llvm-project/lld/ELF/Target.h

107 lines
3.8 KiB
C
Raw Normal View History

//===- Target.h -------------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_TARGET_H
#define LLD_ELF_TARGET_H
#include "InputSection.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/ELF.h"
#include <memory>
namespace lld {
2016-02-28 08:25:54 +08:00
namespace elf {
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
class InputFile;
class SymbolBody;
class TargetInfo {
public:
uint64_t getVAStart() const;
virtual bool isTlsInitialExecRel(uint32_t Type) const;
virtual bool isTlsLocalDynamicRel(uint32_t Type) const;
virtual bool isTlsGlobalDynamicRel(uint32_t Type) const;
virtual uint32_t getDynRel(uint32_t Type) const { return Type; }
virtual uint32_t getTlsGotRel(uint32_t Type) const { return TlsGotRel; }
virtual void writeGotPltHeader(uint8_t *Buf) const {}
virtual void writeGotPlt(uint8_t *Buf, uint64_t Plt) const {};
virtual uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const;
2016-01-29 11:00:30 +08:00
// If lazy binding is supported, the first entry of the PLT has code
// to call the dynamic linker to resolve PLT entries the first time
// they are called. This function writes that code.
virtual void writePltZero(uint8_t *Buf) const {}
2016-01-29 11:00:30 +08:00
virtual void writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {}
2016-01-08 10:41:35 +08:00
// Returns true if a relocation is just a hint for linker to make for example
// some code optimization. Such relocations should not be handled as a regular
// ones and lead to dynamic relocation creation etc.
virtual bool isHintRel(uint32_t Type) const;
2016-01-08 10:41:35 +08:00
// Returns true if a relocation is relative to the place being relocated,
// such as relocations used for PC-relative instructions. Such relocations
// need not be fixed up if an image is loaded to a different address than
// the link-time address. So we don't have to emit a relocation for the
// dynamic linker if isRelRelative returns true.
virtual bool isRelRelative(uint32_t Type) const;
2016-01-08 10:41:35 +08:00
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
virtual bool needsThunk(uint32_t Type, const InputFile &File,
const SymbolBody &S) const;
virtual void writeThunk(uint8_t *Buf, uint64_t S) const {}
virtual RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const = 0;
virtual void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const = 0;
virtual ~TargetInfo();
unsigned TlsGdToLeSkip = 1;
unsigned PageSize = 4096;
// On freebsd x86_64 the first page cannot be mmaped.
// On linux that is controled by vm.mmap_min_addr. At least on some x86_64
// installs that is 65536, so the first 15 pages cannot be used.
// Given that, the smallest value that can be used in here is 0x10000.
// If using 2MB pages, the smallest page aligned address that works is
// 0x200000, but it looks like every OS uses 4k pages for executables.
uint64_t VAStart = 0x10000;
uint32_t CopyRel;
uint32_t GotRel;
uint32_t PltRel;
uint32_t RelativeRel;
uint32_t IRelativeRel;
uint32_t TlsGotRel = 0;
uint32_t TlsModuleIndexRel;
uint32_t TlsOffsetRel;
unsigned PltEntrySize = 8;
unsigned PltZeroSize = 0;
unsigned GotPltHeaderEntriesNum = 3;
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
uint32_t ThunkSize = 0;
bool UseLazyBinding = false;
virtual void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const;
virtual void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const;
virtual void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const;
virtual void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const;
};
uint64_t getPPC64TocBase();
const unsigned MipsGPOffset = 0x7ff0;
extern TargetInfo *Target;
TargetInfo *createTarget();
}
}
#endif