/// 3. given a (node, class) combination, where 'class' is some base
/// class of the dynamic type of 'node', call a user-overridable
/// function to actually visit the node.
///
/// These tasks are done by three groups of methods, respectively:
/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point
/// for traversing an AST rooted at x. This method simply
/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo
/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and
/// then recursively visits the child nodes of x.
/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work
/// similarly.
/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit
/// any child node of x. Instead, it first calls WalkUpFromBar(x)
/// where Bar is the direct parent class of Foo (unless Foo has
/// no parent), and then calls VisitFoo(x) (see the next list item).
/// 3. VisitFoo(Foo *x) does task #3.
///
/// These three method groups are tiered (Traverse* > WalkUpFrom* >
/// Visit*). A method (e.g. Traverse*) may call methods from the same
/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*).
/// It may not call methods from a higher tier.
///
/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar
/// is Foo's super class) before calling VisitFoo(), the result is
/// that the Visit*() methods for a given node are called in the
/// top-down order (e.g. for a node of type NamedDecl, the order will
/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()).
///
/// This scheme guarantees that all Visit*() calls for the same AST
/// node are grouped together. In other words, Visit*() methods for
/// different nodes are never interleaved.
///
/// Stmts are traversed internally using a data queue to avoid a stack overflow
/// with hugely nested ASTs.
///
/// Clients of this visitor should subclass the visitor (providing
/// themselves as the template argument, using the curiously recurring
/// template pattern) and override any of the Traverse*, WalkUpFrom*,
/// and Visit* methods for declarations, types, statements,
/// expressions, or other AST nodes where the visitor should customize
/// behavior. Most users only need to override Visit*. Advanced
/// users may override Traverse* and WalkUpFrom* to implement custom
/// traversal strategies. Returning false from one of these overridden
/// functions will abort the entire traversal.
///
/// By default, this visitor tries to visit every part of the explicit
/// source code exactly once. The default policy towards templates
/// is to descend into the 'pattern' class or function body, not any
/// explicit or implicit instantiations. Explicit specializations
/// are still visited, and the patterns of partial specializations
/// are visited separately. This behavior can be changed by
/// overriding shouldVisitTemplateInstantiations() in the derived class
/// to return true, in which case all known implicit and explicit
/// instantiations will be visited at the same time as the pattern
/// from which they were produced.
template<typename Derived>
class RecursiveASTVisitor {
public:
/// \brief Return a reference to the derived class.
Derived &getDerived() { return *static_cast<Derived*>(this); }
/// \brief Return whether this visitor should recurse into
/// template instantiations.
bool shouldVisitTemplateInstantiations() const { return false; }
/// \brief Return whether this visitor should recurse into the types of
/// TypeLocs.
bool shouldWalkTypesOfTypeLocs() const { return true; }
/// \brief Recursively visit a statement or expression, by
/// dispatching to Traverse*() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is NULL).
bool TraverseStmt(Stmt *S);
/// \brief Recursively visit a type, by dispatching to
/// Traverse*Type() based on the argument's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type).
bool TraverseType(QualType T);
/// \brief Recursively visit a type with location, by dispatching to
/// Traverse*TypeLoc() based on the argument type's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseTypeLoc(TypeLoc TL);
/// \brief Recursively visit a declaration, by dispatching to
/// Traverse*Decl() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is NULL).
bool TraverseDecl(Decl *D);
/// \brief Recursively visit a C++ nested-name-specifier.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
/// \brief Recursively visit a C++ nested-name-specifier with location
/// information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
/// \brief Recursively visit a name with its location information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
/// \brief Recursively visit a template name and dispatch to the
/// appropriate method.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateName(TemplateName Template);
/// \brief Recursively visit a template argument and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: migrate callers to TemplateArgumentLoc instead.
bool TraverseTemplateArgument(const TemplateArgument &Arg);
/// \brief Recursively visit a template argument location and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
/// \brief Recursively visit a set of template arguments.
/// This can be overridden by a subclass, but it's not expected that
/// will be needed -- this visitor always dispatches to another.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead.
bool TraverseTemplateArguments(const TemplateArgument *Args,
unsigned NumArgs);
/// \brief Recursively visit a constructor initializer. This
/// automatically dispatches to another visitor for the initializer
/// expression, but not for the name of the initializer, so may
/// be overridden for clients that need access to the name.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
/// \brief Recursively visit a lambda capture.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseLambdaCapture(LambdaExpr::Capture C);
// ---- Methods on Stmts ----
// Declare Traverse*() for all concrete Stmt classes.
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
bool Traverse##CLASS(CLASS *S);
#include "clang/AST/StmtNodes.inc"
// The above header #undefs ABSTRACT_STMT and STMT upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Stmt classes.
bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); }
bool VisitStmt(Stmt *S) { return true; }
#define STMT(CLASS, PARENT) \
bool WalkUpFrom##CLASS(CLASS *S) { \
TRY_TO(WalkUpFrom##PARENT(S)); \
TRY_TO(Visit##CLASS(S)); \
return true; \
} \
bool Visit##CLASS(CLASS *S) { return true; }
#include "clang/AST/StmtNodes.inc"
// Define Traverse*(), WalkUpFrom*(), and Visit*() for unary
// operator methods. Unary operators are not classes in themselves
// (they're all opcodes in UnaryOperator) but do have visitors.
#define OPERATOR(NAME) \
bool TraverseUnary##NAME(UnaryOperator *S) { \
TRY_TO(WalkUpFromUnary##NAME(S)); \
StmtQueueAction StmtQueue(*this); \
StmtQueue.queue(S->getSubExpr()); \
return true; \
} \
bool WalkUpFromUnary##NAME(UnaryOperator *S) { \
TRY_TO(WalkUpFromUnaryOperator(S)); \
TRY_TO(VisitUnary##NAME(S)); \
return true; \
} \
bool VisitUnary##NAME(UnaryOperator *S) { return true; }
UNARYOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for binary
// operator methods. Binary operators are not classes in themselves
// (they're all opcodes in BinaryOperator) but do have visitors.
#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \
bool TraverseBin##NAME(BINOP_TYPE *S) { \
TRY_TO(WalkUpFromBin##NAME(S)); \
StmtQueueAction StmtQueue(*this); \
StmtQueue.queue(S->getLHS()); \
StmtQueue.queue(S->getRHS()); \
return true; \
} \
bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \
TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \
TRY_TO(VisitBin##NAME(S)); \
return true; \
} \
bool VisitBin##NAME(BINOP_TYPE *S) { return true; }
#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator)
BINOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for compound
// assignment methods. Compound assignment operators are not
// classes in themselves (they're all opcodes in
// CompoundAssignOperator) but do have visitors.
#define OPERATOR(NAME) \
GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator)
CAO_LIST()
#undef OPERATOR
#undef GENERAL_BINOP_FALLBACK
// ---- Methods on Types ----
// FIXME: revamp to take TypeLoc's rather than Types.
// Declare Traverse*() for all concrete Type classes.
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
bool Traverse##CLASS##Type(CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
// The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Type classes.
bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); }
bool VisitType(Type *T) { return true; }
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \
TRY_TO(WalkUpFrom##BASE(T)); \
TRY_TO(Visit##CLASS##Type(T)); \
return true; \
} \
bool Visit##CLASS##Type(CLASS##Type *T) { return true; }
#include "clang/AST/TypeNodes.def"
// ---- Methods on TypeLocs ----
// FIXME: this currently just calls the matching Type methods
// Declare Traverse*() for all concrete Type classes.
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL);
#include "clang/AST/TypeLocNodes.def"
// The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
// Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes.
bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); }
bool VisitTypeLoc(TypeLoc TL) { return true; }
// QualifiedTypeLoc and UnqualTypeLoc are not declared in
// TypeNodes.def and thus need to be handled specially.
bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; }
bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
// Note that BASE includes trailing 'Type' which CLASS doesn't.
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
TRY_TO(WalkUpFrom##BASE##Loc(TL)); \
TRY_TO(Visit##CLASS##TypeLoc(TL)); \
return true; \
} \
bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; }
#include "clang/AST/TypeNodes.def"
// ---- Methods on Decls ----
// Declare Traverse*() for all concrete Decl classes.
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
bool Traverse##CLASS##Decl(CLASS##Decl *D);
#include "clang/AST/DeclNodes.inc"
// The above header #undefs ABSTRACT_DECL and DECL upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Decl classes.
bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); }
bool VisitDecl(Decl *D) { return true; }
#define DECL(CLASS, BASE) \
bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \
TRY_TO(WalkUpFrom##BASE(D)); \
TRY_TO(Visit##CLASS##Decl(D)); \
return true; \
} \
bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; }
#include "clang/AST/DeclNodes.inc"
private:
// These are helper methods used by more than one Traverse* method.
bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
bool TraverseClassInstantiations(ClassTemplateDecl *D);
bool TraverseVariableInstantiations(VarTemplateDecl *D);
bool TraverseFunctionInstantiations(FunctionTemplateDecl *D) ;
bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL,
unsigned Count);
bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL);
bool TraverseRecordHelper(RecordDecl *D);
bool TraverseCXXRecordHelper(CXXRecordDecl *D);
bool TraverseDeclaratorHelper(DeclaratorDecl *D);
bool TraverseDeclContextHelper(DeclContext *DC);
bool TraverseFunctionHelper(FunctionDecl *D);
bool TraverseVarHelper(VarDecl *D);
bool TraverseOMPClause(OMPClause *C);
#define OPENMP_CLAUSE(Name, Class) \
bool Visit##Class(Class *C);
#include "clang/Basic/OpenMPKinds.def"
/// \brief Process clauses with list of variables.
template <typename T>
void VisitOMPClauseList(T *Node);
typedef SmallVector<Stmt *, 16> StmtsTy;
typedef SmallVector<StmtsTy *, 4> QueuesTy;
QueuesTy Queues;
class NewQueueRAII {
RecursiveASTVisitor &RAV;
public:
NewQueueRAII(StmtsTy &queue, RecursiveASTVisitor &RAV) : RAV(RAV) {
RAV.Queues.push_back(&queue);
}
~NewQueueRAII() {
RAV.Queues.pop_back();
}
};
StmtsTy &getCurrentQueue() {
assert(!Queues.empty() && "base TraverseStmt was never called?");
return *Queues.back();
}
public:
class StmtQueueAction {
StmtsTy &CurrQueue;
public:
explicit StmtQueueAction(RecursiveASTVisitor &RAV)
: CurrQueue(RAV.getCurrentQueue()) { }
void queue(Stmt *S) {
CurrQueue.push_back(S);
}
};
};
#define DISPATCH(NAME, CLASS, VAR) \
return getDerived().Traverse##NAME(static_cast<CLASS*>(VAR))
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) {
if (!S)
return true;
StmtsTy Queue, StmtsToEnqueu;
Queue.push_back(S);
NewQueueRAII NQ(StmtsToEnqueu, *this);
while (!Queue.empty()) {
S = Queue.pop_back_val();
if (!S)
continue;
StmtsToEnqueu.clear();
#define DISPATCH_STMT(NAME, CLASS, VAR) \
TRY_TO(Traverse##NAME(static_cast<CLASS*>(VAR))); break
// If we have a binary expr, dispatch to the subcode of the binop. A smart
// optimizer (e.g. LLVM) will fold this comparison into the switch stmt
// below.
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
switch (BinOp->getOpcode()) {
#define OPERATOR(NAME) \
case BO_##NAME: DISPATCH_STMT(Bin##NAME, BinaryOperator, S);
BINOP_LIST()
#undef OPERATOR
#undef BINOP_LIST
#define OPERATOR(NAME) \
case BO_##NAME##Assign: \
DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S);
CAO_LIST()
#undef OPERATOR
#undef CAO_LIST
}
} else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
switch (UnOp->getOpcode()) {
#define OPERATOR(NAME) \
case UO_##NAME: DISPATCH_STMT(Unary##NAME, UnaryOperator, S);
UNARYOP_LIST()
#undef OPERATOR
#undef UNARYOP_LIST
}
} else {
// Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
switch (S->getStmtClass()) {
case Stmt::NoStmtClass: break;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS##Class: DISPATCH_STMT(CLASS, CLASS, S);
#include "clang/AST/StmtNodes.inc"
}
}
for (SmallVectorImpl<Stmt *>::reverse_iterator
RI = StmtsToEnqueu.rbegin(),
RE = StmtsToEnqueu.rend(); RI != RE; ++RI)
Queue.push_back(*RI);
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) {
if (T.isNull())
return true;
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \
const_cast<Type*>(T.getTypePtr()));
#include "clang/AST/TypeNodes.def"
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) {
if (TL.isNull())
return true;
switch (TL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
case TypeLoc::CLASS: \
return getDerived().Traverse##CLASS##TypeLoc(TL.castAs<CLASS##TypeLoc>());
#include "clang/AST/TypeLocNodes.def"
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) {
if (!D)
return true;
// As a syntax visitor, we want to ignore declarations for
// implicitly-defined declarations (ones not typed explicitly by the
// user).
if (D->isImplicit())
return true;
switch (D->getKind()) {
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D);
#include "clang/AST/DeclNodes.inc"
}
return true;
}
#undef DISPATCH
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier(
NestedNameSpecifier *NNS) {
if (!NNS)
return true;
if (NNS->getPrefix())
TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseType(QualType(NNS->getAsType(), 0)));
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS) {
if (!NNS)
return true;
if (NestedNameSpecifierLoc Prefix = NNS.getPrefix())
TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
switch (NNS.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseTypeLoc(NNS.getTypeLoc()));
break;
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo(
DeclarationNameInfo NameInfo) {
switch (NameInfo.getName().getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc()));
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
break;
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) {
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier()));
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier()));
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument(
const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type:
return getDerived().TraverseType(Arg.getAsType());
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(Arg.getAsExpr());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
// FIXME: no template name location?
// FIXME: no source locations for a template argument pack?
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc(
const TemplateArgumentLoc &ArgLoc) {
const TemplateArgument &Arg = ArgLoc.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type: {
// FIXME: how can TSI ever be NULL?
if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo())
return getDerived().TraverseTypeLoc(TSI->getTypeLoc());
else
return getDerived().TraverseType(Arg.getAsType());
}
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (ArgLoc.getTemplateQualifierLoc())
TRY_TO(getDerived().TraverseNestedNameSpecifierLoc(
ArgLoc.getTemplateQualifierLoc()));
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments(
const TemplateArgument *Args,
unsigned NumArgs) {
for (unsigned I = 0; I != NumArgs; ++I) {
TRY_TO(TraverseTemplateArgument(Args[I]));
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer(
CXXCtorInitializer *Init) {
if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
if (Init->isWritten())
TRY_TO(TraverseStmt(Init->getInit()));
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr::Capture C){
return true;
}
// ----------------- Type traversal -----------------
// This macro makes available a variable T, the passed-in type.
#define DEF_TRAVERSE_TYPE(TYPE, CODE) \
template<typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE (TYPE *T) { \
TRY_TO(WalkUpFrom##TYPE (T)); \
{ CODE; } \
return true; \
}
DEF_TRAVERSE_TYPE(BuiltinType, { })
DEF_TRAVERSE_TYPE(ComplexType, {
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(PointerType, {
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(BlockPointerType, {
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(LValueReferenceType, {
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(RValueReferenceType, {
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(MemberPointerType, {
TRY_TO(TraverseType(QualType(T->getClass(), 0)));
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(DecayedType, {
TRY_TO(TraverseType(T->getOriginalType()));
})
DEF_TRAVERSE_TYPE(ConstantArrayType, {
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(IncompleteArrayType, {
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(VariableArrayType, {
TRY_TO(TraverseType(T->getElementType()));
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentSizedArrayType, {
TRY_TO(TraverseType(T->getElementType()));
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, {
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(VectorType, {
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(ExtVectorType, {
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(FunctionNoProtoType, {
TRY_TO(TraverseType(T->getResultType()));
})
DEF_TRAVERSE_TYPE(FunctionProtoType, {
TRY_TO(TraverseType(T->getResultType()));
for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
AEnd = T->arg_type_end();
A != AEnd; ++A) {
TRY_TO(TraverseType(*A));
}
for (FunctionProtoType::exception_iterator E = T->exception_begin(),
EEnd = T->exception_end();
E != EEnd; ++E) {
TRY_TO(TraverseType(*E));
}
})
DEF_TRAVERSE_TYPE(UnresolvedUsingType, { })
DEF_TRAVERSE_TYPE(TypedefType, { })
DEF_TRAVERSE_TYPE(TypeOfExprType, {
TRY_TO(TraverseStmt(T->getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPE(TypeOfType, {
TRY_TO(TraverseType(T->getUnderlyingType()));
})
DEF_TRAVERSE_TYPE(DecltypeType, {
TRY_TO(TraverseStmt(T->getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPE(UnaryTransformType, {
TRY_TO(TraverseType(T->getBaseType()));
TRY_TO(TraverseType(T->getUnderlyingType()));
})
DEF_TRAVERSE_TYPE(AutoType, {
TRY_TO(TraverseType(T->getDeducedType()));
})
DEF_TRAVERSE_TYPE(RecordType, { })
DEF_TRAVERSE_TYPE(EnumType, { })
DEF_TRAVERSE_TYPE(TemplateTypeParmType, { })
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { })
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { })
DEF_TRAVERSE_TYPE(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(T->getTemplateName()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(InjectedClassNameType, { })
DEF_TRAVERSE_TYPE(AttributedType, {
TRY_TO(TraverseType(T->getModifiedType()));
})
DEF_TRAVERSE_TYPE(ParenType, {
TRY_TO(TraverseType(T->getInnerType()));
})
DEF_TRAVERSE_TYPE(ElaboratedType, {
if (T->getQualifier()) {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
}
TRY_TO(TraverseType(T->getNamedType()));
})
DEF_TRAVERSE_TYPE(DependentNameType, {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
})
DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(PackExpansionType, {
TRY_TO(TraverseType(T->getPattern()));
})
DEF_TRAVERSE_TYPE(ObjCInterfaceType, { })
DEF_TRAVERSE_TYPE(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (T->getBaseType().getTypePtr() != T)
TRY_TO(TraverseType(T->getBaseType()));
})
DEF_TRAVERSE_TYPE(ObjCObjectPointerType, {
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(AtomicType, {
TRY_TO(TraverseType(T->getValueType()));
})
#undef DEF_TRAVERSE_TYPE
// ----------------- TypeLoc traversal -----------------
// This macro makes available a variable TL, the passed-in TypeLoc.
// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc,
// in addition to WalkUpFrom* for the TypeLoc itself, such that existing
// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods
// continue to work.
#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \
template<typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \
if (getDerived().shouldWalkTypesOfTypeLocs()) \
TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE*>(TL.getTypePtr()))); \
TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \
{ CODE; } \
return true; \
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(
QualifiedTypeLoc TL) {
// Move this over to the 'main' typeloc tree. Note that this is a
// move -- we pretend that we were really looking at the unqualified
// typeloc all along -- rather than a recursion, so we don't follow
// the normal CRTP plan of going through
// getDerived().TraverseTypeLoc. If we did, we'd be traversing
// twice for the same type (once as a QualifiedTypeLoc version of
// the type, once as an UnqualifiedTypeLoc version of the type),
// which in effect means we'd call VisitTypeLoc twice with the
// 'same' type. This solves that problem, at the cost of never
// seeing the qualified version of the type (unless the client
// subclasses TraverseQualifiedTypeLoc themselves). It's not a
// perfect solution. A perfect solution probably requires making
// QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a
// wrapper around Type* -- rather than being its own class in the
// type hierarchy.
return TraverseTypeLoc(TL.getUnqualifiedLoc());
}
DEF_TRAVERSE_TYPELOC(BuiltinType, { })
// FIXME: ComplexTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ComplexType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(PointerType, {
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(BlockPointerType, {
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(LValueReferenceType, {
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(RValueReferenceType, {
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
// FIXME: location of base class?
// We traverse this in the type case as well, but how is it not reached through
// the pointee type?
DEF_TRAVERSE_TYPELOC(MemberPointerType, {
TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0)));
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(DecayedType, {
TRY_TO(TraverseTypeLoc(TL.getOriginalLoc()));
})
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) {
// This isn't available for ArrayType, but is for the ArrayTypeLoc.
TRY_TO(TraverseStmt(TL.getSizeExpr()));
return true;
}
DEF_TRAVERSE_TYPELOC(ConstantArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(IncompleteArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(VariableArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
// FIXME: order? why not size expr first?
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, {
if (TL.getTypePtr()->getSizeExpr())
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(VectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: size and attributes
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ExtVectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, {
TRY_TO(TraverseTypeLoc(TL.getResultLoc()));
})
// FIXME: location of exception specifications (attributes?)
DEF_TRAVERSE_TYPELOC(FunctionProtoType, {
TRY_TO(TraverseTypeLoc(TL.getResultLoc()));
const FunctionProtoType *T = TL.getTypePtr();
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
if (TL.getArg(I)) {
TRY_TO(TraverseDecl(TL.getArg(I)));
} else if (I < T->getNumArgs()) {
TRY_TO(TraverseType(T->getArgType(I)));
}
}
for (FunctionProtoType::exception_iterator E = T->exception_begin(),
EEnd = T->exception_end();
E != EEnd; ++E) {
TRY_TO(TraverseType(*E));
}
})
DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { })
DEF_TRAVERSE_TYPELOC(TypedefType, { })
DEF_TRAVERSE_TYPELOC(TypeOfExprType, {
TRY_TO(TraverseStmt(TL.getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPELOC(TypeOfType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
// FIXME: location of underlying expr
DEF_TRAVERSE_TYPELOC(DecltypeType, {
TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPELOC(UnaryTransformType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(AutoType, {
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
})
DEF_TRAVERSE_TYPELOC(RecordType, { })
DEF_TRAVERSE_TYPELOC(EnumType, { })
DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { })
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { })
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { })
// FIXME: use the loc for the template name?
DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { })
DEF_TRAVERSE_TYPELOC(ParenType, {
TRY_TO(TraverseTypeLoc(TL.getInnerLoc()));
})
DEF_TRAVERSE_TYPELOC(AttributedType, {
TRY_TO(TraverseTypeLoc(TL.getModifiedLoc()));
})
DEF_TRAVERSE_TYPELOC(ElaboratedType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentNameType, {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(PackExpansionType, {
TRY_TO(TraverseTypeLoc(TL.getPatternLoc()));
})
DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { })
DEF_TRAVERSE_TYPELOC(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr())
TRY_TO(TraverseTypeLoc(TL.getBaseLoc()));
})
DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, {
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(AtomicType, {
TRY_TO(TraverseTypeLoc(TL.getValueLoc()));
})
#undef DEF_TRAVERSE_TYPELOC
// ----------------- Decl traversal -----------------
//
// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing
// the children that come from the DeclContext associated with it.
// Therefore each Traverse* only needs to worry about children other
// than those.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) {
if (!DC)
return true;
for (DeclContext::decl_iterator Child = DC->decls_begin(),
ChildEnd = DC->decls_end();
Child != ChildEnd; ++Child) {
// BlockDecls and CapturedDecls are traversed through BlockExprs and
// CapturedStmts respectively.
if (!isa<BlockDecl>(*Child) && !isa<CapturedDecl>(*Child))
TRY_TO(TraverseDecl(*Child));
}
return true;
}
// This macro makes available a variable D, the passed-in decl.
#define DEF_TRAVERSE_DECL(DECL, CODE) \
template<typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##DECL (DECL *D) { \
TRY_TO(WalkUpFrom##DECL (D)); \
{ CODE; } \
TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \
return true; \
}
DEF_TRAVERSE_DECL(AccessSpecDecl, { })
DEF_TRAVERSE_DECL(BlockDecl, {
if (TypeSourceInfo *TInfo = D->getSignatureAsWritten())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
TRY_TO(TraverseStmt(D->getBody()));
// This return statement makes sure the traversal of nodes in
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
// is skipped - don't remove it.
return true;
})
DEF_TRAVERSE_DECL(CapturedDecl, {
TRY_TO(TraverseStmt(D->getBody()));
// This return statement makes sure the traversal of nodes in
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
// is skipped - don't remove it.
return true;
})
DEF_TRAVERSE_DECL(EmptyDecl, { })
DEF_TRAVERSE_DECL(FileScopeAsmDecl, {
TRY_TO(TraverseStmt(D->getAsmString()));
})
DEF_TRAVERSE_DECL(ImportDecl, { })
DEF_TRAVERSE_DECL(FriendDecl, {
// Friend is either decl or a type.
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
})
DEF_TRAVERSE_DECL(FriendTemplateDecl, {
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) {
TemplateParameterList *TPL = D->getTemplateParameterList(I);
for (TemplateParameterList::iterator ITPL = TPL->begin(),
ETPL = TPL->end();
ITPL != ETPL; ++ITPL) {
TRY_TO(TraverseDecl(*ITPL));
}
}
})
DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, {
TRY_TO(TraverseDecl(D->getSpecialization()));
})
DEF_TRAVERSE_DECL(LinkageSpecDecl, { })
DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {
// FIXME: implement this
})
DEF_TRAVERSE_DECL(StaticAssertDecl, {
TRY_TO(TraverseStmt(D->getAssertExpr()));
TRY_TO(TraverseStmt(D->getMessage()));
})
DEF_TRAVERSE_DECL(TranslationUnitDecl, {
// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(NamespaceAliasDecl, {
// We shouldn't traverse an aliased namespace, since it will be
// defined (and, therefore, traversed) somewhere else.
//
// This return statement makes sure the traversal of nodes in
// decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
// is skipped - don't remove it.
return true;
})
DEF_TRAVERSE_DECL(LabelDecl, {
// There is no code in a LabelDecl.
})
DEF_TRAVERSE_DECL(NamespaceDecl, {
// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCCategoryDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCImplementationDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCInterfaceDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCProtocolDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCMethodDecl, {
if (D->getResultTypeSourceInfo()) {
TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc()));
}
for (ObjCMethodDecl::param_iterator
I = D->param_begin(), E = D->param_end(); I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody()));
}
return true;
})
DEF_TRAVERSE_DECL(ObjCPropertyDecl, {
// FIXME: implement
})
DEF_TRAVERSE_DECL(UsingDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(UsingDirectiveDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
})
DEF_TRAVERSE_DECL(UsingShadowDecl, { })
DEF_TRAVERSE_DECL(OMPThreadPrivateDecl, {
for (OMPThreadPrivateDecl::varlist_iterator I = D->varlist_begin(),
E = D->varlist_end();
I != E; ++I) {
TRY_TO(TraverseStmt(*I));
}
})
// A helper method for TemplateDecl's children.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper(
TemplateParameterList *TPL) {
if (TPL) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
return true;
}
// A helper method for traversing the implicit instantiations of a
// class template.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations(
ClassTemplateDecl *D) {
ClassTemplateDecl::spec_iterator end = D->spec_end();
for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) {
ClassTemplateSpecializationDecl* SD = *it;
switch (SD->getSpecializationKind()) {
// Visit the implicit instantiations with the requested pattern.
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(SD));
break;
// We don't need to do anything on an explicit instantiation
// or explicit specialization because there will be an explicit
// node for it elsewhere.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
return true;
}
DEF_TRAVERSE_DECL(ClassTemplateDecl, {
CXXRecordDecl* TempDecl = D->getTemplatedDecl();
TRY_TO(TraverseDecl(TempDecl));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
// By default, we do not traverse the instantiations of
// class templates since they do not appear in the user code. The
// following code optionally traverses them.
//
// We only traverse the class instantiations when we see the canonical
// declaration of the template, to ensure we only visit them once.
if (getDerived().shouldVisitTemplateInstantiations() &&
D == D->getCanonicalDecl())
TRY_TO(TraverseClassInstantiations(D));
// Note that getInstantiatedFromMemberTemplate() is just a link
// from a template instantiation back to the template from which
// it was instantiated, and thus should not be traversed.
})
// A helper method for traversing the implicit instantiations of a
// class template.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseVariableInstantiations(
VarTemplateDecl *D) {
VarTemplateDecl::spec_iterator end = D->spec_end();
for (VarTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) {
VarTemplateSpecializationDecl *SD = *it;
switch (SD->getSpecializationKind()) {
// Visit the implicit instantiations with the requested pattern.
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(SD));
break;
// We don't need to do anything on an explicit instantiation
// or explicit specialization because there will be an explicit
// node for it elsewhere.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
return true;
}
DEF_TRAVERSE_DECL(
VarTemplateDecl,
{
VarDecl *TempDecl = D->getTemplatedDecl();
TRY_TO(TraverseDecl(TempDecl));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
// By default, we do not traverse the instantiations of
// variable templates since they do not appear in the user code. The
// following code optionally traverses them.
//
// We only traverse the variable instantiations when we see the canonical
// declaration of the template, to ensure we only visit them once.
if (getDerived().shouldVisitTemplateInstantiations() &&
D == D->getCanonicalDecl())
TRY_TO(TraverseVariableInstantiations(D));
// Note that getInstantiatedFromMemberTemplate() is just a link
// from a template instantiation back to the template from which
// it was instantiated, and thus should not be traversed.
})
// A helper method for traversing the instantiations of a
// function while skipping its specializations.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations(
FunctionTemplateDecl *D) {
FunctionTemplateDecl::spec_iterator end = D->spec_end();
for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end;
++it) {
FunctionDecl* FD = *it;
switch (FD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// We don't know what kind of FunctionDecl this is.
TRY_TO(TraverseDecl(FD));
break;
// No need to visit explicit instantiations, we'll find the node
// eventually.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
break;
case TSK_ExplicitSpecialization:
break;
}
}
return true;
}
DEF_TRAVERSE_DECL(FunctionTemplateDecl, {
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
// By default, we do not traverse the instantiations of
// function templates since they do not appear in the user code. The
// following code optionally traverses them.
//
// We only traverse the function instantiations when we see the canonical
// declaration of the template, to ensure we only visit them once.
if (getDerived().shouldVisitTemplateInstantiations() &&
D == D->getCanonicalDecl())
TRY_TO(TraverseFunctionInstantiations(D));
})
DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, {
// D is the "T" in something like
// template <template <typename> class T> class container { };
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
if (D->hasDefaultArgument()) {
TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument()));
}
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(TemplateTypeParmDecl, {
// D is the "T" in something like "template<typename T> class vector;"
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
if (D->hasDefaultArgument())
TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc()));
})
DEF_TRAVERSE_DECL(TypedefDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the typedef, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, {
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, {
// A dependent using declaration which was marked with 'typename'.
// template<class T> class A : public B<T> { using typename B<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(EnumDecl, {
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// The enumerators are already traversed by
// decls_begin()/decls_end().
})
// Helper methods for RecordDecl and its children.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(
RecordDecl *D) {
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the source.
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(
CXXRecordDecl *D) {
if (!TraverseRecordHelper(D))
return false;
if (D->isCompleteDefinition()) {
for (CXXRecordDecl::base_class_iterator I = D->bases_begin(),
E = D->bases_end();
I != E; ++I) {
TRY_TO(TraverseTypeLoc(I->getTypeSourceInfo()->getTypeLoc()));
}
// We don't traverse the friends or the conversions, as they are
// already in decls_begin()/decls_end().
}
return true;
}
DEF_TRAVERSE_DECL(RecordDecl, {
TRY_TO(TraverseRecordHelper(D));
})
DEF_TRAVERSE_DECL(CXXRecordDecl, {
TRY_TO(TraverseCXXRecordHelper(D));
})
DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, {
// For implicit instantiations ("set<int> x;"), we don't want to
// recurse at all, since the instatiated class isn't written in
// the source code anywhere. (Note the instatiated *type* --
// set<int> -- is written, and will still get a callback of
// TemplateSpecializationType). For explicit instantiations
// ("template set<int>;"), we do need a callback, since this
// is the only callback that's made for this instantiation.
// We use getTypeAsWritten() to distinguish.
if (TypeSourceInfo *TSI = D->getTypeAsWritten())
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
if (!getDerived().shouldVisitTemplateInstantiations() &&
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
// Returning from here skips traversing the
// declaration context of the ClassTemplateSpecializationDecl
// (embedded in the DEF_TRAVERSE_DECL() macro)
// which contains the instantiated members of the class.
return true;
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper(
const TemplateArgumentLoc *TAL, unsigned Count) {
for (unsigned I = 0; I < Count; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TAL[I]));
}
return true;
}
DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, {
// The partial specialization.
if (TemplateParameterList *TPL = D->getTemplateParameters()) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
// The args that remains unspecialized.
TRY_TO(TraverseTemplateArgumentLocsHelper(
D->getTemplateArgsAsWritten()->getTemplateArgs(),
D->getTemplateArgsAsWritten()->NumTemplateArgs));
// Don't need the ClassTemplatePartialSpecializationHelper, even
// though that's our parent class -- we already visit all the
// template args here.
TRY_TO(TraverseCXXRecordHelper(D));
// Instantiations will have been visited with the primary template.
})
DEF_TRAVERSE_DECL(EnumConstantDecl, {
TRY_TO(TraverseStmt(D->getInitExpr()));
})
DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, {
// Like UnresolvedUsingTypenameDecl, but without the 'typename':
// template <class T> Class A : public Base<T> { using Base<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
return true;
}
DEF_TRAVERSE_DECL(FieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
else if (D->hasInClassInitializer())
TRY_TO(TraverseStmt(D->getInClassInitializer()));
})
DEF_TRAVERSE_DECL(MSPropertyDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
})
DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
DEF_TRAVERSE_DECL(ObjCIvarDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
// If we're an explicit template specialization, iterate over the
// template args that were explicitly specified. If we were doing
// this in typing order, we'd do it between the return type and
// the function args, but both are handled by the FunctionTypeLoc
// above, so we have to choose one side. I've decided to do before.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared &&
FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
// A specialization might not have explicit template arguments if it has
// a templated return type and concrete arguments.
if (const ASTTemplateArgumentListInfo *TALI =
FTSI->TemplateArgumentsAsWritten) {
TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(),
TALI->NumTemplateArgs));
}
}
}
// Visit the function type itself, which can be either
// FunctionNoProtoType or FunctionProtoType, or a typedef. This
// also covers the return type and the function parameters,
// including exception specifications.
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
// Constructor initializers.
for (CXXConstructorDecl::init_iterator I = Ctor->init_begin(),
E = Ctor->init_end();
I != E; ++I) {
TRY_TO(TraverseConstructorInitializer(*I));
}
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody())); // Function body.
}
return true;
}
DEF_TRAVERSE_DECL(FunctionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXMethodDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXConstructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
// CXXConversionDecl is the declaration of a type conversion operator.
// It's not a cast expression.
DEF_TRAVERSE_DECL(CXXConversionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXDestructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
return TraverseFunctionHelper(D);
})
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) {
TRY_TO(TraverseDeclaratorHelper(D));
// Default params are taken care of when we traverse the ParmVarDecl.
if (!isa<ParmVarDecl>(D))
TRY_TO(TraverseStmt(D->getInit()));
return true;
}
DEF_TRAVERSE_DECL(VarDecl, {
TRY_TO(TraverseVarHelper(D));
})
DEF_TRAVERSE_DECL(VarTemplateSpecializationDecl, {
// For implicit instantiations, we don't want to
// recurse at all, since the instatiated class isn't written in
// the source code anywhere.
if (TypeSourceInfo *TSI = D->getTypeAsWritten())
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
if (!getDerived().shouldVisitTemplateInstantiations() &&
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
// Returning from here skips traversing the
// declaration context of the VarTemplateSpecializationDecl
// (embedded in the DEF_TRAVERSE_DECL() macro).
return true;
})
DEF_TRAVERSE_DECL(VarTemplatePartialSpecializationDecl,
{
// The partial specialization.
if (TemplateParameterList *TPL = D->getTemplateParameters()) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
// The args that remains unspecialized.
TRY_TO(TraverseTemplateArgumentLocsHelper(
D->getTemplateArgsAsWritten()->getTemplateArgs(),
D->getTemplateArgsAsWritten()->NumTemplateArgs));
// Don't need the VarTemplatePartialSpecializationHelper, even
// though that's our parent class -- we already visit all the
// template args here.
TRY_TO(TraverseVarHelper(D));
// Instantiations will have been visited with the primary
// template.
})
DEF_TRAVERSE_DECL(ImplicitParamDecl, {
TRY_TO(TraverseVarHelper(D));
})
DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, {
// A non-type template parameter, e.g. "S" in template<int S> class Foo ...
TRY_TO(TraverseDeclaratorHelper(D));
TRY_TO(TraverseStmt(D->getDefaultArgument()));
})
DEF_TRAVERSE_DECL(ParmVarDecl, {
TRY_TO(TraverseVarHelper(D));
if (D->hasDefaultArg() &&
D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
if (D->hasDefaultArg() &&
!D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getDefaultArg()));
})
#undef DEF_TRAVERSE_DECL
// ----------------- Stmt traversal -----------------
//
// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating
// over the children defined in children() (every stmt defines these,
// though sometimes the range is empty). Each individual Traverse*
// method only needs to worry about children other than those. To see
// what children() does for a given class, see, e.g.,
// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
// This macro makes available a variable S, the passed-in stmt.
#define DEF_TRAVERSE_STMT(STMT, CODE) \
template<typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##STMT (STMT *S) { \
TRY_TO(WalkUpFrom##STMT(S)); \
StmtQueueAction StmtQueue(*this); \
{ CODE; } \
for (Stmt::child_range range = S->children(); range; ++range) { \
StmtQueue.queue(*range); \
} \
return true; \
}
DEF_TRAVERSE_STMT(GCCAsmStmt, {
StmtQueue.queue(S->getAsmString());
for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) {
StmtQueue.queue(S->getInputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) {
StmtQueue.queue(S->getOutputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) {
StmtQueue.queue(S->getClobberStringLiteral(I));
}
// children() iterates over inputExpr and outputExpr.
})
DEF_TRAVERSE_STMT(MSAsmStmt, {
// FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once
// added this needs to be implemented.
})
DEF_TRAVERSE_STMT(CXXCatchStmt, {
TRY_TO(TraverseDecl(S->getExceptionDecl()));
// children() iterates over the handler block.
})
DEF_TRAVERSE_STMT(DeclStmt, {
for (DeclStmt::decl_iterator I = S->decl_begin(), E = S->decl_end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
// Suppress the default iteration over children() by
// returning. Here's why: A DeclStmt looks like 'type var [=
// initializer]'. The decls above already traverse over the
// initializers, so we don't have to do it again (which
// children() would do).
return true;
})
// These non-expr stmts (most of them), do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BreakStmt, { })
DEF_TRAVERSE_STMT(CXXTryStmt, { })
DEF_TRAVERSE_STMT(CaseStmt, { })
DEF_TRAVERSE_STMT(CompoundStmt, { })
DEF_TRAVERSE_STMT(ContinueStmt, { })
DEF_TRAVERSE_STMT(DefaultStmt, { })
DEF_TRAVERSE_STMT(DoStmt, { })
DEF_TRAVERSE_STMT(ForStmt, { })
DEF_TRAVERSE_STMT(GotoStmt, { })
DEF_TRAVERSE_STMT(IfStmt, { })
DEF_TRAVERSE_STMT(IndirectGotoStmt, { })
DEF_TRAVERSE_STMT(LabelStmt, { })
DEF_TRAVERSE_STMT(AttributedStmt, { })
DEF_TRAVERSE_STMT(NullStmt, { })
DEF_TRAVERSE_STMT(ObjCAtCatchStmt, { })
DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, { })
DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, { })
DEF_TRAVERSE_STMT(ObjCAtThrowStmt, { })
DEF_TRAVERSE_STMT(ObjCAtTryStmt, { })
DEF_TRAVERSE_STMT(ObjCForCollectionStmt, { })
DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, { })
DEF_TRAVERSE_STMT(CXXForRangeStmt, { })
DEF_TRAVERSE_STMT(MSDependentExistsStmt, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
})
DEF_TRAVERSE_STMT(ReturnStmt, { })
DEF_TRAVERSE_STMT(SwitchStmt, { })
DEF_TRAVERSE_STMT(WhileStmt, { })
DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(
S->getTemplateArgs(), S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(DeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(
S->getTemplateArgs(), S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(
S->getExplicitTemplateArgs().getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(MemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(
S->getTemplateArgs(), S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(ImplicitCastExpr, {
// We don't traverse the cast type, as it's not written in the
// source code.
})
DEF_TRAVERSE_STMT(CStyleCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXConstCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXDynamicCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXStaticCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
// InitListExpr is a tricky one, because we want to do all our work on
// the syntactic form of the listexpr, but this method takes the
// semantic form by default. We can't use the macro helper because it
// calls WalkUp*() on the semantic form, before our code can convert
// to the syntactic form.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) {
if (InitListExpr *Syn = S->getSyntacticForm())
S = Syn;
TRY_TO(WalkUpFromInitListExpr(S));
StmtQueueAction StmtQueue(*this);
// All we need are the default actions. FIXME: use a helper function.
for (Stmt::child_range range = S->children(); range; ++range) {
StmtQueue.queue(*range);
}
return true;
}
// GenericSelectionExpr is a special case because the types and expressions
// are interleaved. We also need to watch out for null types (default
// generic associations).
template<typename Derived>
bool RecursiveASTVisitor<Derived>::
TraverseGenericSelectionExpr(GenericSelectionExpr *S) {
TRY_TO(WalkUpFromGenericSelectionExpr(S));
StmtQueueAction StmtQueue(*this);
StmtQueue.queue(S->getControllingExpr());
for (unsigned i = 0; i != S->getNumAssocs(); ++i) {
if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i))
TRY_TO(TraverseTypeLoc(TS->getTypeLoc()));
StmtQueue.queue(S->getAssocExpr(i));
}
return true;
}
// PseudoObjectExpr is a special case because of the wierdness with
// syntactic expressions and opaque values.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::
TraversePseudoObjectExpr(PseudoObjectExpr *S) {
TRY_TO(WalkUpFromPseudoObjectExpr(S));
StmtQueueAction StmtQueue(*this);
StmtQueue.queue(S->getSyntacticForm());
for (PseudoObjectExpr::semantics_iterator
i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) {
Expr *sub = *i;
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
sub = OVE->getSourceExpr();
StmtQueue.queue(sub);
}
return true;
}
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
// This is called for code like 'return T()' where T is a built-in
// (i.e. non-class) type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXNewExpr, {
// The child-iterator will pick up the other arguments.
TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(OffsetOfExpr, {
// The child-iterator will pick up the expression representing
// the field.
// FIMXE: for code like offsetof(Foo, a.b.c), should we get
// making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c?
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isArgumentType())
TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTypeidExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXUuidofExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(UnaryTypeTraitExpr, {
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(BinaryTypeTraitExpr, {
TRY_TO(TraverseTypeLoc(S->getLhsTypeSourceInfo()->getTypeLoc()));
TRY_TO(TraverseTypeLoc(S->getRhsTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(TypeTraitExpr, {
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, {
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ExpressionTraitExpr, {
StmtQueue.queue(S->getQueriedExpression());
})
DEF_TRAVERSE_STMT(VAArgExpr, {
// The child-iterator will pick up the expression argument.
TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, {
// This is called for code like 'return T()' where T is a class type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// Walk only the visible parts of lambda expressions.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) {
TRY_TO(WalkUpFromLambdaExpr(S));
for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(),
CEnd = S->explicit_capture_end();
C != CEnd; ++C) {
TRY_TO(TraverseLambdaCapture(*C));
}
if (S->hasExplicitParameters() || S->hasExplicitResultType()) {
TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
if (S->hasExplicitParameters() && S->hasExplicitResultType()) {
// Visit the whole type.
TRY_TO(TraverseTypeLoc(TL));
} else if (FunctionProtoTypeLoc Proto = TL.getAs<FunctionProtoTypeLoc>()) {
if (S->hasExplicitParameters()) {
// Visit parameters.
for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) {
TRY_TO(TraverseDecl(Proto.getArg(I)));
}
} else {
TRY_TO(TraverseTypeLoc(Proto.getResultLoc()));
}
}
}
StmtQueueAction StmtQueue(*this);
StmtQueue.queue(S->getBody());
return true;
}
DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, {
// This is called for code like 'T()', where T is a template argument.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// These expressions all might take explicit template arguments.
// We traverse those if so. FIXME: implement these.
DEF_TRAVERSE_STMT(CXXConstructExpr, { })
DEF_TRAVERSE_STMT(CallExpr, { })
DEF_TRAVERSE_STMT(CXXMemberCallExpr, { })
// These exprs (most of them), do not need any action except iterating
// over the children.
DEF_TRAVERSE_STMT(AddrLabelExpr, { })
DEF_TRAVERSE_STMT(ArraySubscriptExpr, { })
DEF_TRAVERSE_STMT(BlockExpr, {
TRY_TO(TraverseDecl(S->getBlockDecl()));
return true; // no child statements to loop through.
})
DEF_TRAVERSE_STMT(ChooseExpr, { })
DEF_TRAVERSE_STMT(CompoundLiteralExpr, { })
DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, { })
DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, { })
DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { })
DEF_TRAVERSE_STMT(CXXDefaultInitExpr, { })
DEF_TRAVERSE_STMT(CXXDeleteExpr, { })
DEF_TRAVERSE_STMT(ExprWithCleanups, { })
DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, { })
DEF_TRAVERSE_STMT(CXXStdInitializerListExpr, { })
DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo())
TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc()));
if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo())
TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXThisExpr, { })
DEF_TRAVERSE_STMT(CXXThrowExpr, { })
DEF_TRAVERSE_STMT(UserDefinedLiteral, { })
DEF_TRAVERSE_STMT(DesignatedInitExpr, { })
DEF_TRAVERSE_STMT(ExtVectorElementExpr, { })
DEF_TRAVERSE_STMT(GNUNullExpr, { })
DEF_TRAVERSE_STMT(ImplicitValueInitExpr, { })
DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, { })
DEF_TRAVERSE_STMT(ObjCEncodeExpr, {
if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCIsaExpr, { })
DEF_TRAVERSE_STMT(ObjCIvarRefExpr, { })
DEF_TRAVERSE_STMT(ObjCMessageExpr, {
if (TypeSourceInfo *TInfo = S->getClassReceiverTypeInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { })
DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, { })
DEF_TRAVERSE_STMT(ObjCProtocolExpr, { })
DEF_TRAVERSE_STMT(ObjCSelectorExpr, { })
DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, { })
DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ParenExpr, { })
DEF_TRAVERSE_STMT(ParenListExpr, { })
DEF_TRAVERSE_STMT(PredefinedExpr, { })
DEF_TRAVERSE_STMT(ShuffleVectorExpr, { })
DEF_TRAVERSE_STMT(ConvertVectorExpr, { })
DEF_TRAVERSE_STMT(StmtExpr, { })
DEF_TRAVERSE_STMT(UnresolvedLookupExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(UnresolvedMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(MSPropertyRefExpr, {})
DEF_TRAVERSE_STMT(SEHTryStmt, {})
DEF_TRAVERSE_STMT(SEHExceptStmt, {})
DEF_TRAVERSE_STMT(SEHFinallyStmt,{})
DEF_TRAVERSE_STMT(CapturedStmt, {
TRY_TO(TraverseDecl(S->getCapturedDecl()));
})
DEF_TRAVERSE_STMT(CXXOperatorCallExpr, { })
DEF_TRAVERSE_STMT(OpaqueValueExpr, { })
DEF_TRAVERSE_STMT(CUDAKernelCallExpr, { })
// These operators (all of them) do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BinaryConditionalOperator, { })
DEF_TRAVERSE_STMT(ConditionalOperator, { })
DEF_TRAVERSE_STMT(UnaryOperator, { })
DEF_TRAVERSE_STMT(BinaryOperator, { })
DEF_TRAVERSE_STMT(CompoundAssignOperator, { })
DEF_TRAVERSE_STMT(CXXNoexceptExpr, { })
DEF_TRAVERSE_STMT(PackExpansionExpr, { })
DEF_TRAVERSE_STMT(SizeOfPackExpr, { })
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, { })
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, { })
DEF_TRAVERSE_STMT(FunctionParmPackExpr, { })
DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { })
DEF_TRAVERSE_STMT(AtomicExpr, { })
// These literals (all of them) do not need any action.
DEF_TRAVERSE_STMT(IntegerLiteral, { })
DEF_TRAVERSE_STMT(CharacterLiteral, { })
DEF_TRAVERSE_STMT(FloatingLiteral, { })
DEF_TRAVERSE_STMT(ImaginaryLiteral, { })
DEF_TRAVERSE_STMT(StringLiteral, { })
DEF_TRAVERSE_STMT(ObjCStringLiteral, { })
DEF_TRAVERSE_STMT(ObjCBoxedExpr, { })
DEF_TRAVERSE_STMT(ObjCArrayLiteral, { })
DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, { })
// Traverse OpenCL: AsType, Convert.
DEF_TRAVERSE_STMT(AsTypeExpr, { })
// OpenMP directives.
DEF_TRAVERSE_STMT(OMPParallelDirective, {
ArrayRef<OMPClause *> Clauses = S->clauses();
for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
I != E; ++I)
if (!TraverseOMPClause(*I)) return false;
})
// OpenMP clauses.
template<typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPClause(OMPClause *C) {
if (!C) return true;
switch (C->getClauseKind()) {
#define OPENMP_CLAUSE(Name, Class) \
case OMPC_##Name: \
return getDerived().Visit##Class(static_cast<Class*>(C));
#include "clang/Basic/OpenMPKinds.def"
default: break;
}
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDefaultClause(OMPDefaultClause *C) {
return true;
}
template<typename Derived>
template<typename T>
void RecursiveASTVisitor<Derived>::VisitOMPClauseList(T *Node) {
for (typename T::varlist_iterator I = Node->varlist_begin(),
E = Node->varlist_end();
I != E; ++I)
TraverseStmt(*I);
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPPrivateClause(OMPPrivateClause *C) {
VisitOMPClauseList(C);
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPFirstprivateClause(
OMPFirstprivateClause *C) {
VisitOMPClauseList(C);
return true;
}
template<typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSharedClause(OMPSharedClause *C) {
VisitOMPClauseList(C);
return true;
}
// FIXME: look at the following tricky-seeming exprs to see if we
// need to recurse on anything. These are ones that have methods
// returning decls or qualtypes or nestednamespecifier -- though I'm
// not sure if they own them -- or just seemed very complicated, or
// had lots of sub-types to explore.
//
// VisitOverloadExpr and its children: recurse on template args? etc?
// FIXME: go through all the stmts and exprs again, and see which of them
// create new types, and recurse on the types (TypeLocs?) of those.
// Candidates:
//
// http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html
// http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html
// http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html
// Every class that has getQualifier.
#undef DEF_TRAVERSE_STMT
#undef TRY_TO
} // end namespace cxindex
} // end namespace clang
#endif // LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H