2006-12-05 02:06:35 +08:00
|
|
|
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-30 03:59:25 +08:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2006-12-05 02:06:35 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
2012-06-22 13:14:59 +08:00
|
|
|
///
|
|
|
|
/// \file
|
|
|
|
/// \brief Implements semantic analysis for C++ expressions.
|
|
|
|
///
|
|
|
|
//===----------------------------------------------------------------------===//
|
2006-12-05 02:06:35 +08:00
|
|
|
|
2010-08-26 06:03:47 +08:00
|
|
|
#include "clang/Sema/SemaInternal.h"
|
2012-12-04 17:13:33 +08:00
|
|
|
#include "TypeLocBuilder.h"
|
2007-08-25 22:02:58 +08:00
|
|
|
#include "clang/AST/ASTContext.h"
|
2009-10-07 01:59:45 +08:00
|
|
|
#include "clang/AST/CXXInheritance.h"
|
2012-12-04 17:13:33 +08:00
|
|
|
#include "clang/AST/CharUnits.h"
|
2010-08-24 15:21:54 +08:00
|
|
|
#include "clang/AST/DeclObjC.h"
|
2013-01-17 09:17:56 +08:00
|
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
2009-08-27 06:59:12 +08:00
|
|
|
#include "clang/AST/ExprCXX.h"
|
2010-06-17 02:56:04 +08:00
|
|
|
#include "clang/AST/ExprObjC.h"
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
2010-02-25 06:38:50 +08:00
|
|
|
#include "clang/AST/TypeLoc.h"
|
2009-08-27 06:59:12 +08:00
|
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
2008-12-04 04:26:15 +08:00
|
|
|
#include "clang/Basic/TargetInfo.h"
|
2009-08-27 06:59:12 +08:00
|
|
|
#include "clang/Lex/Preprocessor.h"
|
2012-12-04 17:13:33 +08:00
|
|
|
#include "clang/Sema/DeclSpec.h"
|
|
|
|
#include "clang/Sema/Initialization.h"
|
|
|
|
#include "clang/Sema/Lookup.h"
|
|
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
|
|
#include "clang/Sema/Scope.h"
|
|
|
|
#include "clang/Sema/ScopeInfo.h"
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
#include "clang/Sema/SemaLambda.h"
|
2012-12-04 17:13:33 +08:00
|
|
|
#include "clang/Sema/TemplateDeduction.h"
|
2012-02-16 20:59:47 +08:00
|
|
|
#include "llvm/ADT/APInt.h"
|
2008-12-23 08:26:44 +08:00
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2011-05-01 15:23:17 +08:00
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
2006-12-05 02:06:35 +08:00
|
|
|
using namespace clang;
|
2010-08-25 13:32:35 +08:00
|
|
|
using namespace sema;
|
2006-12-05 02:06:35 +08:00
|
|
|
|
2013-03-26 09:15:19 +08:00
|
|
|
/// \brief Handle the result of the special case name lookup for inheriting
|
|
|
|
/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
|
|
|
|
/// constructor names in member using declarations, even if 'X' is not the
|
|
|
|
/// name of the corresponding type.
|
|
|
|
ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
|
|
|
|
SourceLocation NameLoc,
|
|
|
|
IdentifierInfo &Name) {
|
|
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
|
|
|
|
|
|
|
// Convert the nested-name-specifier into a type.
|
|
|
|
QualType Type;
|
|
|
|
switch (NNS->getKind()) {
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
|
|
Type = QualType(NNS->getAsType(), 0);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case NestedNameSpecifier::Identifier:
|
|
|
|
// Strip off the last layer of the nested-name-specifier and build a
|
|
|
|
// typename type for it.
|
|
|
|
assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
|
|
|
|
Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
|
|
|
|
NNS->getAsIdentifier());
|
|
|
|
break;
|
|
|
|
|
|
|
|
case NestedNameSpecifier::Global:
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
|
|
llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
|
|
|
|
}
|
|
|
|
|
|
|
|
// This reference to the type is located entirely at the location of the
|
|
|
|
// final identifier in the qualified-id.
|
|
|
|
return CreateParsedType(Type,
|
|
|
|
Context.getTrivialTypeSourceInfo(Type, NameLoc));
|
|
|
|
}
|
|
|
|
|
2010-08-24 13:47:05 +08:00
|
|
|
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
|
2011-01-27 15:10:08 +08:00
|
|
|
IdentifierInfo &II,
|
2010-08-24 13:47:05 +08:00
|
|
|
SourceLocation NameLoc,
|
|
|
|
Scope *S, CXXScopeSpec &SS,
|
|
|
|
ParsedType ObjectTypePtr,
|
|
|
|
bool EnteringContext) {
|
2010-02-17 03:09:40 +08:00
|
|
|
// Determine where to perform name lookup.
|
|
|
|
|
|
|
|
// FIXME: This area of the standard is very messy, and the current
|
|
|
|
// wording is rather unclear about which scopes we search for the
|
|
|
|
// destructor name; see core issues 399 and 555. Issue 399 in
|
|
|
|
// particular shows where the current description of destructor name
|
|
|
|
// lookup is completely out of line with existing practice, e.g.,
|
|
|
|
// this appears to be ill-formed:
|
|
|
|
//
|
|
|
|
// namespace N {
|
|
|
|
// template <typename T> struct S {
|
|
|
|
// ~S();
|
|
|
|
// };
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// void f(N::S<int>* s) {
|
|
|
|
// s->N::S<int>::~S();
|
|
|
|
// }
|
|
|
|
//
|
2010-02-23 08:15:22 +08:00
|
|
|
// See also PR6358 and PR6359.
|
2010-07-08 07:17:38 +08:00
|
|
|
// For this reason, we're currently only doing the C++03 version of this
|
|
|
|
// code; the C++0x version has to wait until we get a proper spec.
|
2010-02-17 03:09:40 +08:00
|
|
|
QualType SearchType;
|
|
|
|
DeclContext *LookupCtx = 0;
|
|
|
|
bool isDependent = false;
|
|
|
|
bool LookInScope = false;
|
|
|
|
|
|
|
|
// If we have an object type, it's because we are in a
|
|
|
|
// pseudo-destructor-expression or a member access expression, and
|
|
|
|
// we know what type we're looking for.
|
|
|
|
if (ObjectTypePtr)
|
|
|
|
SearchType = GetTypeFromParser(ObjectTypePtr);
|
|
|
|
|
|
|
|
if (SS.isSet()) {
|
2014-01-03 21:56:08 +08:00
|
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-23 08:15:22 +08:00
|
|
|
bool AlreadySearched = false;
|
|
|
|
bool LookAtPrefix = true;
|
2010-07-08 07:17:38 +08:00
|
|
|
// C++ [basic.lookup.qual]p6:
|
2011-01-27 15:10:08 +08:00
|
|
|
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
|
2010-07-08 07:17:38 +08:00
|
|
|
// the type-names are looked up as types in the scope designated by the
|
|
|
|
// nested-name-specifier. In a qualified-id of the form:
|
2011-01-27 15:09:49 +08:00
|
|
|
//
|
|
|
|
// ::[opt] nested-name-specifier ~ class-name
|
2010-02-17 03:09:40 +08:00
|
|
|
//
|
2010-07-08 07:17:38 +08:00
|
|
|
// where the nested-name-specifier designates a namespace scope, and in
|
|
|
|
// a qualified-id of the form:
|
2010-02-17 03:09:40 +08:00
|
|
|
//
|
2011-01-27 15:09:49 +08:00
|
|
|
// ::opt nested-name-specifier class-name :: ~ class-name
|
2010-02-17 03:09:40 +08:00
|
|
|
//
|
2011-01-27 15:10:08 +08:00
|
|
|
// the class-names are looked up as types in the scope designated by
|
2010-07-08 07:17:38 +08:00
|
|
|
// the nested-name-specifier.
|
2010-02-23 08:15:22 +08:00
|
|
|
//
|
2010-07-08 07:17:38 +08:00
|
|
|
// Here, we check the first case (completely) and determine whether the
|
2011-01-27 15:10:08 +08:00
|
|
|
// code below is permitted to look at the prefix of the
|
2010-07-08 07:17:38 +08:00
|
|
|
// nested-name-specifier.
|
|
|
|
DeclContext *DC = computeDeclContext(SS, EnteringContext);
|
|
|
|
if (DC && DC->isFileContext()) {
|
|
|
|
AlreadySearched = true;
|
|
|
|
LookupCtx = DC;
|
|
|
|
isDependent = false;
|
|
|
|
} else if (DC && isa<CXXRecordDecl>(DC))
|
|
|
|
LookAtPrefix = false;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-07-08 07:17:38 +08:00
|
|
|
// The second case from the C++03 rules quoted further above.
|
2010-02-23 08:15:22 +08:00
|
|
|
NestedNameSpecifier *Prefix = 0;
|
|
|
|
if (AlreadySearched) {
|
|
|
|
// Nothing left to do.
|
|
|
|
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
|
|
|
|
CXXScopeSpec PrefixSS;
|
2011-02-26 00:07:42 +08:00
|
|
|
PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
|
2010-02-23 08:15:22 +08:00
|
|
|
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
|
|
|
|
isDependent = isDependentScopeSpecifier(PrefixSS);
|
|
|
|
} else if (ObjectTypePtr) {
|
2010-02-17 03:09:40 +08:00
|
|
|
LookupCtx = computeDeclContext(SearchType);
|
|
|
|
isDependent = SearchType->isDependentType();
|
|
|
|
} else {
|
|
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
2010-02-23 08:15:22 +08:00
|
|
|
isDependent = LookupCtx && LookupCtx->isDependentContext();
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 12:46:04 +08:00
|
|
|
LookInScope = false;
|
2010-02-17 03:09:40 +08:00
|
|
|
} else if (ObjectTypePtr) {
|
|
|
|
// C++ [basic.lookup.classref]p3:
|
|
|
|
// If the unqualified-id is ~type-name, the type-name is looked up
|
|
|
|
// in the context of the entire postfix-expression. If the type T
|
|
|
|
// of the object expression is of a class type C, the type-name is
|
|
|
|
// also looked up in the scope of class C. At least one of the
|
|
|
|
// lookups shall find a name that refers to (possibly
|
|
|
|
// cv-qualified) T.
|
|
|
|
LookupCtx = computeDeclContext(SearchType);
|
|
|
|
isDependent = SearchType->isDependentType();
|
2011-01-27 15:10:08 +08:00
|
|
|
assert((isDependent || !SearchType->isIncompleteType()) &&
|
2010-02-17 03:09:40 +08:00
|
|
|
"Caller should have completed object type");
|
|
|
|
|
|
|
|
LookInScope = true;
|
|
|
|
} else {
|
|
|
|
// Perform lookup into the current scope (only).
|
|
|
|
LookInScope = true;
|
|
|
|
}
|
|
|
|
|
2011-03-05 06:32:08 +08:00
|
|
|
TypeDecl *NonMatchingTypeDecl = 0;
|
2010-02-17 03:09:40 +08:00
|
|
|
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
|
|
|
|
for (unsigned Step = 0; Step != 2; ++Step) {
|
|
|
|
// Look for the name first in the computed lookup context (if we
|
2011-03-05 06:32:08 +08:00
|
|
|
// have one) and, if that fails to find a match, in the scope (if
|
2010-02-17 03:09:40 +08:00
|
|
|
// we're allowed to look there).
|
|
|
|
Found.clear();
|
|
|
|
if (Step == 0 && LookupCtx)
|
|
|
|
LookupQualifiedName(Found, LookupCtx);
|
2010-02-25 09:56:36 +08:00
|
|
|
else if (Step == 1 && LookInScope && S)
|
2010-02-17 03:09:40 +08:00
|
|
|
LookupName(Found, S);
|
|
|
|
else
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// FIXME: Should we be suppressing ambiguities here?
|
|
|
|
if (Found.isAmbiguous())
|
2010-08-24 13:47:05 +08:00
|
|
|
return ParsedType();
|
2010-02-17 03:09:40 +08:00
|
|
|
|
|
|
|
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
|
|
|
|
QualType T = Context.getTypeDeclType(Type);
|
|
|
|
|
|
|
|
if (SearchType.isNull() || SearchType->isDependentType() ||
|
|
|
|
Context.hasSameUnqualifiedType(T, SearchType)) {
|
|
|
|
// We found our type!
|
|
|
|
|
2014-01-22 08:30:17 +08:00
|
|
|
return CreateParsedType(T,
|
|
|
|
Context.getTrivialTypeSourceInfo(T, NameLoc));
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
2011-03-08 16:13:22 +08:00
|
|
|
|
2011-03-05 06:32:08 +08:00
|
|
|
if (!SearchType.isNull())
|
|
|
|
NonMatchingTypeDecl = Type;
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If the name that we found is a class template name, and it is
|
|
|
|
// the same name as the template name in the last part of the
|
|
|
|
// nested-name-specifier (if present) or the object type, then
|
|
|
|
// this is the destructor for that class.
|
|
|
|
// FIXME: This is a workaround until we get real drafting for core
|
2011-01-27 15:10:08 +08:00
|
|
|
// issue 399, for which there isn't even an obvious direction.
|
2010-02-17 03:09:40 +08:00
|
|
|
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
|
|
|
|
QualType MemberOfType;
|
|
|
|
if (SS.isSet()) {
|
|
|
|
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
|
|
|
|
// Figure out the type of the context, if it has one.
|
2010-03-10 11:28:59 +08:00
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
|
|
|
|
MemberOfType = Context.getTypeDeclType(Record);
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (MemberOfType.isNull())
|
|
|
|
MemberOfType = SearchType;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-17 03:09:40 +08:00
|
|
|
if (MemberOfType.isNull())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// We're referring into a class template specialization. If the
|
|
|
|
// class template we found is the same as the template being
|
|
|
|
// specialized, we found what we are looking for.
|
|
|
|
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
|
|
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
|
|
|
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
|
|
|
|
Template->getCanonicalDecl())
|
2014-01-22 08:30:17 +08:00
|
|
|
return CreateParsedType(
|
|
|
|
MemberOfType,
|
|
|
|
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-17 03:09:40 +08:00
|
|
|
// We're referring to an unresolved class template
|
|
|
|
// specialization. Determine whether we class template we found
|
|
|
|
// is the same as the template being specialized or, if we don't
|
|
|
|
// know which template is being specialized, that it at least
|
|
|
|
// has the same name.
|
|
|
|
if (const TemplateSpecializationType *SpecType
|
|
|
|
= MemberOfType->getAs<TemplateSpecializationType>()) {
|
|
|
|
TemplateName SpecName = SpecType->getTemplateName();
|
|
|
|
|
|
|
|
// The class template we found is the same template being
|
|
|
|
// specialized.
|
|
|
|
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
|
|
|
|
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
|
2014-01-22 08:30:17 +08:00
|
|
|
return CreateParsedType(
|
|
|
|
MemberOfType,
|
|
|
|
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
|
2010-02-17 03:09:40 +08:00
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The class template we found has the same name as the
|
|
|
|
// (dependent) template name being specialized.
|
2011-01-27 15:10:08 +08:00
|
|
|
if (DependentTemplateName *DepTemplate
|
2010-02-17 03:09:40 +08:00
|
|
|
= SpecName.getAsDependentTemplateName()) {
|
|
|
|
if (DepTemplate->isIdentifier() &&
|
|
|
|
DepTemplate->getIdentifier() == Template->getIdentifier())
|
2014-01-22 08:30:17 +08:00
|
|
|
return CreateParsedType(
|
|
|
|
MemberOfType,
|
|
|
|
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
|
2010-02-17 03:09:40 +08:00
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (isDependent) {
|
|
|
|
// We didn't find our type, but that's okay: it's dependent
|
|
|
|
// anyway.
|
2011-03-01 06:42:13 +08:00
|
|
|
|
|
|
|
// FIXME: What if we have no nested-name-specifier?
|
|
|
|
QualType T = CheckTypenameType(ETK_None, SourceLocation(),
|
|
|
|
SS.getWithLocInContext(Context),
|
|
|
|
II, NameLoc);
|
2010-08-24 13:47:05 +08:00
|
|
|
return ParsedType::make(T);
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
|
|
|
|
2011-03-05 06:32:08 +08:00
|
|
|
if (NonMatchingTypeDecl) {
|
|
|
|
QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
|
|
|
|
Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
|
|
|
|
<< T << SearchType;
|
|
|
|
Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
|
|
|
|
<< T;
|
|
|
|
} else if (ObjectTypePtr)
|
|
|
|
Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
|
2011-01-27 15:10:08 +08:00
|
|
|
<< &II;
|
2013-03-21 01:42:13 +08:00
|
|
|
else {
|
|
|
|
SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
|
|
|
|
diag::err_destructor_class_name);
|
|
|
|
if (S) {
|
2013-10-09 01:08:03 +08:00
|
|
|
const DeclContext *Ctx = S->getEntity();
|
2013-03-21 01:42:13 +08:00
|
|
|
if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
|
|
|
|
DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
|
|
|
|
Class->getNameAsString());
|
|
|
|
}
|
|
|
|
}
|
2010-02-17 03:09:40 +08:00
|
|
|
|
2010-08-24 13:47:05 +08:00
|
|
|
return ParsedType();
|
2010-02-17 03:09:40 +08:00
|
|
|
}
|
|
|
|
|
2011-12-09 00:13:53 +08:00
|
|
|
ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
|
2011-12-12 12:13:55 +08:00
|
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
|
2011-12-09 00:13:53 +08:00
|
|
|
return ParsedType();
|
|
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
|
|
|
|
&& "only get destructor types from declspecs");
|
|
|
|
QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
|
|
|
|
QualType SearchType = GetTypeFromParser(ObjectType);
|
|
|
|
if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
|
|
|
|
return ParsedType::make(T);
|
|
|
|
}
|
|
|
|
|
|
|
|
Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
|
|
|
|
<< T << SearchType;
|
|
|
|
return ParsedType();
|
|
|
|
}
|
|
|
|
|
2013-12-05 08:58:33 +08:00
|
|
|
bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
|
|
|
|
const UnqualifiedId &Name) {
|
|
|
|
assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
|
|
|
|
|
|
|
|
if (!SS.isValid())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
switch (SS.getScopeRep()->getKind()) {
|
|
|
|
case NestedNameSpecifier::Identifier:
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
|
|
// Per C++11 [over.literal]p2, literal operators can only be declared at
|
|
|
|
// namespace scope. Therefore, this unqualified-id cannot name anything.
|
|
|
|
// Reject it early, because we have no AST representation for this in the
|
|
|
|
// case where the scope is dependent.
|
|
|
|
Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
|
|
|
|
<< SS.getScopeRep();
|
|
|
|
return true;
|
|
|
|
|
|
|
|
case NestedNameSpecifier::Global:
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm_unreachable("unknown nested name specifier kind");
|
|
|
|
}
|
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
/// \brief Build a C++ typeid expression with a type operand.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
|
2010-09-09 07:14:30 +08:00
|
|
|
SourceLocation TypeidLoc,
|
|
|
|
TypeSourceInfo *Operand,
|
|
|
|
SourceLocation RParenLoc) {
|
2010-04-27 06:37:10 +08:00
|
|
|
// C++ [expr.typeid]p4:
|
2011-01-27 15:10:08 +08:00
|
|
|
// The top-level cv-qualifiers of the lvalue expression or the type-id
|
2010-04-27 06:37:10 +08:00
|
|
|
// that is the operand of typeid are always ignored.
|
2011-01-27 15:10:08 +08:00
|
|
|
// If the type of the type-id is a class type or a reference to a class
|
2010-04-27 06:37:10 +08:00
|
|
|
// type, the class shall be completely-defined.
|
2010-06-02 14:16:02 +08:00
|
|
|
Qualifiers Quals;
|
|
|
|
QualType T
|
|
|
|
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
|
|
|
|
Quals);
|
2010-04-27 06:37:10 +08:00
|
|
|
if (T->getAs<RecordType>() &&
|
|
|
|
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
|
|
|
|
Operand,
|
|
|
|
SourceRange(TypeidLoc, RParenLoc)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Build a C++ typeid expression with an expression operand.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
|
2010-09-09 07:14:30 +08:00
|
|
|
SourceLocation TypeidLoc,
|
|
|
|
Expr *E,
|
|
|
|
SourceLocation RParenLoc) {
|
2010-04-27 06:37:10 +08:00
|
|
|
if (E && !E->isTypeDependent()) {
|
2011-10-12 07:14:30 +08:00
|
|
|
if (E->getType()->isPlaceholderType()) {
|
|
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
|
|
if (result.isInvalid()) return ExprError();
|
|
|
|
E = result.take();
|
|
|
|
}
|
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
QualType T = E->getType();
|
|
|
|
if (const RecordType *RecordT = T->getAs<RecordType>()) {
|
|
|
|
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
|
|
|
|
// C++ [expr.typeid]p3:
|
|
|
|
// [...] If the type of the expression is a class type, the class
|
|
|
|
// shall be completely-defined.
|
|
|
|
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
// C++ [expr.typeid]p3:
|
2010-07-20 12:20:21 +08:00
|
|
|
// When typeid is applied to an expression other than an glvalue of a
|
2010-04-27 06:37:10 +08:00
|
|
|
// polymorphic class type [...] [the] expression is an unevaluated
|
|
|
|
// operand. [...]
|
2012-08-14 04:08:14 +08:00
|
|
|
if (RecordD->isPolymorphic() && E->isGLValue()) {
|
2012-01-20 09:26:23 +08:00
|
|
|
// The subexpression is potentially evaluated; switch the context
|
|
|
|
// and recheck the subexpression.
|
2012-11-14 23:08:31 +08:00
|
|
|
ExprResult Result = TransformToPotentiallyEvaluated(E);
|
2012-01-20 09:26:23 +08:00
|
|
|
if (Result.isInvalid()) return ExprError();
|
|
|
|
E = Result.take();
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
|
|
|
|
// We require a vtable to query the type at run time.
|
|
|
|
MarkVTableUsed(TypeidLoc, RecordD);
|
|
|
|
}
|
2010-04-27 06:37:10 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
// C++ [expr.typeid]p4:
|
|
|
|
// [...] If the type of the type-id is a reference to a possibly
|
2011-01-27 15:10:08 +08:00
|
|
|
// cv-qualified type, the result of the typeid expression refers to a
|
|
|
|
// std::type_info object representing the cv-unqualified referenced
|
2010-04-27 06:37:10 +08:00
|
|
|
// type.
|
2010-06-02 14:16:02 +08:00
|
|
|
Qualifiers Quals;
|
|
|
|
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
|
|
|
|
if (!Context.hasSameType(T, UnqualT)) {
|
|
|
|
T = UnqualT;
|
2011-09-28 05:58:52 +08:00
|
|
|
E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
|
2010-04-27 06:37:10 +08:00
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
|
2010-08-24 07:25:46 +08:00
|
|
|
E,
|
2011-01-27 15:10:08 +08:00
|
|
|
SourceRange(TypeidLoc, RParenLoc)));
|
2010-04-27 06:37:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2008-11-11 19:37:55 +08:00
|
|
|
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
|
|
|
|
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
|
2010-04-27 06:37:10 +08:00
|
|
|
// Find the std::type_info type.
|
2011-04-01 03:29:24 +08:00
|
|
|
if (!getStdNamespace())
|
2009-03-16 01:47:39 +08:00
|
|
|
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
|
2009-08-19 09:28:28 +08:00
|
|
|
|
2010-09-09 07:14:30 +08:00
|
|
|
if (!CXXTypeInfoDecl) {
|
|
|
|
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
|
|
|
|
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
|
|
|
|
LookupQualifiedName(R, getStdNamespace());
|
|
|
|
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
|
2012-06-20 07:58:27 +08:00
|
|
|
// Microsoft's typeinfo doesn't have type_info in std but in the global
|
|
|
|
// namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
|
2014-01-14 20:51:41 +08:00
|
|
|
if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
|
2012-06-20 07:58:27 +08:00
|
|
|
LookupQualifiedName(R, Context.getTranslationUnitDecl());
|
|
|
|
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
|
|
|
|
}
|
2010-09-09 07:14:30 +08:00
|
|
|
if (!CXXTypeInfoDecl)
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-05-20 09:27:21 +08:00
|
|
|
if (!getLangOpts().RTTI) {
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
|
|
|
|
}
|
|
|
|
|
2010-09-09 07:14:30 +08:00
|
|
|
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
if (isType) {
|
|
|
|
// The operand is a type; handle it as such.
|
|
|
|
TypeSourceInfo *TInfo = 0;
|
2010-08-24 13:47:05 +08:00
|
|
|
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
|
|
|
|
&TInfo);
|
2010-04-27 06:37:10 +08:00
|
|
|
if (T.isNull())
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
if (!TInfo)
|
|
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
|
2008-11-11 19:37:55 +08:00
|
|
|
|
2010-04-27 06:37:10 +08:00
|
|
|
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
|
2009-06-23 04:57:11 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
// The operand is an expression.
|
2010-08-24 07:25:46 +08:00
|
|
|
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
|
2010-09-08 20:20:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Build a Microsoft __uuidof expression with a type operand.
|
|
|
|
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
|
|
|
|
SourceLocation TypeidLoc,
|
|
|
|
TypeSourceInfo *Operand,
|
|
|
|
SourceLocation RParenLoc) {
|
2010-12-27 09:32:00 +08:00
|
|
|
if (!Operand->getType()->isDependentType()) {
|
2013-09-07 14:59:46 +08:00
|
|
|
bool HasMultipleGUIDs = false;
|
|
|
|
if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
|
|
|
|
&HasMultipleGUIDs)) {
|
|
|
|
if (HasMultipleGUIDs)
|
|
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
|
|
|
|
else
|
|
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
|
|
|
|
}
|
2010-12-27 09:32:00 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-09-08 20:20:18 +08:00
|
|
|
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
|
|
|
|
Operand,
|
|
|
|
SourceRange(TypeidLoc, RParenLoc)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Build a Microsoft __uuidof expression with an expression operand.
|
|
|
|
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
|
|
|
|
SourceLocation TypeidLoc,
|
|
|
|
Expr *E,
|
|
|
|
SourceLocation RParenLoc) {
|
2010-12-27 09:32:00 +08:00
|
|
|
if (!E->getType()->isDependentType()) {
|
2013-09-07 14:59:46 +08:00
|
|
|
bool HasMultipleGUIDs = false;
|
|
|
|
if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
|
|
|
|
!E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
|
|
if (HasMultipleGUIDs)
|
|
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
|
|
|
|
else
|
|
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
|
|
|
|
}
|
2010-12-27 09:32:00 +08:00
|
|
|
}
|
2013-09-07 14:59:46 +08:00
|
|
|
|
2010-09-08 20:20:18 +08:00
|
|
|
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
|
|
|
|
E,
|
2011-01-27 15:10:08 +08:00
|
|
|
SourceRange(TypeidLoc, RParenLoc)));
|
2010-09-08 20:20:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
|
|
|
|
ExprResult
|
|
|
|
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
|
|
|
|
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
|
2011-01-27 15:10:08 +08:00
|
|
|
// If MSVCGuidDecl has not been cached, do the lookup.
|
2010-09-08 20:20:18 +08:00
|
|
|
if (!MSVCGuidDecl) {
|
|
|
|
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
|
|
|
|
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
|
|
|
|
LookupQualifiedName(R, Context.getTranslationUnitDecl());
|
|
|
|
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
|
|
|
|
if (!MSVCGuidDecl)
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
|
2011-01-27 15:10:08 +08:00
|
|
|
}
|
|
|
|
|
2010-09-08 20:20:18 +08:00
|
|
|
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-09-08 20:20:18 +08:00
|
|
|
if (isType) {
|
|
|
|
// The operand is a type; handle it as such.
|
|
|
|
TypeSourceInfo *TInfo = 0;
|
|
|
|
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
|
|
|
|
&TInfo);
|
|
|
|
if (T.isNull())
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-09-08 20:20:18 +08:00
|
|
|
if (!TInfo)
|
|
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
|
|
|
|
|
|
|
|
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
|
|
|
|
}
|
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
// The operand is an expression.
|
2010-09-08 20:20:18 +08:00
|
|
|
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
|
2008-11-11 19:37:55 +08:00
|
|
|
}
|
|
|
|
|
2007-09-16 22:56:35 +08:00
|
|
|
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2007-09-16 22:56:35 +08:00
|
|
|
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
|
2008-10-24 23:36:09 +08:00
|
|
|
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
|
2007-02-14 04:09:46 +08:00
|
|
|
"Unknown C++ Boolean value!");
|
2009-03-16 01:47:39 +08:00
|
|
|
return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
|
|
|
|
Context.BoolTy, OpLoc));
|
2007-02-13 09:51:42 +08:00
|
|
|
}
|
2008-02-26 08:51:44 +08:00
|
|
|
|
2009-05-11 02:38:11 +08:00
|
|
|
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2009-05-11 02:38:11 +08:00
|
|
|
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
|
|
|
|
return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
|
|
|
|
}
|
|
|
|
|
2008-02-26 08:51:44 +08:00
|
|
|
/// ActOnCXXThrow - Parse throw expressions.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2011-07-07 06:04:06 +08:00
|
|
|
Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
|
|
|
|
bool IsThrownVarInScope = false;
|
|
|
|
if (Ex) {
|
|
|
|
// C++0x [class.copymove]p31:
|
|
|
|
// When certain criteria are met, an implementation is allowed to omit the
|
|
|
|
// copy/move construction of a class object [...]
|
|
|
|
//
|
|
|
|
// - in a throw-expression, when the operand is the name of a
|
|
|
|
// non-volatile automatic object (other than a function or catch-
|
|
|
|
// clause parameter) whose scope does not extend beyond the end of the
|
|
|
|
// innermost enclosing try-block (if there is one), the copy/move
|
|
|
|
// operation from the operand to the exception object (15.1) can be
|
|
|
|
// omitted by constructing the automatic object directly into the
|
|
|
|
// exception object
|
|
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
|
|
if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
|
|
|
|
for( ; S; S = S->getParent()) {
|
|
|
|
if (S->isDeclScope(Var)) {
|
|
|
|
IsThrownVarInScope = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (S->getFlags() &
|
|
|
|
(Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
|
|
|
|
Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
|
|
|
|
Scope::TryScope))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
|
|
|
|
bool IsThrownVarInScope) {
|
2011-02-23 11:46:46 +08:00
|
|
|
// Don't report an error if 'throw' is used in system headers.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (!getLangOpts().CXXExceptions &&
|
2011-02-23 11:46:46 +08:00
|
|
|
!getSourceManager().isInSystemHeader(OpLoc))
|
2011-02-20 05:53:09 +08:00
|
|
|
Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
|
2011-07-07 06:04:06 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
if (Ex && !Ex->isTypeDependent()) {
|
2011-07-07 06:04:06 +08:00
|
|
|
ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
|
2011-04-09 02:41:53 +08:00
|
|
|
if (ExRes.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
Ex = ExRes.take();
|
|
|
|
}
|
2011-07-07 06:04:06 +08:00
|
|
|
|
|
|
|
return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
|
|
|
|
IsThrownVarInScope));
|
2009-04-28 04:27:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// CheckCXXThrowOperand - Validate the operand of a throw.
|
2011-07-07 06:04:06 +08:00
|
|
|
ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
|
|
|
|
bool IsThrownVarInScope) {
|
2009-04-28 04:27:31 +08:00
|
|
|
// C++ [except.throw]p3:
|
2009-12-24 06:04:40 +08:00
|
|
|
// A throw-expression initializes a temporary object, called the exception
|
|
|
|
// object, the type of which is determined by removing any top-level
|
|
|
|
// cv-qualifiers from the static type of the operand of throw and adjusting
|
2011-01-27 15:10:08 +08:00
|
|
|
// the type from "array of T" or "function returning T" to "pointer to T"
|
2009-12-24 06:04:40 +08:00
|
|
|
// or "pointer to function returning T", [...]
|
|
|
|
if (E->getType().hasQualifiers())
|
2011-04-09 02:41:53 +08:00
|
|
|
E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
|
2011-09-28 05:58:52 +08:00
|
|
|
E->getValueKind()).take();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Res = DefaultFunctionArrayConversion(E);
|
|
|
|
if (Res.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
E = Res.take();
|
2009-04-28 04:27:31 +08:00
|
|
|
|
|
|
|
// If the type of the exception would be an incomplete type or a pointer
|
|
|
|
// to an incomplete type other than (cv) void the program is ill-formed.
|
|
|
|
QualType Ty = E->getType();
|
2010-04-22 09:10:34 +08:00
|
|
|
bool isPointer = false;
|
2009-07-30 05:53:49 +08:00
|
|
|
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
|
2009-04-28 04:27:31 +08:00
|
|
|
Ty = Ptr->getPointeeType();
|
2010-04-22 09:10:34 +08:00
|
|
|
isPointer = true;
|
2009-04-28 04:27:31 +08:00
|
|
|
}
|
|
|
|
if (!isPointer || !Ty->isVoidType()) {
|
|
|
|
if (RequireCompleteType(ThrowLoc, Ty,
|
2012-05-05 00:32:21 +08:00
|
|
|
isPointer? diag::err_throw_incomplete_ptr
|
|
|
|
: diag::err_throw_incomplete,
|
|
|
|
E->getSourceRange()))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2010-03-03 05:28:26 +08:00
|
|
|
|
2010-04-16 02:05:39 +08:00
|
|
|
if (RequireNonAbstractType(ThrowLoc, E->getType(),
|
2012-05-05 01:09:59 +08:00
|
|
|
diag::err_throw_abstract_type, E))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2009-04-28 04:27:31 +08:00
|
|
|
}
|
|
|
|
|
2010-04-22 09:10:34 +08:00
|
|
|
// Initialize the exception result. This implicitly weeds out
|
|
|
|
// abstract types or types with inaccessible copy constructors.
|
2011-07-07 06:04:06 +08:00
|
|
|
|
|
|
|
// C++0x [class.copymove]p31:
|
|
|
|
// When certain criteria are met, an implementation is allowed to omit the
|
|
|
|
// copy/move construction of a class object [...]
|
|
|
|
//
|
|
|
|
// - in a throw-expression, when the operand is the name of a
|
|
|
|
// non-volatile automatic object (other than a function or catch-clause
|
|
|
|
// parameter) whose scope does not extend beyond the end of the
|
|
|
|
// innermost enclosing try-block (if there is one), the copy/move
|
|
|
|
// operation from the operand to the exception object (15.1) can be
|
|
|
|
// omitted by constructing the automatic object directly into the
|
|
|
|
// exception object
|
|
|
|
const VarDecl *NRVOVariable = 0;
|
|
|
|
if (IsThrownVarInScope)
|
|
|
|
NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
|
|
|
|
|
2010-04-22 09:10:34 +08:00
|
|
|
InitializedEntity Entity =
|
2011-01-22 06:46:35 +08:00
|
|
|
InitializedEntity::InitializeException(ThrowLoc, E->getType(),
|
2011-07-07 06:04:06 +08:00
|
|
|
/*NRVO=*/NRVOVariable != 0);
|
2011-04-09 02:41:53 +08:00
|
|
|
Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
|
2011-07-07 06:04:06 +08:00
|
|
|
QualType(), E,
|
|
|
|
IsThrownVarInScope);
|
2010-04-22 09:10:34 +08:00
|
|
|
if (Res.isInvalid())
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
|
|
|
E = Res.take();
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
|
2010-06-04 04:39:03 +08:00
|
|
|
// If the exception has class type, we need additional handling.
|
|
|
|
const RecordType *RecordTy = Ty->getAs<RecordType>();
|
|
|
|
if (!RecordTy)
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(E);
|
2010-06-04 04:39:03 +08:00
|
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
|
|
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
// If we are throwing a polymorphic class type or pointer thereof,
|
|
|
|
// exception handling will make use of the vtable.
|
2010-06-04 04:39:03 +08:00
|
|
|
MarkVTableUsed(ThrowLoc, RD);
|
|
|
|
|
2010-10-13 04:32:36 +08:00
|
|
|
// If a pointer is thrown, the referenced object will not be destroyed.
|
|
|
|
if (isPointer)
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(E);
|
2010-10-13 04:32:36 +08:00
|
|
|
|
2012-02-18 12:13:32 +08:00
|
|
|
// If the class has a destructor, we must be able to call it.
|
|
|
|
if (RD->hasIrrelevantDestructor())
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(E);
|
2010-06-04 04:39:03 +08:00
|
|
|
|
2012-03-06 03:35:43 +08:00
|
|
|
CXXDestructorDecl *Destructor = LookupDestructor(RD);
|
2010-06-04 04:39:03 +08:00
|
|
|
if (!Destructor)
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(E);
|
2010-06-04 04:39:03 +08:00
|
|
|
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(E->getExprLoc(), Destructor);
|
2010-06-04 04:39:03 +08:00
|
|
|
CheckDestructorAccess(E->getExprLoc(), Destructor,
|
2010-07-08 14:14:04 +08:00
|
|
|
PDiag(diag::err_access_dtor_exception) << Ty);
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
|
|
|
|
return ExprError();
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(E);
|
2008-02-26 08:51:44 +08:00
|
|
|
}
|
2008-07-01 18:37:29 +08:00
|
|
|
|
2012-01-07 12:59:52 +08:00
|
|
|
QualType Sema::getCurrentThisType() {
|
|
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
2012-04-16 15:05:22 +08:00
|
|
|
QualType ThisTy = CXXThisTypeOverride;
|
2011-06-12 01:19:42 +08:00
|
|
|
if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
|
|
|
|
if (method && method->isInstance())
|
|
|
|
ThisTy = method->getThisType(Context);
|
|
|
|
}
|
2012-04-16 15:05:22 +08:00
|
|
|
|
2011-06-12 01:19:42 +08:00
|
|
|
return ThisTy;
|
2011-02-03 16:15:49 +08:00
|
|
|
}
|
|
|
|
|
2012-04-16 15:05:22 +08:00
|
|
|
Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
|
|
|
|
Decl *ContextDecl,
|
|
|
|
unsigned CXXThisTypeQuals,
|
|
|
|
bool Enabled)
|
|
|
|
: S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
|
|
|
|
{
|
|
|
|
if (!Enabled || !ContextDecl)
|
|
|
|
return;
|
|
|
|
|
|
|
|
CXXRecordDecl *Record = 0;
|
|
|
|
if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
|
|
|
|
Record = Template->getTemplatedDecl();
|
|
|
|
else
|
|
|
|
Record = cast<CXXRecordDecl>(ContextDecl);
|
|
|
|
|
|
|
|
S.CXXThisTypeOverride
|
|
|
|
= S.Context.getPointerType(
|
|
|
|
S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
|
|
|
|
|
|
|
|
this->Enabled = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
|
|
|
|
if (Enabled) {
|
|
|
|
S.CXXThisTypeOverride = OldCXXThisTypeOverride;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-04-29 21:32:41 +08:00
|
|
|
static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
|
|
|
|
QualType ThisTy, SourceLocation Loc) {
|
|
|
|
FieldDecl *Field
|
|
|
|
= FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
|
|
|
|
Context.getTrivialTypeSourceInfo(ThisTy, Loc),
|
|
|
|
0, false, ICIS_NoInit);
|
|
|
|
Field->setImplicit(true);
|
|
|
|
Field->setAccess(AS_private);
|
|
|
|
RD->addDecl(Field);
|
|
|
|
return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
|
|
|
|
}
|
|
|
|
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
|
|
|
|
bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
|
2012-01-07 12:59:52 +08:00
|
|
|
// We don't need to capture this in an unevaluated context.
|
2013-05-03 08:10:13 +08:00
|
|
|
if (isUnevaluatedContext() && !Explicit)
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
return true;
|
2012-01-07 12:59:52 +08:00
|
|
|
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
|
|
|
|
*FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
|
|
|
|
// Otherwise, check that we can capture 'this'.
|
2012-01-07 12:59:52 +08:00
|
|
|
unsigned NumClosures = 0;
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
|
2012-01-11 10:36:31 +08:00
|
|
|
if (CapturingScopeInfo *CSI =
|
|
|
|
dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
|
|
|
|
if (CSI->CXXThisCaptureIndex != 0) {
|
|
|
|
// 'this' is already being captured; there isn't anything more to do.
|
2012-01-07 12:59:52 +08:00
|
|
|
break;
|
|
|
|
}
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
|
|
|
|
if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
|
|
|
|
// This context can't implicitly capture 'this'; fail out.
|
|
|
|
if (BuildAndDiagnose)
|
|
|
|
Diag(Loc, diag::err_this_capture) << Explicit;
|
|
|
|
return true;
|
|
|
|
}
|
2012-01-11 10:36:31 +08:00
|
|
|
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
|
2012-02-11 01:46:20 +08:00
|
|
|
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
|
2012-02-02 01:04:21 +08:00
|
|
|
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
|
2013-04-17 03:37:38 +08:00
|
|
|
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
|
2012-02-02 01:04:21 +08:00
|
|
|
Explicit) {
|
|
|
|
// This closure can capture 'this'; continue looking upwards.
|
2012-01-07 12:59:52 +08:00
|
|
|
NumClosures++;
|
2012-02-02 01:04:21 +08:00
|
|
|
Explicit = false;
|
2012-01-07 12:59:52 +08:00
|
|
|
continue;
|
|
|
|
}
|
2012-01-11 10:36:31 +08:00
|
|
|
// This context can't implicitly capture 'this'; fail out.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
if (BuildAndDiagnose)
|
|
|
|
Diag(Loc, diag::err_this_capture) << Explicit;
|
|
|
|
return true;
|
2012-01-07 12:59:52 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
if (!BuildAndDiagnose) return false;
|
2012-01-07 12:59:52 +08:00
|
|
|
// Mark that we're implicitly capturing 'this' in all the scopes we skipped.
|
|
|
|
// FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
|
|
|
|
// contexts.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
|
|
|
|
--idx, --NumClosures) {
|
2012-01-11 10:36:31 +08:00
|
|
|
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
|
2012-02-11 10:51:16 +08:00
|
|
|
Expr *ThisExpr = 0;
|
2012-02-18 17:37:24 +08:00
|
|
|
QualType ThisTy = getCurrentThisType();
|
2013-04-29 21:32:41 +08:00
|
|
|
if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
|
2012-02-11 10:51:16 +08:00
|
|
|
// For lambda expressions, build a field and an initializing expression.
|
2013-04-29 21:32:41 +08:00
|
|
|
ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
|
|
|
|
else if (CapturedRegionScopeInfo *RSI
|
|
|
|
= dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
|
|
|
|
ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
|
2013-04-17 03:37:38 +08:00
|
|
|
|
2012-01-11 10:36:31 +08:00
|
|
|
bool isNested = NumClosures > 1;
|
2012-02-18 17:37:24 +08:00
|
|
|
CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
|
2012-01-07 12:59:52 +08:00
|
|
|
}
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
return false;
|
2012-01-07 12:59:52 +08:00
|
|
|
}
|
|
|
|
|
2011-06-12 01:19:42 +08:00
|
|
|
ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
|
2011-02-03 16:15:49 +08:00
|
|
|
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
|
|
|
|
/// is a non-lvalue expression whose value is the address of the object for
|
|
|
|
/// which the function is called.
|
|
|
|
|
2011-10-19 00:47:30 +08:00
|
|
|
QualType ThisTy = getCurrentThisType();
|
2011-06-12 01:19:42 +08:00
|
|
|
if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
|
2011-02-03 16:15:49 +08:00
|
|
|
|
2012-01-07 12:59:52 +08:00
|
|
|
CheckCXXThisCapture(Loc);
|
2011-06-12 01:19:42 +08:00
|
|
|
return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
|
2008-07-01 18:37:29 +08:00
|
|
|
}
|
2008-08-22 23:38:55 +08:00
|
|
|
|
2012-04-16 15:05:22 +08:00
|
|
|
bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
|
|
|
|
// If we're outside the body of a member function, then we'll have a specified
|
|
|
|
// type for 'this'.
|
|
|
|
if (CXXThisTypeOverride.isNull())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Determine whether we're looking into a class that's currently being
|
|
|
|
// defined.
|
|
|
|
CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
|
|
|
|
return Class && Class->isBeingDefined();
|
|
|
|
}
|
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2010-09-08 08:15:04 +08:00
|
|
|
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
|
2008-08-22 23:38:55 +08:00
|
|
|
SourceLocation LParenLoc,
|
2009-03-16 01:47:39 +08:00
|
|
|
MultiExprArg exprs,
|
2008-08-22 23:38:55 +08:00
|
|
|
SourceLocation RParenLoc) {
|
2010-02-06 03:11:37 +08:00
|
|
|
if (!TypeRep)
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-01-16 02:39:57 +08:00
|
|
|
TypeSourceInfo *TInfo;
|
|
|
|
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
|
|
|
|
if (!TInfo)
|
|
|
|
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
|
2010-09-08 08:15:04 +08:00
|
|
|
|
|
|
|
return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
|
|
|
|
/// Can be interpreted either as function-style casting ("int(x)")
|
|
|
|
/// or class type construction ("ClassType(x,y,z)")
|
|
|
|
/// or creation of a value-initialized type ("int()").
|
|
|
|
ExprResult
|
|
|
|
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
|
|
|
|
SourceLocation LParenLoc,
|
2013-05-03 23:05:50 +08:00
|
|
|
MultiExprArg Exprs,
|
2010-09-08 08:15:04 +08:00
|
|
|
SourceLocation RParenLoc) {
|
|
|
|
QualType Ty = TInfo->getType();
|
|
|
|
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
|
2008-08-22 23:38:55 +08:00
|
|
|
|
2013-05-03 23:05:50 +08:00
|
|
|
if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
|
2010-09-08 08:15:04 +08:00
|
|
|
return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
|
Introduce a new expression type, CXXUnresolvedConstructExpr, to
describe the construction of a value of a given type using function
syntax, e.g.,
T(a1, a2, ..., aN)
when the type or any of its arguments are type-dependent. In this
case, we don't know what kind of type-construction this will be: it
might construct a temporary of type 'T' (which might be a class or
non-class type) or might perform a conversion to type 'T'. Also,
implement printing of and template instantiation for this new
expression type. Due to the change in Sema::ActOnCXXTypeConstructExpr,
our existing tests cover template instantiation of this new expression
node.
llvm-svn: 72176
2009-05-21 02:46:25 +08:00
|
|
|
LParenLoc,
|
2013-05-03 23:05:50 +08:00
|
|
|
Exprs,
|
Introduce a new expression type, CXXUnresolvedConstructExpr, to
describe the construction of a value of a given type using function
syntax, e.g.,
T(a1, a2, ..., aN)
when the type or any of its arguments are type-dependent. In this
case, we don't know what kind of type-construction this will be: it
might construct a temporary of type 'T' (which might be a class or
non-class type) or might perform a conversion to type 'T'. Also,
implement printing of and template instantiation for this new
expression type. Due to the change in Sema::ActOnCXXTypeConstructExpr,
our existing tests cover template instantiation of this new expression
node.
llvm-svn: 72176
2009-05-21 02:46:25 +08:00
|
|
|
RParenLoc));
|
2009-03-14 05:01:28 +08:00
|
|
|
}
|
|
|
|
|
2012-02-13 02:41:05 +08:00
|
|
|
bool ListInitialization = LParenLoc.isInvalid();
|
2013-05-03 23:05:50 +08:00
|
|
|
assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
|
2012-02-13 02:41:05 +08:00
|
|
|
&& "List initialization must have initializer list as expression.");
|
|
|
|
SourceRange FullRange = SourceRange(TyBeginLoc,
|
|
|
|
ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
|
|
|
|
|
2009-01-17 02:33:17 +08:00
|
|
|
// C++ [expr.type.conv]p1:
|
2008-08-22 23:38:55 +08:00
|
|
|
// If the expression list is a single expression, the type conversion
|
|
|
|
// expression is equivalent (in definedness, and if defined in meaning) to the
|
|
|
|
// corresponding cast expression.
|
2013-05-03 23:05:50 +08:00
|
|
|
if (Exprs.size() == 1 && !ListInitialization) {
|
2011-10-05 15:41:44 +08:00
|
|
|
Expr *Arg = Exprs[0];
|
|
|
|
return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
|
2008-08-22 23:38:55 +08:00
|
|
|
}
|
|
|
|
|
2012-02-29 08:00:28 +08:00
|
|
|
QualType ElemTy = Ty;
|
|
|
|
if (Ty->isArrayType()) {
|
|
|
|
if (!ListInitialization)
|
|
|
|
return ExprError(Diag(TyBeginLoc,
|
|
|
|
diag::err_value_init_for_array_type) << FullRange);
|
|
|
|
ElemTy = Context.getBaseElementType(Ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!Ty->isVoidType() &&
|
|
|
|
RequireCompleteType(TyBeginLoc, ElemTy,
|
2012-05-05 00:32:21 +08:00
|
|
|
diag::err_invalid_incomplete_type_use, FullRange))
|
2012-02-29 08:00:28 +08:00
|
|
|
return ExprError();
|
|
|
|
|
|
|
|
if (RequireNonAbstractType(TyBeginLoc, Ty,
|
|
|
|
diag::err_allocation_of_abstract_type))
|
|
|
|
return ExprError();
|
|
|
|
|
2010-09-09 05:40:08 +08:00
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationKind Kind =
|
|
|
|
Exprs.size() ? ListInitialization
|
|
|
|
? InitializationKind::CreateDirectList(TyBeginLoc)
|
|
|
|
: InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
|
|
|
|
: InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
|
|
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
|
2010-09-09 05:40:08 +08:00
|
|
|
|
2013-09-23 10:20:00 +08:00
|
|
|
if (Result.isInvalid() || !ListInitialization)
|
|
|
|
return Result;
|
|
|
|
|
|
|
|
Expr *Inner = Result.get();
|
|
|
|
if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
|
|
|
|
Inner = BTE->getSubExpr();
|
|
|
|
if (isa<InitListExpr>(Inner)) {
|
2012-02-14 03:55:43 +08:00
|
|
|
// If the list-initialization doesn't involve a constructor call, we'll get
|
|
|
|
// the initializer-list (with corrected type) back, but that's not what we
|
|
|
|
// want, since it will be treated as an initializer list in further
|
|
|
|
// processing. Explicitly insert a cast here.
|
2013-09-23 10:20:00 +08:00
|
|
|
QualType ResultType = Result.get()->getType();
|
|
|
|
Result = Owned(CXXFunctionalCastExpr::Create(
|
|
|
|
Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
|
|
|
|
CK_NoOp, Result.take(), /*Path=*/ 0, LParenLoc, RParenLoc));
|
2012-02-14 03:55:43 +08:00
|
|
|
}
|
|
|
|
|
2010-09-09 05:40:08 +08:00
|
|
|
// FIXME: Improve AST representation?
|
2012-08-24 05:35:17 +08:00
|
|
|
return Result;
|
2008-08-22 23:38:55 +08:00
|
|
|
}
|
2008-09-10 10:17:11 +08:00
|
|
|
|
2011-01-27 17:37:56 +08:00
|
|
|
/// doesUsualArrayDeleteWantSize - Answers whether the usual
|
|
|
|
/// operator delete[] for the given type has a size_t parameter.
|
|
|
|
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
|
|
|
|
QualType allocType) {
|
|
|
|
const RecordType *record =
|
|
|
|
allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
|
|
|
|
if (!record) return false;
|
|
|
|
|
|
|
|
// Try to find an operator delete[] in class scope.
|
|
|
|
|
|
|
|
DeclarationName deleteName =
|
|
|
|
S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
|
|
|
|
LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
|
|
|
|
S.LookupQualifiedName(ops, record->getDecl());
|
|
|
|
|
|
|
|
// We're just doing this for information.
|
|
|
|
ops.suppressDiagnostics();
|
|
|
|
|
|
|
|
// Very likely: there's no operator delete[].
|
|
|
|
if (ops.empty()) return false;
|
|
|
|
|
|
|
|
// If it's ambiguous, it should be illegal to call operator delete[]
|
|
|
|
// on this thing, so it doesn't matter if we allocate extra space or not.
|
|
|
|
if (ops.isAmbiguous()) return false;
|
|
|
|
|
|
|
|
LookupResult::Filter filter = ops.makeFilter();
|
|
|
|
while (filter.hasNext()) {
|
|
|
|
NamedDecl *del = filter.next()->getUnderlyingDecl();
|
|
|
|
|
|
|
|
// C++0x [basic.stc.dynamic.deallocation]p2:
|
|
|
|
// A template instance is never a usual deallocation function,
|
|
|
|
// regardless of its signature.
|
|
|
|
if (isa<FunctionTemplateDecl>(del)) {
|
|
|
|
filter.erase();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// C++0x [basic.stc.dynamic.deallocation]p2:
|
|
|
|
// If class T does not declare [an operator delete[] with one
|
|
|
|
// parameter] but does declare a member deallocation function
|
|
|
|
// named operator delete[] with exactly two parameters, the
|
|
|
|
// second of which has type std::size_t, then this function
|
|
|
|
// is a usual deallocation function.
|
|
|
|
if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
|
|
|
|
filter.erase();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
filter.done();
|
|
|
|
|
|
|
|
if (!ops.isSingleResult()) return false;
|
|
|
|
|
|
|
|
const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
|
|
|
|
return (del->getNumParams() == 2);
|
|
|
|
}
|
2008-09-10 10:17:11 +08:00
|
|
|
|
2012-02-13 02:41:05 +08:00
|
|
|
/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
|
2012-06-16 06:23:43 +08:00
|
|
|
///
|
2012-02-13 02:41:05 +08:00
|
|
|
/// E.g.:
|
2008-11-22 03:14:01 +08:00
|
|
|
/// @code new (memory) int[size][4] @endcode
|
|
|
|
/// or
|
|
|
|
/// @code ::new Foo(23, "hello") @endcode
|
2012-02-13 02:41:05 +08:00
|
|
|
///
|
|
|
|
/// \param StartLoc The first location of the expression.
|
|
|
|
/// \param UseGlobal True if 'new' was prefixed with '::'.
|
|
|
|
/// \param PlacementLParen Opening paren of the placement arguments.
|
|
|
|
/// \param PlacementArgs Placement new arguments.
|
|
|
|
/// \param PlacementRParen Closing paren of the placement arguments.
|
|
|
|
/// \param TypeIdParens If the type is in parens, the source range.
|
|
|
|
/// \param D The type to be allocated, as well as array dimensions.
|
2012-06-16 06:23:43 +08:00
|
|
|
/// \param Initializer The initializing expression or initializer-list, or null
|
|
|
|
/// if there is none.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2008-11-22 03:14:01 +08:00
|
|
|
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
|
2009-03-16 01:47:39 +08:00
|
|
|
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
|
2011-01-27 15:10:08 +08:00
|
|
|
SourceLocation PlacementRParen, SourceRange TypeIdParens,
|
2012-02-16 20:22:20 +08:00
|
|
|
Declarator &D, Expr *Initializer) {
|
2013-04-27 00:15:35 +08:00
|
|
|
bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
|
2011-02-20 11:19:35 +08:00
|
|
|
|
2008-12-02 22:43:59 +08:00
|
|
|
Expr *ArraySize = 0;
|
|
|
|
// If the specified type is an array, unwrap it and save the expression.
|
|
|
|
if (D.getNumTypeObjects() > 0 &&
|
|
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
|
2012-06-16 06:23:43 +08:00
|
|
|
DeclaratorChunk &Chunk = D.getTypeObject(0);
|
2011-02-20 11:19:35 +08:00
|
|
|
if (TypeContainsAuto)
|
|
|
|
return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
|
|
|
|
<< D.getSourceRange());
|
2008-12-02 22:43:59 +08:00
|
|
|
if (Chunk.Arr.hasStatic)
|
2009-03-16 01:47:39 +08:00
|
|
|
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
|
|
|
|
<< D.getSourceRange());
|
2008-12-02 22:43:59 +08:00
|
|
|
if (!Chunk.Arr.NumElts)
|
2009-03-16 01:47:39 +08:00
|
|
|
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
|
|
|
|
<< D.getSourceRange());
|
2009-10-26 05:45:37 +08:00
|
|
|
|
2008-12-02 22:43:59 +08:00
|
|
|
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
|
2009-10-26 05:45:37 +08:00
|
|
|
D.DropFirstTypeObject();
|
2008-12-02 22:43:59 +08:00
|
|
|
}
|
|
|
|
|
2009-09-11 08:18:58 +08:00
|
|
|
// Every dimension shall be of constant size.
|
2009-10-26 05:45:37 +08:00
|
|
|
if (ArraySize) {
|
|
|
|
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
|
2009-09-11 08:18:58 +08:00
|
|
|
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
|
|
|
|
break;
|
|
|
|
|
|
|
|
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
|
|
|
|
if (Expr *NumElts = (Expr *)Array.NumElts) {
|
2012-02-04 17:53:13 +08:00
|
|
|
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
|
2013-06-16 04:17:46 +08:00
|
|
|
if (getLangOpts().CPlusPlus1y) {
|
|
|
|
// C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
|
|
|
|
// shall be a converted constant expression (5.19) of type std::size_t
|
|
|
|
// and shall evaluate to a strictly positive value.
|
|
|
|
unsigned IntWidth = Context.getTargetInfo().getIntWidth();
|
|
|
|
assert(IntWidth && "Builtin type of size 0?");
|
|
|
|
llvm::APSInt Value(IntWidth);
|
|
|
|
Array.NumElts
|
|
|
|
= CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
|
|
|
|
CCEK_NewExpr)
|
|
|
|
.take();
|
|
|
|
} else {
|
|
|
|
Array.NumElts
|
|
|
|
= VerifyIntegerConstantExpression(NumElts, 0,
|
|
|
|
diag::err_new_array_nonconst)
|
|
|
|
.take();
|
|
|
|
}
|
2012-02-04 17:53:13 +08:00
|
|
|
if (!Array.NumElts)
|
|
|
|
return ExprError();
|
2009-09-11 08:18:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2009-10-26 05:45:37 +08:00
|
|
|
|
2011-06-28 11:01:23 +08:00
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
|
2010-06-05 07:28:52 +08:00
|
|
|
QualType AllocType = TInfo->getType();
|
2009-04-25 16:06:05 +08:00
|
|
|
if (D.isInvalidType())
|
2009-03-16 01:47:39 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-02-16 20:22:20 +08:00
|
|
|
SourceRange DirectInitRange;
|
|
|
|
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
|
|
|
|
DirectInitRange = List->getSourceRange();
|
|
|
|
|
2012-11-07 08:12:38 +08:00
|
|
|
return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
|
2009-05-21 08:00:09 +08:00
|
|
|
PlacementLParen,
|
2012-08-24 05:35:17 +08:00
|
|
|
PlacementArgs,
|
2009-05-21 08:00:09 +08:00
|
|
|
PlacementRParen,
|
2010-07-13 23:54:32 +08:00
|
|
|
TypeIdParens,
|
2009-09-09 23:08:12 +08:00
|
|
|
AllocType,
|
2010-09-08 05:49:58 +08:00
|
|
|
TInfo,
|
2010-08-24 07:25:46 +08:00
|
|
|
ArraySize,
|
2012-02-16 20:22:20 +08:00
|
|
|
DirectInitRange,
|
|
|
|
Initializer,
|
2011-02-20 11:19:35 +08:00
|
|
|
TypeContainsAuto);
|
2009-05-21 08:00:09 +08:00
|
|
|
}
|
|
|
|
|
2012-02-16 20:59:47 +08:00
|
|
|
static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
|
|
|
|
Expr *Init) {
|
2012-02-16 20:22:20 +08:00
|
|
|
if (!Init)
|
|
|
|
return true;
|
2012-02-17 16:42:32 +08:00
|
|
|
if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
|
|
|
|
return PLE->getNumExprs() == 0;
|
2012-02-16 20:22:20 +08:00
|
|
|
if (isa<ImplicitValueInitExpr>(Init))
|
|
|
|
return true;
|
|
|
|
else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
|
|
|
|
return !CCE->isListInitialization() &&
|
|
|
|
CCE->getConstructor()->isDefaultConstructor();
|
2012-02-16 20:59:47 +08:00
|
|
|
else if (Style == CXXNewExpr::ListInit) {
|
|
|
|
assert(isa<InitListExpr>(Init) &&
|
|
|
|
"Shouldn't create list CXXConstructExprs for arrays.");
|
|
|
|
return true;
|
|
|
|
}
|
2012-02-16 20:22:20 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2012-11-07 08:12:38 +08:00
|
|
|
Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
|
2009-05-21 08:00:09 +08:00
|
|
|
SourceLocation PlacementLParen,
|
|
|
|
MultiExprArg PlacementArgs,
|
|
|
|
SourceLocation PlacementRParen,
|
2010-07-13 23:54:32 +08:00
|
|
|
SourceRange TypeIdParens,
|
2009-05-21 08:00:09 +08:00
|
|
|
QualType AllocType,
|
2010-09-08 05:49:58 +08:00
|
|
|
TypeSourceInfo *AllocTypeInfo,
|
2010-08-24 07:25:46 +08:00
|
|
|
Expr *ArraySize,
|
2012-02-16 20:22:20 +08:00
|
|
|
SourceRange DirectInitRange,
|
|
|
|
Expr *Initializer,
|
2011-02-20 11:19:35 +08:00
|
|
|
bool TypeMayContainAuto) {
|
2010-09-08 05:49:58 +08:00
|
|
|
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
|
2012-11-07 08:12:38 +08:00
|
|
|
SourceLocation StartLoc = Range.getBegin();
|
2008-11-22 03:14:01 +08:00
|
|
|
|
2012-02-16 20:22:20 +08:00
|
|
|
CXXNewExpr::InitializationStyle initStyle;
|
|
|
|
if (DirectInitRange.isValid()) {
|
|
|
|
assert(Initializer && "Have parens but no initializer.");
|
|
|
|
initStyle = CXXNewExpr::CallInit;
|
|
|
|
} else if (Initializer && isa<InitListExpr>(Initializer))
|
|
|
|
initStyle = CXXNewExpr::ListInit;
|
|
|
|
else {
|
|
|
|
assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
|
|
|
|
isa<CXXConstructExpr>(Initializer)) &&
|
|
|
|
"Initializer expression that cannot have been implicitly created.");
|
|
|
|
initStyle = CXXNewExpr::NoInit;
|
|
|
|
}
|
|
|
|
|
|
|
|
Expr **Inits = &Initializer;
|
|
|
|
unsigned NumInits = Initializer ? 1 : 0;
|
2012-11-26 16:32:48 +08:00
|
|
|
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
|
|
|
|
assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
|
|
|
|
Inits = List->getExprs();
|
|
|
|
NumInits = List->getNumExprs();
|
2012-02-16 20:22:20 +08:00
|
|
|
}
|
|
|
|
|
2012-11-26 16:32:48 +08:00
|
|
|
// Determine whether we've already built the initializer.
|
|
|
|
bool HaveCompleteInit = false;
|
|
|
|
if (Initializer && isa<CXXConstructExpr>(Initializer) &&
|
|
|
|
!isa<CXXTemporaryObjectExpr>(Initializer))
|
|
|
|
HaveCompleteInit = true;
|
|
|
|
else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
|
|
|
|
HaveCompleteInit = true;
|
|
|
|
|
2014-03-13 01:42:45 +08:00
|
|
|
// C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
|
2013-04-30 21:56:41 +08:00
|
|
|
if (TypeMayContainAuto && AllocType->isUndeducedType()) {
|
2012-02-16 20:22:20 +08:00
|
|
|
if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
|
2011-02-20 11:19:35 +08:00
|
|
|
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
|
|
|
|
<< AllocType << TypeRange);
|
2014-03-13 01:42:45 +08:00
|
|
|
if (initStyle == CXXNewExpr::ListInit ||
|
|
|
|
(NumInits == 1 && isa<InitListExpr>(Inits[0])))
|
2012-03-10 02:35:03 +08:00
|
|
|
return ExprError(Diag(Inits[0]->getLocStart(),
|
2014-03-13 01:42:45 +08:00
|
|
|
diag::err_auto_new_list_init)
|
2012-02-16 20:22:20 +08:00
|
|
|
<< AllocType << TypeRange);
|
|
|
|
if (NumInits > 1) {
|
|
|
|
Expr *FirstBad = Inits[1];
|
2012-03-10 02:35:03 +08:00
|
|
|
return ExprError(Diag(FirstBad->getLocStart(),
|
2011-02-20 11:19:35 +08:00
|
|
|
diag::err_auto_new_ctor_multiple_expressions)
|
|
|
|
<< AllocType << TypeRange);
|
|
|
|
}
|
2012-02-16 20:22:20 +08:00
|
|
|
Expr *Deduce = Inits[0];
|
2013-05-01 05:23:01 +08:00
|
|
|
QualType DeducedType;
|
2012-07-08 12:13:07 +08:00
|
|
|
if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
|
2011-02-20 11:19:35 +08:00
|
|
|
return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
|
2012-02-13 02:41:05 +08:00
|
|
|
<< AllocType << Deduce->getType()
|
|
|
|
<< TypeRange << Deduce->getSourceRange());
|
2013-05-01 05:23:01 +08:00
|
|
|
if (DeducedType.isNull())
|
2011-03-18 00:11:59 +08:00
|
|
|
return ExprError();
|
2013-05-01 05:23:01 +08:00
|
|
|
AllocType = DeducedType;
|
2011-02-20 11:19:35 +08:00
|
|
|
}
|
2012-02-13 02:41:05 +08:00
|
|
|
|
2010-05-17 00:01:03 +08:00
|
|
|
// Per C++0x [expr.new]p5, the type being constructed may be a
|
|
|
|
// typedef of an array type.
|
2010-08-24 07:25:46 +08:00
|
|
|
if (!ArraySize) {
|
2010-05-17 00:01:03 +08:00
|
|
|
if (const ConstantArrayType *Array
|
|
|
|
= Context.getAsConstantArrayType(AllocType)) {
|
2010-08-28 17:06:06 +08:00
|
|
|
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
|
|
|
|
Context.getSizeType(),
|
|
|
|
TypeRange.getEnd());
|
2010-05-17 00:01:03 +08:00
|
|
|
AllocType = Array->getElementType();
|
|
|
|
}
|
|
|
|
}
|
2008-11-22 03:14:01 +08:00
|
|
|
|
2010-10-07 00:00:31 +08:00
|
|
|
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
|
|
|
|
return ExprError();
|
|
|
|
|
2012-02-16 20:22:20 +08:00
|
|
|
if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
|
2012-02-13 02:41:05 +08:00
|
|
|
Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
|
|
|
|
diag::warn_dangling_std_initializer_list)
|
2012-02-20 00:31:05 +08:00
|
|
|
<< /*at end of FE*/0 << Inits[0]->getSourceRange();
|
2012-02-13 02:41:05 +08:00
|
|
|
}
|
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
// In ARC, infer 'retaining' for the allocated
|
2012-03-11 15:00:24 +08:00
|
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
2011-06-16 07:02:42 +08:00
|
|
|
AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
|
|
|
|
AllocType->isObjCLifetimeType()) {
|
|
|
|
AllocType = Context.getLifetimeQualifiedType(AllocType,
|
|
|
|
AllocType->getObjCARCImplicitLifetime());
|
|
|
|
}
|
2008-12-02 22:43:59 +08:00
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
QualType ResultType = Context.getPointerType(AllocType);
|
|
|
|
|
2013-04-16 15:28:30 +08:00
|
|
|
if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
|
|
|
|
ExprResult result = CheckPlaceholderExpr(ArraySize);
|
|
|
|
if (result.isInvalid()) return ExprError();
|
|
|
|
ArraySize = result.take();
|
|
|
|
}
|
2012-02-04 15:07:42 +08:00
|
|
|
// C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
|
|
|
|
// integral or enumeration type with a non-negative value."
|
|
|
|
// C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
|
|
|
|
// enumeration type, or a class type for which a single non-explicit
|
|
|
|
// conversion function to integral or unscoped enumeration type exists.
|
2013-05-22 03:05:48 +08:00
|
|
|
// C++1y [expr.new]p6: The expression [...] is implicitly converted to
|
2013-06-18 11:08:53 +08:00
|
|
|
// std::size_t.
|
2009-02-26 22:39:58 +08:00
|
|
|
if (ArraySize && !ArraySize->isTypeDependent()) {
|
2013-06-16 04:17:46 +08:00
|
|
|
ExprResult ConvertedSize;
|
|
|
|
if (getLangOpts().CPlusPlus1y) {
|
2013-11-27 13:22:15 +08:00
|
|
|
assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
|
|
|
|
|
2013-06-16 04:17:46 +08:00
|
|
|
ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
|
|
|
|
AA_Converting);
|
|
|
|
|
2013-06-18 11:08:53 +08:00
|
|
|
if (!ConvertedSize.isInvalid() &&
|
|
|
|
ArraySize->getType()->getAs<RecordType>())
|
2013-06-18 09:27:47 +08:00
|
|
|
// Diagnose the compatibility of this conversion.
|
|
|
|
Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
|
|
|
|
<< ArraySize->getType() << 0 << "'size_t'";
|
2013-06-16 04:17:46 +08:00
|
|
|
} else {
|
|
|
|
class SizeConvertDiagnoser : public ICEConvertDiagnoser {
|
|
|
|
protected:
|
|
|
|
Expr *ArraySize;
|
|
|
|
|
|
|
|
public:
|
|
|
|
SizeConvertDiagnoser(Expr *ArraySize)
|
|
|
|
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
|
|
|
|
ArraySize(ArraySize) {}
|
2014-03-12 12:55:44 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
|
|
|
|
QualType T) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Loc, diag::err_array_size_not_integral)
|
|
|
|
<< S.getLangOpts().CPlusPlus11 << T;
|
|
|
|
}
|
2014-03-12 12:55:44 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder diagnoseIncomplete(
|
|
|
|
Sema &S, SourceLocation Loc, QualType T) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Loc, diag::err_array_size_incomplete_type)
|
|
|
|
<< T << ArraySize->getSourceRange();
|
|
|
|
}
|
2014-03-12 12:55:44 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder diagnoseExplicitConv(
|
|
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
|
|
|
|
}
|
2014-03-12 12:55:44 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder noteExplicitConv(
|
|
|
|
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
|
|
|
|
<< ConvTy->isEnumeralType() << ConvTy;
|
|
|
|
}
|
2014-03-12 12:55:44 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder diagnoseAmbiguous(
|
|
|
|
Sema &S, SourceLocation Loc, QualType T) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
|
|
|
|
}
|
2014-03-12 12:55:44 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder noteAmbiguous(
|
|
|
|
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
|
|
|
|
<< ConvTy->isEnumeralType() << ConvTy;
|
|
|
|
}
|
2013-05-22 03:05:48 +08:00
|
|
|
|
2013-06-16 04:17:46 +08:00
|
|
|
virtual SemaDiagnosticBuilder diagnoseConversion(
|
2014-03-12 12:55:44 +08:00
|
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
|
2013-06-16 04:17:46 +08:00
|
|
|
return S.Diag(Loc,
|
|
|
|
S.getLangOpts().CPlusPlus11
|
|
|
|
? diag::warn_cxx98_compat_array_size_conversion
|
|
|
|
: diag::ext_array_size_conversion)
|
|
|
|
<< T << ConvTy->isEnumeralType() << ConvTy;
|
|
|
|
}
|
|
|
|
} SizeDiagnoser(ArraySize);
|
2012-05-05 06:38:52 +08:00
|
|
|
|
2013-06-16 04:17:46 +08:00
|
|
|
ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
|
|
|
|
SizeDiagnoser);
|
|
|
|
}
|
2010-06-30 08:20:43 +08:00
|
|
|
if (ConvertedSize.isInvalid())
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-08-24 07:25:46 +08:00
|
|
|
ArraySize = ConvertedSize.take();
|
2012-01-11 08:14:46 +08:00
|
|
|
QualType SizeType = ArraySize->getType();
|
2013-06-16 04:17:46 +08:00
|
|
|
|
2010-10-09 07:50:27 +08:00
|
|
|
if (!SizeType->isIntegralOrUnscopedEnumerationType())
|
2010-06-30 08:20:43 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
// C++98 [expr.new]p7:
|
|
|
|
// The expression in a direct-new-declarator shall have integral type
|
|
|
|
// with a non-negative value.
|
|
|
|
//
|
|
|
|
// Let's see if this is a constant < 0. If so, we reject it out of
|
|
|
|
// hand. Otherwise, if it's not a constant, we must have an unparenthesized
|
|
|
|
// array type.
|
|
|
|
//
|
|
|
|
// Note: such a construct has well-defined semantics in C++11: it throws
|
|
|
|
// std::bad_array_new_length.
|
2009-02-26 22:39:58 +08:00
|
|
|
if (!ArraySize->isValueDependent()) {
|
|
|
|
llvm::APSInt Value;
|
2012-02-04 17:53:13 +08:00
|
|
|
// We've already performed any required implicit conversion to integer or
|
|
|
|
// unscoped enumeration type.
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
if (ArraySize->isIntegerConstantExpr(Value, Context)) {
|
2009-02-26 22:39:58 +08:00
|
|
|
if (Value < llvm::APSInt(
|
2011-01-27 15:10:08 +08:00
|
|
|
llvm::APInt::getNullValue(Value.getBitWidth()),
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
Value.isUnsigned())) {
|
2013-01-02 19:42:31 +08:00
|
|
|
if (getLangOpts().CPlusPlus11)
|
2012-03-10 02:35:03 +08:00
|
|
|
Diag(ArraySize->getLocStart(),
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
diag::warn_typecheck_negative_array_new_size)
|
2010-08-18 08:39:00 +08:00
|
|
|
<< ArraySize->getSourceRange();
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
else
|
2012-03-10 02:35:03 +08:00
|
|
|
return ExprError(Diag(ArraySize->getLocStart(),
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
diag::err_typecheck_negative_array_size)
|
|
|
|
<< ArraySize->getSourceRange());
|
|
|
|
} else if (!AllocType->isDependentType()) {
|
|
|
|
unsigned ActiveSizeBits =
|
|
|
|
ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
|
|
|
|
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
|
2013-01-02 19:42:31 +08:00
|
|
|
if (getLangOpts().CPlusPlus11)
|
2012-03-10 02:35:03 +08:00
|
|
|
Diag(ArraySize->getLocStart(),
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
diag::warn_array_new_too_large)
|
|
|
|
<< Value.toString(10)
|
|
|
|
<< ArraySize->getSourceRange();
|
|
|
|
else
|
2012-03-10 02:35:03 +08:00
|
|
|
return ExprError(Diag(ArraySize->getLocStart(),
|
Fix a rejects-valid in C++11: array new of a negative size, or overflowing array
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
2012-02-04 13:35:53 +08:00
|
|
|
diag::err_array_too_large)
|
|
|
|
<< Value.toString(10)
|
|
|
|
<< ArraySize->getSourceRange());
|
2010-08-18 08:39:00 +08:00
|
|
|
}
|
|
|
|
}
|
2010-07-13 23:54:32 +08:00
|
|
|
} else if (TypeIdParens.isValid()) {
|
|
|
|
// Can't have dynamic array size when the type-id is in parentheses.
|
|
|
|
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
|
|
|
|
<< ArraySize->getSourceRange()
|
|
|
|
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
|
|
|
|
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-07-13 23:54:32 +08:00
|
|
|
TypeIdParens = SourceRange();
|
2009-02-26 22:39:58 +08:00
|
|
|
}
|
2008-12-02 22:43:59 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-05-15 15:14:44 +08:00
|
|
|
// Note that we do *not* convert the argument in any way. It can
|
|
|
|
// be signed, larger than size_t, whatever.
|
2008-12-02 22:43:59 +08:00
|
|
|
}
|
2008-11-22 03:14:01 +08:00
|
|
|
|
|
|
|
FunctionDecl *OperatorNew = 0;
|
|
|
|
FunctionDecl *OperatorDelete = 0;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-02-26 22:39:58 +08:00
|
|
|
if (!AllocType->isDependentType() &&
|
2013-05-10 21:22:23 +08:00
|
|
|
!Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
|
2009-02-26 22:39:58 +08:00
|
|
|
FindAllocationFunctions(StartLoc,
|
2009-02-10 02:24:27 +08:00
|
|
|
SourceRange(PlacementLParen, PlacementRParen),
|
2013-05-10 21:22:23 +08:00
|
|
|
UseGlobal, AllocType, ArraySize, PlacementArgs,
|
|
|
|
OperatorNew, OperatorDelete))
|
2009-03-16 01:47:39 +08:00
|
|
|
return ExprError();
|
2011-01-27 17:37:56 +08:00
|
|
|
|
|
|
|
// If this is an array allocation, compute whether the usual array
|
|
|
|
// deallocation function for the type has a size_t parameter.
|
|
|
|
bool UsualArrayDeleteWantsSize = false;
|
|
|
|
if (ArraySize && !AllocType->isDependentType())
|
|
|
|
UsualArrayDeleteWantsSize
|
|
|
|
= doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
|
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
SmallVector<Expr *, 8> AllPlaceArgs;
|
2009-11-20 02:39:40 +08:00
|
|
|
if (OperatorNew) {
|
|
|
|
// Add default arguments, if any.
|
2011-01-27 15:10:08 +08:00
|
|
|
const FunctionProtoType *Proto =
|
2009-11-20 02:39:40 +08:00
|
|
|
OperatorNew->getType()->getAs<FunctionProtoType>();
|
2011-01-27 15:10:08 +08:00
|
|
|
VariadicCallType CallType =
|
2009-11-25 03:27:49 +08:00
|
|
|
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-05-10 21:22:23 +08:00
|
|
|
if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
|
|
|
|
PlacementArgs, AllPlaceArgs, CallType))
|
2009-11-25 02:29:37 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-05-10 21:22:23 +08:00
|
|
|
if (!AllPlaceArgs.empty())
|
|
|
|
PlacementArgs = AllPlaceArgs;
|
2012-02-18 12:48:30 +08:00
|
|
|
|
2013-05-10 21:22:23 +08:00
|
|
|
DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
|
2012-02-18 12:48:30 +08:00
|
|
|
|
|
|
|
// FIXME: Missing call to CheckFunctionCall or equivalent
|
2009-11-20 02:39:40 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-01-25 05:15:41 +08:00
|
|
|
// Warn if the type is over-aligned and is being allocated by global operator
|
|
|
|
// new.
|
2013-05-10 21:22:23 +08:00
|
|
|
if (PlacementArgs.empty() && OperatorNew &&
|
2012-01-25 05:15:41 +08:00
|
|
|
(OperatorNew->isImplicit() ||
|
|
|
|
getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
|
|
|
|
if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
|
|
|
|
unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
|
|
|
|
if (Align > SuitableAlign)
|
|
|
|
Diag(StartLoc, diag::warn_overaligned_type)
|
|
|
|
<< AllocType
|
|
|
|
<< unsigned(Align / Context.getCharWidth())
|
|
|
|
<< unsigned(SuitableAlign / Context.getCharWidth());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-02-16 20:59:47 +08:00
|
|
|
QualType InitType = AllocType;
|
2012-02-16 20:22:20 +08:00
|
|
|
// Array 'new' can't have any initializers except empty parentheses.
|
2012-02-16 20:59:47 +08:00
|
|
|
// Initializer lists are also allowed, in C++11. Rely on the parser for the
|
|
|
|
// dialect distinction.
|
|
|
|
if (ResultType->isArrayType() || ArraySize) {
|
|
|
|
if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
|
|
|
|
SourceRange InitRange(Inits[0]->getLocStart(),
|
|
|
|
Inits[NumInits - 1]->getLocEnd());
|
|
|
|
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
|
|
|
|
return ExprError();
|
|
|
|
}
|
|
|
|
if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
|
|
|
|
// We do the initialization typechecking against the array type
|
|
|
|
// corresponding to the number of initializers + 1 (to also check
|
|
|
|
// default-initialization).
|
|
|
|
unsigned NumElements = ILE->getNumInits() + 1;
|
|
|
|
InitType = Context.getConstantArrayType(AllocType,
|
|
|
|
llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
|
|
|
|
ArrayType::Normal, 0);
|
|
|
|
}
|
2010-05-03 23:45:23 +08:00
|
|
|
}
|
|
|
|
|
2012-11-26 16:32:48 +08:00
|
|
|
// If we can perform the initialization, and we've not already done so,
|
|
|
|
// do it now.
|
2009-12-16 09:38:02 +08:00
|
|
|
if (!AllocType->isDependentType() &&
|
2012-02-25 19:00:22 +08:00
|
|
|
!Expr::hasAnyTypeDependentArguments(
|
2012-11-26 16:32:48 +08:00
|
|
|
llvm::makeArrayRef(Inits, NumInits)) &&
|
|
|
|
!HaveCompleteInit) {
|
2012-02-13 02:41:05 +08:00
|
|
|
// C++11 [expr.new]p15:
|
2009-12-16 09:38:02 +08:00
|
|
|
// A new-expression that creates an object of type T initializes that
|
|
|
|
// object as follows:
|
|
|
|
InitializationKind Kind
|
|
|
|
// - If the new-initializer is omitted, the object is default-
|
|
|
|
// initialized (8.5); if no initialization is performed,
|
|
|
|
// the object has indeterminate value
|
2012-02-16 20:22:20 +08:00
|
|
|
= initStyle == CXXNewExpr::NoInit
|
|
|
|
? InitializationKind::CreateDefault(TypeRange.getBegin())
|
2011-01-27 15:10:08 +08:00
|
|
|
// - Otherwise, the new-initializer is interpreted according to the
|
2009-12-16 09:38:02 +08:00
|
|
|
// initialization rules of 8.5 for direct-initialization.
|
2012-02-16 20:22:20 +08:00
|
|
|
: initStyle == CXXNewExpr::ListInit
|
|
|
|
? InitializationKind::CreateDirectList(TypeRange.getBegin())
|
|
|
|
: InitializationKind::CreateDirect(TypeRange.getBegin(),
|
|
|
|
DirectInitRange.getBegin(),
|
|
|
|
DirectInitRange.getEnd());
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-12-16 09:38:02 +08:00
|
|
|
InitializedEntity Entity
|
2012-02-16 20:59:47 +08:00
|
|
|
= InitializedEntity::InitializeNew(StartLoc, InitType);
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
|
2011-01-27 15:10:08 +08:00
|
|
|
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
|
2012-02-16 20:22:20 +08:00
|
|
|
MultiExprArg(Inits, NumInits));
|
2009-12-16 09:38:02 +08:00
|
|
|
if (FullInit.isInvalid())
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-02-16 20:22:20 +08:00
|
|
|
// FullInit is our initializer; strip off CXXBindTemporaryExprs, because
|
|
|
|
// we don't want the initialized object to be destructed.
|
|
|
|
if (CXXBindTemporaryExpr *Binder =
|
|
|
|
dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
|
|
|
|
FullInit = Owned(Binder->getSubExpr());
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-02-16 20:22:20 +08:00
|
|
|
Initializer = FullInit.take();
|
2008-11-22 03:14:01 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-26 13:06:18 +08:00
|
|
|
// Mark the new and delete operators as referenced.
|
2013-02-12 16:08:54 +08:00
|
|
|
if (OperatorNew) {
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
|
|
|
|
return ExprError();
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(StartLoc, OperatorNew);
|
2013-02-12 16:08:54 +08:00
|
|
|
}
|
|
|
|
if (OperatorDelete) {
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
|
|
|
|
return ExprError();
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(StartLoc, OperatorDelete);
|
2013-02-12 16:08:54 +08:00
|
|
|
}
|
2010-02-26 13:06:18 +08:00
|
|
|
|
2011-07-14 04:12:57 +08:00
|
|
|
// C++0x [expr.new]p17:
|
|
|
|
// If the new expression creates an array of objects of class type,
|
|
|
|
// access and ambiguity control are done for the destructor.
|
2012-03-11 07:40:02 +08:00
|
|
|
QualType BaseAllocType = Context.getBaseElementType(AllocType);
|
|
|
|
if (ArraySize && !BaseAllocType->isDependentType()) {
|
|
|
|
if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
|
|
|
|
if (CXXDestructorDecl *dtor = LookupDestructor(
|
|
|
|
cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
|
|
|
|
MarkFunctionReferenced(StartLoc, dtor);
|
|
|
|
CheckDestructorAccess(StartLoc, dtor,
|
|
|
|
PDiag(diag::err_access_dtor)
|
|
|
|
<< BaseAllocType);
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(dtor, StartLoc))
|
|
|
|
return ExprError();
|
2012-03-11 07:40:02 +08:00
|
|
|
}
|
2011-07-14 04:12:57 +08:00
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-12 06:51:03 +08:00
|
|
|
return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
|
2011-10-05 15:56:41 +08:00
|
|
|
OperatorDelete,
|
2011-01-27 17:37:56 +08:00
|
|
|
UsualArrayDeleteWantsSize,
|
2013-05-10 21:22:23 +08:00
|
|
|
PlacementArgs, TypeIdParens,
|
2012-02-16 20:22:20 +08:00
|
|
|
ArraySize, initStyle, Initializer,
|
2010-09-08 05:49:58 +08:00
|
|
|
ResultType, AllocTypeInfo,
|
2012-11-07 08:12:38 +08:00
|
|
|
Range, DirectInitRange));
|
2008-11-22 03:14:01 +08:00
|
|
|
}
|
|
|
|
|
2012-02-16 20:22:20 +08:00
|
|
|
/// \brief Checks that a type is suitable as the allocated type
|
2008-11-22 03:14:01 +08:00
|
|
|
/// in a new-expression.
|
2009-05-21 08:00:09 +08:00
|
|
|
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
|
2009-09-09 23:08:12 +08:00
|
|
|
SourceRange R) {
|
2008-11-22 03:14:01 +08:00
|
|
|
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
|
|
|
|
// abstract class type or array thereof.
|
2009-03-25 03:52:54 +08:00
|
|
|
if (AllocType->isFunctionType())
|
2009-05-21 08:00:09 +08:00
|
|
|
return Diag(Loc, diag::err_bad_new_type)
|
|
|
|
<< AllocType << 0 << R;
|
2009-03-25 03:52:54 +08:00
|
|
|
else if (AllocType->isReferenceType())
|
2009-05-21 08:00:09 +08:00
|
|
|
return Diag(Loc, diag::err_bad_new_type)
|
|
|
|
<< AllocType << 1 << R;
|
2009-03-25 03:52:54 +08:00
|
|
|
else if (!AllocType->isDependentType() &&
|
2012-05-05 00:32:21 +08:00
|
|
|
RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
|
2009-03-25 03:52:54 +08:00
|
|
|
return true;
|
2009-05-21 08:00:09 +08:00
|
|
|
else if (RequireNonAbstractType(Loc, AllocType,
|
2009-03-25 03:52:54 +08:00
|
|
|
diag::err_allocation_of_abstract_type))
|
2008-11-22 03:14:01 +08:00
|
|
|
return true;
|
2010-10-07 00:00:31 +08:00
|
|
|
else if (AllocType->isVariablyModifiedType())
|
|
|
|
return Diag(Loc, diag::err_variably_modified_new_type)
|
|
|
|
<< AllocType;
|
2011-04-16 03:46:20 +08:00
|
|
|
else if (unsigned AddressSpace = AllocType.getAddressSpace())
|
|
|
|
return Diag(Loc, diag::err_address_space_qualified_new)
|
|
|
|
<< AllocType.getUnqualifiedType() << AddressSpace;
|
2012-03-11 15:00:24 +08:00
|
|
|
else if (getLangOpts().ObjCAutoRefCount) {
|
2011-06-16 07:02:42 +08:00
|
|
|
if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
|
|
|
|
QualType BaseAllocType = Context.getBaseElementType(AT);
|
|
|
|
if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
|
|
|
|
BaseAllocType->isObjCLifetimeType())
|
2011-06-24 08:08:59 +08:00
|
|
|
return Diag(Loc, diag::err_arc_new_array_without_ownership)
|
2011-06-16 07:02:42 +08:00
|
|
|
<< BaseAllocType;
|
|
|
|
}
|
|
|
|
}
|
2011-04-16 03:46:20 +08:00
|
|
|
|
2008-11-22 03:14:01 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-02-26 13:06:18 +08:00
|
|
|
/// \brief Determine whether the given function is a non-placement
|
|
|
|
/// deallocation function.
|
2013-09-29 12:40:38 +08:00
|
|
|
static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
|
2010-02-26 13:06:18 +08:00
|
|
|
if (FD->isInvalidDecl())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
|
|
|
|
return Method->isUsualDeallocationFunction();
|
|
|
|
|
2013-09-29 12:40:38 +08:00
|
|
|
if (FD->getOverloadedOperator() != OO_Delete &&
|
|
|
|
FD->getOverloadedOperator() != OO_Array_Delete)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (FD->getNumParams() == 1)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
|
|
|
|
S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
|
|
|
|
S.Context.getSizeType());
|
2010-02-26 13:06:18 +08:00
|
|
|
}
|
|
|
|
|
2008-12-04 04:26:15 +08:00
|
|
|
/// FindAllocationFunctions - Finds the overloads of operator new and delete
|
|
|
|
/// that are appropriate for the allocation.
|
2009-02-10 02:24:27 +08:00
|
|
|
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
|
|
|
|
bool UseGlobal, QualType AllocType,
|
2013-05-10 21:22:23 +08:00
|
|
|
bool IsArray, MultiExprArg PlaceArgs,
|
2008-12-04 04:26:15 +08:00
|
|
|
FunctionDecl *&OperatorNew,
|
2009-09-09 23:08:12 +08:00
|
|
|
FunctionDecl *&OperatorDelete) {
|
2008-12-04 04:26:15 +08:00
|
|
|
// --- Choosing an allocation function ---
|
|
|
|
// C++ 5.3.4p8 - 14 & 18
|
|
|
|
// 1) If UseGlobal is true, only look in the global scope. Else, also look
|
|
|
|
// in the scope of the allocated class.
|
|
|
|
// 2) If an array size is given, look for operator new[], else look for
|
|
|
|
// operator new.
|
|
|
|
// 3) The first argument is always size_t. Append the arguments from the
|
|
|
|
// placement form.
|
|
|
|
|
2013-05-10 21:22:23 +08:00
|
|
|
SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
|
2008-12-04 04:26:15 +08:00
|
|
|
// We don't care about the actual value of this argument.
|
|
|
|
// FIXME: Should the Sema create the expression and embed it in the syntax
|
|
|
|
// tree? Or should the consumer just recalculate the value?
|
2010-08-28 17:06:06 +08:00
|
|
|
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
|
2011-09-02 08:18:52 +08:00
|
|
|
Context.getTargetInfo().getPointerWidth(0)),
|
2009-08-17 04:29:29 +08:00
|
|
|
Context.getSizeType(),
|
|
|
|
SourceLocation());
|
|
|
|
AllocArgs[0] = &Size;
|
2013-05-10 21:22:23 +08:00
|
|
|
std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
|
2008-12-04 04:26:15 +08:00
|
|
|
|
2010-02-26 13:06:18 +08:00
|
|
|
// C++ [expr.new]p8:
|
|
|
|
// If the allocated type is a non-array type, the allocation
|
2011-01-27 15:09:49 +08:00
|
|
|
// function's name is operator new and the deallocation function's
|
2010-02-26 13:06:18 +08:00
|
|
|
// name is operator delete. If the allocated type is an array
|
2011-01-27 15:09:49 +08:00
|
|
|
// type, the allocation function's name is operator new[] and the
|
|
|
|
// deallocation function's name is operator delete[].
|
2008-12-04 04:26:15 +08:00
|
|
|
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
|
|
|
|
IsArray ? OO_Array_New : OO_New);
|
2010-02-26 13:06:18 +08:00
|
|
|
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
|
|
|
|
IsArray ? OO_Array_Delete : OO_Delete);
|
|
|
|
|
2010-08-26 07:14:56 +08:00
|
|
|
QualType AllocElemType = Context.getBaseElementType(AllocType);
|
|
|
|
|
|
|
|
if (AllocElemType->isRecordType() && !UseGlobal) {
|
2009-09-09 23:08:12 +08:00
|
|
|
CXXRecordDecl *Record
|
2010-08-26 07:14:56 +08:00
|
|
|
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
|
2013-05-10 08:20:06 +08:00
|
|
|
if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
|
|
|
|
/*AllowMissing=*/true, OperatorNew))
|
2008-12-04 04:26:15 +08:00
|
|
|
return true;
|
|
|
|
}
|
2013-05-30 09:55:39 +08:00
|
|
|
|
2008-12-04 04:26:15 +08:00
|
|
|
if (!OperatorNew) {
|
|
|
|
// Didn't find a member overload. Look for a global one.
|
|
|
|
DeclareGlobalNewDelete();
|
2008-12-05 06:20:51 +08:00
|
|
|
DeclContext *TUDecl = Context.getTranslationUnitDecl();
|
2014-01-14 20:51:41 +08:00
|
|
|
bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
|
2013-05-10 08:20:06 +08:00
|
|
|
if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
|
2013-05-30 09:55:39 +08:00
|
|
|
/*AllowMissing=*/FallbackEnabled, OperatorNew,
|
|
|
|
/*Diagnose=*/!FallbackEnabled)) {
|
|
|
|
if (!FallbackEnabled)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// MSVC will fall back on trying to find a matching global operator new
|
|
|
|
// if operator new[] cannot be found. Also, MSVC will leak by not
|
|
|
|
// generating a call to operator delete or operator delete[], but we
|
|
|
|
// will not replicate that bug.
|
|
|
|
NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
|
|
|
|
DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
|
|
|
|
if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
|
2013-05-10 08:20:06 +08:00
|
|
|
/*AllowMissing=*/false, OperatorNew))
|
2008-12-05 06:20:51 +08:00
|
|
|
return true;
|
2013-05-30 09:55:39 +08:00
|
|
|
}
|
2008-12-05 06:20:51 +08:00
|
|
|
}
|
2008-12-04 04:26:15 +08:00
|
|
|
|
2010-04-20 10:18:25 +08:00
|
|
|
// We don't need an operator delete if we're running under
|
|
|
|
// -fno-exceptions.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (!getLangOpts().Exceptions) {
|
2010-04-20 10:18:25 +08:00
|
|
|
OperatorDelete = 0;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-06-01 04:26:12 +08:00
|
|
|
// FindAllocationOverload can change the passed in arguments, so we need to
|
|
|
|
// copy them back.
|
2013-05-10 21:22:23 +08:00
|
|
|
if (!PlaceArgs.empty())
|
|
|
|
std::copy(AllocArgs.begin() + 1, AllocArgs.end(), PlaceArgs.data());
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2010-02-26 13:06:18 +08:00
|
|
|
// C++ [expr.new]p19:
|
|
|
|
//
|
|
|
|
// If the new-expression begins with a unary :: operator, the
|
2011-01-27 15:09:49 +08:00
|
|
|
// deallocation function's name is looked up in the global
|
2010-02-26 13:06:18 +08:00
|
|
|
// scope. Otherwise, if the allocated type is a class type T or an
|
2011-01-27 15:09:49 +08:00
|
|
|
// array thereof, the deallocation function's name is looked up in
|
2010-02-26 13:06:18 +08:00
|
|
|
// the scope of T. If this lookup fails to find the name, or if
|
|
|
|
// the allocated type is not a class type or array thereof, the
|
2011-01-27 15:09:49 +08:00
|
|
|
// deallocation function's name is looked up in the global scope.
|
2010-02-26 13:06:18 +08:00
|
|
|
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
|
2010-08-26 07:14:56 +08:00
|
|
|
if (AllocElemType->isRecordType() && !UseGlobal) {
|
2010-02-26 13:06:18 +08:00
|
|
|
CXXRecordDecl *RD
|
2010-08-26 07:14:56 +08:00
|
|
|
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
|
2010-02-26 13:06:18 +08:00
|
|
|
LookupQualifiedName(FoundDelete, RD);
|
|
|
|
}
|
2010-03-18 16:19:33 +08:00
|
|
|
if (FoundDelete.isAmbiguous())
|
|
|
|
return true; // FIXME: clean up expressions?
|
2010-02-26 13:06:18 +08:00
|
|
|
|
|
|
|
if (FoundDelete.empty()) {
|
|
|
|
DeclareGlobalNewDelete();
|
|
|
|
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
|
|
|
|
}
|
|
|
|
|
|
|
|
FoundDelete.suppressDiagnostics();
|
2010-03-19 15:35:19 +08:00
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
|
2010-03-19 15:35:19 +08:00
|
|
|
|
2010-09-15 05:34:24 +08:00
|
|
|
// Whether we're looking for a placement operator delete is dictated
|
|
|
|
// by whether we selected a placement operator new, not by whether
|
|
|
|
// we had explicit placement arguments. This matters for things like
|
|
|
|
// struct A { void *operator new(size_t, int = 0); ... };
|
|
|
|
// A *a = new A()
|
2013-05-10 21:22:23 +08:00
|
|
|
bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
|
2010-09-15 05:34:24 +08:00
|
|
|
|
|
|
|
if (isPlacementNew) {
|
2010-02-26 13:06:18 +08:00
|
|
|
// C++ [expr.new]p20:
|
|
|
|
// A declaration of a placement deallocation function matches the
|
|
|
|
// declaration of a placement allocation function if it has the
|
|
|
|
// same number of parameters and, after parameter transformations
|
|
|
|
// (8.3.5), all parameter types except the first are
|
|
|
|
// identical. [...]
|
2011-01-27 15:10:08 +08:00
|
|
|
//
|
2010-02-26 13:06:18 +08:00
|
|
|
// To perform this comparison, we compute the function type that
|
|
|
|
// the deallocation function should have, and use that type both
|
|
|
|
// for template argument deduction and for comparison purposes.
|
2010-12-14 16:05:40 +08:00
|
|
|
//
|
|
|
|
// FIXME: this comparison should ignore CC and the like.
|
2010-02-26 13:06:18 +08:00
|
|
|
QualType ExpectedFunctionType;
|
|
|
|
{
|
|
|
|
const FunctionProtoType *Proto
|
|
|
|
= OperatorNew->getType()->getAs<FunctionProtoType>();
|
2010-12-14 16:05:40 +08:00
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
SmallVector<QualType, 4> ArgTypes;
|
2011-01-27 15:10:08 +08:00
|
|
|
ArgTypes.push_back(Context.VoidPtrTy);
|
2014-01-21 04:26:09 +08:00
|
|
|
for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
|
|
|
|
ArgTypes.push_back(Proto->getParamType(I));
|
2010-02-26 13:06:18 +08:00
|
|
|
|
2010-12-14 16:05:40 +08:00
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
|
|
EPI.Variadic = Proto->isVariadic();
|
|
|
|
|
2010-02-26 13:06:18 +08:00
|
|
|
ExpectedFunctionType
|
2013-03-09 05:51:21 +08:00
|
|
|
= Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
|
2010-02-26 13:06:18 +08:00
|
|
|
}
|
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
for (LookupResult::iterator D = FoundDelete.begin(),
|
2010-02-26 13:06:18 +08:00
|
|
|
DEnd = FoundDelete.end();
|
|
|
|
D != DEnd; ++D) {
|
|
|
|
FunctionDecl *Fn = 0;
|
2011-01-27 15:10:08 +08:00
|
|
|
if (FunctionTemplateDecl *FnTmpl
|
2010-02-26 13:06:18 +08:00
|
|
|
= dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
|
|
|
|
// Perform template argument deduction to try to match the
|
|
|
|
// expected function type.
|
2012-09-19 10:26:47 +08:00
|
|
|
TemplateDeductionInfo Info(StartLoc);
|
2010-02-26 13:06:18 +08:00
|
|
|
if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
|
|
|
|
continue;
|
|
|
|
} else
|
|
|
|
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
|
|
|
|
|
|
|
|
if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
|
2010-03-19 15:35:19 +08:00
|
|
|
Matches.push_back(std::make_pair(D.getPair(), Fn));
|
2010-02-26 13:06:18 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// C++ [expr.new]p20:
|
|
|
|
// [...] Any non-placement deallocation function matches a
|
|
|
|
// non-placement allocation function. [...]
|
2011-01-27 15:10:08 +08:00
|
|
|
for (LookupResult::iterator D = FoundDelete.begin(),
|
2010-02-26 13:06:18 +08:00
|
|
|
DEnd = FoundDelete.end();
|
|
|
|
D != DEnd; ++D) {
|
|
|
|
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
|
2013-09-29 12:40:38 +08:00
|
|
|
if (isNonPlacementDeallocationFunction(*this, Fn))
|
2010-03-19 15:35:19 +08:00
|
|
|
Matches.push_back(std::make_pair(D.getPair(), Fn));
|
2010-02-26 13:06:18 +08:00
|
|
|
}
|
2013-09-29 12:40:38 +08:00
|
|
|
|
|
|
|
// C++1y [expr.new]p22:
|
|
|
|
// For a non-placement allocation function, the normal deallocation
|
|
|
|
// function lookup is used
|
|
|
|
// C++1y [expr.delete]p?:
|
|
|
|
// If [...] deallocation function lookup finds both a usual deallocation
|
|
|
|
// function with only a pointer parameter and a usual deallocation
|
|
|
|
// function with both a pointer parameter and a size parameter, then the
|
|
|
|
// selected deallocation function shall be the one with two parameters.
|
|
|
|
// Otherwise, the selected deallocation function shall be the function
|
|
|
|
// with one parameter.
|
|
|
|
if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
|
|
|
|
if (Matches[0].second->getNumParams() == 1)
|
|
|
|
Matches.erase(Matches.begin());
|
|
|
|
else
|
|
|
|
Matches.erase(Matches.begin() + 1);
|
|
|
|
assert(Matches[0].second->getNumParams() == 2 &&
|
2014-02-03 15:04:10 +08:00
|
|
|
"found an unexpected usual deallocation function");
|
2013-09-29 12:40:38 +08:00
|
|
|
}
|
2010-02-26 13:06:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// C++ [expr.new]p20:
|
|
|
|
// [...] If the lookup finds a single matching deallocation
|
|
|
|
// function, that function will be called; otherwise, no
|
|
|
|
// deallocation function will be called.
|
|
|
|
if (Matches.size() == 1) {
|
2010-03-19 15:35:19 +08:00
|
|
|
OperatorDelete = Matches[0].second;
|
2010-02-26 13:06:18 +08:00
|
|
|
|
|
|
|
// C++0x [expr.new]p20:
|
|
|
|
// If the lookup finds the two-parameter form of a usual
|
|
|
|
// deallocation function (3.7.4.2) and that function, considered
|
|
|
|
// as a placement deallocation function, would have been
|
|
|
|
// selected as a match for the allocation function, the program
|
|
|
|
// is ill-formed.
|
2013-05-10 21:22:23 +08:00
|
|
|
if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
|
2013-09-29 12:40:38 +08:00
|
|
|
isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
|
2010-02-26 13:06:18 +08:00
|
|
|
Diag(StartLoc, diag::err_placement_new_non_placement_delete)
|
2013-05-10 21:22:23 +08:00
|
|
|
<< SourceRange(PlaceArgs.front()->getLocStart(),
|
|
|
|
PlaceArgs.back()->getLocEnd());
|
2013-09-29 12:40:38 +08:00
|
|
|
if (!OperatorDelete->isImplicit())
|
|
|
|
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
|
|
|
|
<< DeleteName;
|
2010-03-18 16:19:33 +08:00
|
|
|
} else {
|
|
|
|
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
|
2010-03-19 15:35:19 +08:00
|
|
|
Matches[0].first);
|
2010-02-26 13:06:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-12-05 06:20:51 +08:00
|
|
|
return false;
|
|
|
|
}
|
2008-12-04 04:26:15 +08:00
|
|
|
|
2008-12-05 06:20:51 +08:00
|
|
|
/// FindAllocationOverload - Find an fitting overload for the allocation
|
|
|
|
/// function in the specified scope.
|
2009-02-10 02:24:27 +08:00
|
|
|
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
|
2013-05-10 08:20:06 +08:00
|
|
|
DeclarationName Name, MultiExprArg Args,
|
|
|
|
DeclContext *Ctx,
|
2011-05-13 06:46:29 +08:00
|
|
|
bool AllowMissing, FunctionDecl *&Operator,
|
|
|
|
bool Diagnose) {
|
2009-11-17 10:14:36 +08:00
|
|
|
LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
|
|
|
|
LookupQualifiedName(R, Ctx);
|
2009-10-10 05:13:30 +08:00
|
|
|
if (R.empty()) {
|
2011-05-13 06:46:29 +08:00
|
|
|
if (AllowMissing || !Diagnose)
|
2008-12-05 06:20:51 +08:00
|
|
|
return false;
|
|
|
|
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
|
2009-02-17 15:29:20 +08:00
|
|
|
<< Name << Range;
|
2008-12-05 06:20:51 +08:00
|
|
|
}
|
2008-12-04 04:26:15 +08:00
|
|
|
|
2010-03-18 16:19:33 +08:00
|
|
|
if (R.isAmbiguous())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
R.suppressDiagnostics();
|
2009-10-10 05:13:30 +08:00
|
|
|
|
2014-04-17 09:52:14 +08:00
|
|
|
OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
|
2011-01-27 15:10:08 +08:00
|
|
|
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
|
2009-09-30 08:03:47 +08:00
|
|
|
Alloc != AllocEnd; ++Alloc) {
|
2008-12-23 08:26:44 +08:00
|
|
|
// Even member operator new/delete are implicitly treated as
|
|
|
|
// static, so don't use AddMemberCandidate.
|
2010-03-19 15:35:19 +08:00
|
|
|
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
|
2010-02-03 19:02:14 +08:00
|
|
|
|
2010-03-19 15:35:19 +08:00
|
|
|
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
|
|
|
|
AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
|
2012-02-25 19:00:22 +08:00
|
|
|
/*ExplicitTemplateArgs=*/0,
|
2013-05-10 08:20:06 +08:00
|
|
|
Args, Candidates,
|
2010-02-03 19:02:14 +08:00
|
|
|
/*SuppressUserConversions=*/false);
|
2009-09-30 02:16:17 +08:00
|
|
|
continue;
|
2010-02-03 19:02:14 +08:00
|
|
|
}
|
|
|
|
|
2010-03-19 15:35:19 +08:00
|
|
|
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
2013-05-10 08:20:06 +08:00
|
|
|
AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
|
2010-02-03 19:02:14 +08:00
|
|
|
/*SuppressUserConversions=*/false);
|
2008-12-04 04:26:15 +08:00
|
|
|
}
|
|
|
|
|
2008-12-05 06:20:51 +08:00
|
|
|
// Do the resolution.
|
|
|
|
OverloadCandidateSet::iterator Best;
|
2010-08-25 04:38:10 +08:00
|
|
|
switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
|
2008-12-05 06:20:51 +08:00
|
|
|
case OR_Success: {
|
|
|
|
// Got one!
|
|
|
|
FunctionDecl *FnDecl = Best->Function;
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(StartLoc, FnDecl);
|
2008-12-05 06:20:51 +08:00
|
|
|
// The first argument is size_t, and the first parameter must be size_t,
|
|
|
|
// too. This is checked on declaration and can be assumed. (It can't be
|
|
|
|
// asserted on, though, since invalid decls are left in there.)
|
2010-03-18 16:19:33 +08:00
|
|
|
// Watch out for variadic allocator function.
|
2009-11-25 02:29:37 +08:00
|
|
|
unsigned NumArgsInFnDecl = FnDecl->getNumParams();
|
2013-05-10 08:20:06 +08:00
|
|
|
for (unsigned i = 0; (i < Args.size() && i < NumArgsInFnDecl); ++i) {
|
2011-05-13 06:46:29 +08:00
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
|
|
|
|
FnDecl->getParamDecl(i));
|
|
|
|
|
|
|
|
if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
|
|
|
|
return true;
|
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Result
|
2011-05-13 06:46:29 +08:00
|
|
|
= PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
|
2010-03-27 04:35:59 +08:00
|
|
|
if (Result.isInvalid())
|
2008-12-05 06:20:51 +08:00
|
|
|
return true;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-03-27 04:35:59 +08:00
|
|
|
Args[i] = Result.takeAs<Expr>();
|
2008-12-05 06:20:51 +08:00
|
|
|
}
|
2012-02-26 17:11:52 +08:00
|
|
|
|
2008-12-05 06:20:51 +08:00
|
|
|
Operator = FnDecl;
|
2012-02-26 17:11:52 +08:00
|
|
|
|
|
|
|
if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
|
|
|
|
Best->FoundDecl, Diagnose) == AR_inaccessible)
|
|
|
|
return true;
|
|
|
|
|
2008-12-05 06:20:51 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
case OR_No_Viable_Function:
|
2011-06-08 18:26:03 +08:00
|
|
|
if (Diagnose) {
|
2011-05-13 06:46:29 +08:00
|
|
|
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
|
|
|
|
<< Name << Range;
|
2013-05-10 08:20:06 +08:00
|
|
|
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
|
2011-06-08 18:26:03 +08:00
|
|
|
}
|
2008-12-05 06:20:51 +08:00
|
|
|
return true;
|
|
|
|
|
|
|
|
case OR_Ambiguous:
|
2011-06-08 18:26:03 +08:00
|
|
|
if (Diagnose) {
|
2011-05-13 06:46:29 +08:00
|
|
|
Diag(StartLoc, diag::err_ovl_ambiguous_call)
|
|
|
|
<< Name << Range;
|
2013-05-10 08:20:06 +08:00
|
|
|
Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
|
2011-06-08 18:26:03 +08:00
|
|
|
}
|
2008-12-05 06:20:51 +08:00
|
|
|
return true;
|
2009-02-19 05:56:37 +08:00
|
|
|
|
Implement a new 'availability' attribute, that allows one to specify
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
2011-03-23 08:50:03 +08:00
|
|
|
case OR_Deleted: {
|
2011-06-08 18:26:03 +08:00
|
|
|
if (Diagnose) {
|
2011-05-13 06:46:29 +08:00
|
|
|
Diag(StartLoc, diag::err_ovl_deleted_call)
|
|
|
|
<< Best->Function->isDeleted()
|
|
|
|
<< Name
|
|
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
|
|
<< Range;
|
2013-05-10 08:20:06 +08:00
|
|
|
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
|
2011-06-08 18:26:03 +08:00
|
|
|
}
|
2009-02-19 05:56:37 +08:00
|
|
|
return true;
|
2008-12-05 06:20:51 +08:00
|
|
|
}
|
Implement a new 'availability' attribute, that allows one to specify
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
2011-03-23 08:50:03 +08:00
|
|
|
}
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Unreachable, bad result from BestViableFunction");
|
2008-12-04 04:26:15 +08:00
|
|
|
}
|
|
|
|
|
2008-12-05 06:20:51 +08:00
|
|
|
|
2008-12-04 04:26:15 +08:00
|
|
|
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
|
|
|
|
/// delete. These are:
|
|
|
|
/// @code
|
2011-03-15 02:08:30 +08:00
|
|
|
/// // C++03:
|
2008-12-04 04:26:15 +08:00
|
|
|
/// void* operator new(std::size_t) throw(std::bad_alloc);
|
|
|
|
/// void* operator new[](std::size_t) throw(std::bad_alloc);
|
|
|
|
/// void operator delete(void *) throw();
|
|
|
|
/// void operator delete[](void *) throw();
|
2013-09-29 12:40:38 +08:00
|
|
|
/// // C++11:
|
2011-03-15 02:08:30 +08:00
|
|
|
/// void* operator new(std::size_t);
|
|
|
|
/// void* operator new[](std::size_t);
|
2013-09-29 12:40:38 +08:00
|
|
|
/// void operator delete(void *) noexcept;
|
|
|
|
/// void operator delete[](void *) noexcept;
|
|
|
|
/// // C++1y:
|
|
|
|
/// void* operator new(std::size_t);
|
|
|
|
/// void* operator new[](std::size_t);
|
|
|
|
/// void operator delete(void *) noexcept;
|
|
|
|
/// void operator delete[](void *) noexcept;
|
|
|
|
/// void operator delete(void *, std::size_t) noexcept;
|
|
|
|
/// void operator delete[](void *, std::size_t) noexcept;
|
2008-12-04 04:26:15 +08:00
|
|
|
/// @endcode
|
|
|
|
/// Note that the placement and nothrow forms of new are *not* implicitly
|
|
|
|
/// declared. Their use requires including \<new\>.
|
2009-09-09 23:08:12 +08:00
|
|
|
void Sema::DeclareGlobalNewDelete() {
|
2008-12-04 04:26:15 +08:00
|
|
|
if (GlobalNewDeleteDeclared)
|
|
|
|
return;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-09-16 06:30:29 +08:00
|
|
|
// C++ [basic.std.dynamic]p2:
|
2011-01-27 15:10:08 +08:00
|
|
|
// [...] The following allocation and deallocation functions (18.4) are
|
|
|
|
// implicitly declared in global scope in each translation unit of a
|
2009-09-16 06:30:29 +08:00
|
|
|
// program
|
2011-01-27 15:10:08 +08:00
|
|
|
//
|
2011-03-15 02:08:30 +08:00
|
|
|
// C++03:
|
2009-09-16 06:30:29 +08:00
|
|
|
// void* operator new(std::size_t) throw(std::bad_alloc);
|
2011-01-27 15:10:08 +08:00
|
|
|
// void* operator new[](std::size_t) throw(std::bad_alloc);
|
|
|
|
// void operator delete(void*) throw();
|
2009-09-16 06:30:29 +08:00
|
|
|
// void operator delete[](void*) throw();
|
2013-09-29 12:40:38 +08:00
|
|
|
// C++11:
|
|
|
|
// void* operator new(std::size_t);
|
|
|
|
// void* operator new[](std::size_t);
|
|
|
|
// void operator delete(void*) noexcept;
|
|
|
|
// void operator delete[](void*) noexcept;
|
|
|
|
// C++1y:
|
2011-03-15 02:08:30 +08:00
|
|
|
// void* operator new(std::size_t);
|
|
|
|
// void* operator new[](std::size_t);
|
2013-09-29 12:40:38 +08:00
|
|
|
// void operator delete(void*) noexcept;
|
|
|
|
// void operator delete[](void*) noexcept;
|
|
|
|
// void operator delete(void*, std::size_t) noexcept;
|
|
|
|
// void operator delete[](void*, std::size_t) noexcept;
|
2009-09-16 06:30:29 +08:00
|
|
|
//
|
2011-01-27 15:10:08 +08:00
|
|
|
// These implicit declarations introduce only the function names operator
|
2009-09-16 06:30:29 +08:00
|
|
|
// new, operator new[], operator delete, operator delete[].
|
|
|
|
//
|
|
|
|
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
|
|
|
|
// "std" or "bad_alloc" as necessary to form the exception specification.
|
|
|
|
// However, we do not make these implicit declarations visible to name
|
|
|
|
// lookup.
|
2013-01-02 19:42:31 +08:00
|
|
|
if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
|
2009-09-16 06:30:29 +08:00
|
|
|
// The "std::bad_alloc" class has not yet been declared, so build it
|
|
|
|
// implicitly.
|
2011-01-27 15:10:08 +08:00
|
|
|
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
|
|
|
|
getOrCreateStdNamespace(),
|
2011-03-09 22:09:51 +08:00
|
|
|
SourceLocation(), SourceLocation(),
|
2011-01-27 15:10:08 +08:00
|
|
|
&PP.getIdentifierTable().get("bad_alloc"),
|
2011-03-09 22:09:51 +08:00
|
|
|
0);
|
2010-08-02 15:14:54 +08:00
|
|
|
getStdBadAlloc()->setImplicit(true);
|
2009-09-16 06:30:29 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2008-12-04 04:26:15 +08:00
|
|
|
GlobalNewDeleteDeclared = true;
|
|
|
|
|
|
|
|
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
|
|
|
|
QualType SizeT = Context.getSizeType();
|
2012-03-11 15:00:24 +08:00
|
|
|
bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
|
2008-12-04 04:26:15 +08:00
|
|
|
|
|
|
|
DeclareGlobalAllocationFunction(
|
|
|
|
Context.DeclarationNames.getCXXOperatorName(OO_New),
|
2013-09-29 12:40:38 +08:00
|
|
|
VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
|
2008-12-04 04:26:15 +08:00
|
|
|
DeclareGlobalAllocationFunction(
|
|
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
|
2013-09-29 12:40:38 +08:00
|
|
|
VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
|
2008-12-04 04:26:15 +08:00
|
|
|
DeclareGlobalAllocationFunction(
|
|
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
|
|
|
|
Context.VoidTy, VoidPtr);
|
|
|
|
DeclareGlobalAllocationFunction(
|
|
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
|
|
|
|
Context.VoidTy, VoidPtr);
|
2013-09-29 12:40:38 +08:00
|
|
|
if (getLangOpts().SizedDeallocation) {
|
|
|
|
DeclareGlobalAllocationFunction(
|
|
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
|
|
|
|
Context.VoidTy, VoidPtr, Context.getSizeType());
|
|
|
|
DeclareGlobalAllocationFunction(
|
|
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
|
|
|
|
Context.VoidTy, VoidPtr, Context.getSizeType());
|
|
|
|
}
|
2008-12-04 04:26:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// DeclareGlobalAllocationFunction - Declares a single implicit global
|
|
|
|
/// allocation function if it doesn't already exist.
|
|
|
|
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
|
2013-09-29 12:40:38 +08:00
|
|
|
QualType Return,
|
|
|
|
QualType Param1, QualType Param2,
|
2009-12-17 00:59:22 +08:00
|
|
|
bool AddMallocAttr) {
|
2008-12-04 04:26:15 +08:00
|
|
|
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
|
2013-09-29 12:40:38 +08:00
|
|
|
unsigned NumParams = Param2.isNull() ? 1 : 2;
|
2008-12-04 04:26:15 +08:00
|
|
|
|
|
|
|
// Check if this function is already declared.
|
2013-09-14 20:00:01 +08:00
|
|
|
DeclContext::lookup_result R = GlobalCtx->lookup(Name);
|
|
|
|
for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
|
|
|
|
Alloc != AllocEnd; ++Alloc) {
|
|
|
|
// Only look at non-template functions, as it is the predefined,
|
|
|
|
// non-templated allocation function we are trying to declare here.
|
|
|
|
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
|
2013-09-29 12:40:38 +08:00
|
|
|
if (Func->getNumParams() == NumParams) {
|
|
|
|
QualType InitialParam1Type =
|
|
|
|
Context.getCanonicalType(Func->getParamDecl(0)
|
|
|
|
->getType().getUnqualifiedType());
|
|
|
|
QualType InitialParam2Type =
|
|
|
|
NumParams == 2
|
|
|
|
? Context.getCanonicalType(Func->getParamDecl(1)
|
|
|
|
->getType().getUnqualifiedType())
|
|
|
|
: QualType();
|
2010-02-03 19:02:14 +08:00
|
|
|
// FIXME: Do we need to check for default arguments here?
|
2013-09-29 12:40:38 +08:00
|
|
|
if (InitialParam1Type == Param1 &&
|
|
|
|
(NumParams == 1 || InitialParam2Type == Param2)) {
|
2013-07-14 10:01:48 +08:00
|
|
|
if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
|
2014-01-16 21:03:14 +08:00
|
|
|
Func->addAttr(MallocAttr::CreateImplicit(Context));
|
2013-09-14 20:00:01 +08:00
|
|
|
// Make the function visible to name lookup, even if we found it in
|
|
|
|
// an unimported module. It either is an implicitly-declared global
|
2013-07-14 10:01:48 +08:00
|
|
|
// allocation function, or is suppressing that function.
|
|
|
|
Func->setHidden(false);
|
2010-02-03 19:02:14 +08:00
|
|
|
return;
|
2010-08-18 23:06:25 +08:00
|
|
|
}
|
2010-02-03 19:02:14 +08:00
|
|
|
}
|
2008-12-04 04:26:15 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-02-08 06:39:53 +08:00
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
|
|
|
2014-02-08 08:42:45 +08:00
|
|
|
QualType BadAllocType;
|
2011-01-27 15:10:08 +08:00
|
|
|
bool HasBadAllocExceptionSpec
|
2009-09-16 06:30:29 +08:00
|
|
|
= (Name.getCXXOverloadedOperator() == OO_New ||
|
|
|
|
Name.getCXXOverloadedOperator() == OO_Array_New);
|
2010-12-14 16:05:40 +08:00
|
|
|
if (HasBadAllocExceptionSpec) {
|
2013-01-02 19:42:31 +08:00
|
|
|
if (!getLangOpts().CPlusPlus11) {
|
2014-02-08 08:42:45 +08:00
|
|
|
BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
|
2014-02-08 06:39:53 +08:00
|
|
|
assert(StdBadAlloc && "Must have std::bad_alloc declared");
|
2011-03-15 02:08:30 +08:00
|
|
|
EPI.ExceptionSpecType = EST_Dynamic;
|
|
|
|
EPI.NumExceptions = 1;
|
|
|
|
EPI.Exceptions = &BadAllocType;
|
|
|
|
}
|
2011-03-12 19:50:43 +08:00
|
|
|
} else {
|
2013-01-02 19:42:31 +08:00
|
|
|
EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
|
2011-03-15 02:08:30 +08:00
|
|
|
EST_BasicNoexcept : EST_DynamicNone;
|
2010-12-14 16:05:40 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-09-29 12:40:38 +08:00
|
|
|
QualType Params[] = { Param1, Param2 };
|
|
|
|
|
|
|
|
QualType FnType = Context.getFunctionType(
|
|
|
|
Return, ArrayRef<QualType>(Params, NumParams), EPI);
|
2008-12-04 04:26:15 +08:00
|
|
|
FunctionDecl *Alloc =
|
2011-03-08 16:55:46 +08:00
|
|
|
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
|
|
|
|
SourceLocation(), Name,
|
2013-04-04 03:27:57 +08:00
|
|
|
FnType, /*TInfo=*/0, SC_None, false, true);
|
2008-12-04 04:26:15 +08:00
|
|
|
Alloc->setImplicit();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-12-17 00:59:22 +08:00
|
|
|
if (AddMallocAttr)
|
2014-01-16 21:03:14 +08:00
|
|
|
Alloc->addAttr(MallocAttr::CreateImplicit(Context));
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-09-29 12:40:38 +08:00
|
|
|
ParmVarDecl *ParamDecls[2];
|
2014-02-04 09:14:30 +08:00
|
|
|
for (unsigned I = 0; I != NumParams; ++I) {
|
2013-09-29 12:40:38 +08:00
|
|
|
ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
|
|
|
|
SourceLocation(), 0,
|
|
|
|
Params[I], /*TInfo=*/0,
|
|
|
|
SC_None, 0);
|
2014-02-04 09:14:30 +08:00
|
|
|
ParamDecls[I]->setImplicit();
|
|
|
|
}
|
2013-09-29 12:40:38 +08:00
|
|
|
Alloc->setParams(ArrayRef<ParmVarDecl*>(ParamDecls, NumParams));
|
2008-12-04 04:26:15 +08:00
|
|
|
|
2008-12-24 05:05:05 +08:00
|
|
|
// FIXME: Also add this declaration to the IdentifierResolver, but
|
|
|
|
// make sure it is at the end of the chain to coincide with the
|
|
|
|
// global scope.
|
2010-08-24 16:50:51 +08:00
|
|
|
Context.getTranslationUnitDecl()->addDecl(Alloc);
|
2008-12-04 04:26:15 +08:00
|
|
|
}
|
|
|
|
|
2013-09-29 12:40:38 +08:00
|
|
|
FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
|
|
|
|
bool CanProvideSize,
|
|
|
|
DeclarationName Name) {
|
|
|
|
DeclareGlobalNewDelete();
|
|
|
|
|
|
|
|
LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
|
|
|
|
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
|
|
|
|
|
|
|
|
// C++ [expr.new]p20:
|
|
|
|
// [...] Any non-placement deallocation function matches a
|
|
|
|
// non-placement allocation function. [...]
|
|
|
|
llvm::SmallVector<FunctionDecl*, 2> Matches;
|
|
|
|
for (LookupResult::iterator D = FoundDelete.begin(),
|
|
|
|
DEnd = FoundDelete.end();
|
|
|
|
D != DEnd; ++D) {
|
|
|
|
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
|
|
|
|
if (isNonPlacementDeallocationFunction(*this, Fn))
|
|
|
|
Matches.push_back(Fn);
|
|
|
|
}
|
|
|
|
|
|
|
|
// C++1y [expr.delete]p?:
|
|
|
|
// If the type is complete and deallocation function lookup finds both a
|
|
|
|
// usual deallocation function with only a pointer parameter and a usual
|
|
|
|
// deallocation function with both a pointer parameter and a size
|
|
|
|
// parameter, then the selected deallocation function shall be the one
|
|
|
|
// with two parameters. Otherwise, the selected deallocation function
|
|
|
|
// shall be the function with one parameter.
|
|
|
|
if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
|
|
|
|
unsigned NumArgs = CanProvideSize ? 2 : 1;
|
|
|
|
if (Matches[0]->getNumParams() != NumArgs)
|
|
|
|
Matches.erase(Matches.begin());
|
|
|
|
else
|
|
|
|
Matches.erase(Matches.begin() + 1);
|
|
|
|
assert(Matches[0]->getNumParams() == NumArgs &&
|
2014-02-03 15:04:10 +08:00
|
|
|
"found an unexpected usual deallocation function");
|
2013-09-29 12:40:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
assert(Matches.size() == 1 &&
|
|
|
|
"unexpectedly have multiple usual deallocation functions");
|
|
|
|
return Matches.front();
|
|
|
|
}
|
|
|
|
|
2009-11-16 02:45:20 +08:00
|
|
|
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
|
|
|
|
DeclarationName Name,
|
2011-05-13 06:46:29 +08:00
|
|
|
FunctionDecl* &Operator, bool Diagnose) {
|
2009-11-17 10:14:36 +08:00
|
|
|
LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
|
2009-11-16 02:45:20 +08:00
|
|
|
// Try to find operator delete/operator delete[] in class scope.
|
2009-11-17 10:14:36 +08:00
|
|
|
LookupQualifiedName(Found, RD);
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-11-17 10:14:36 +08:00
|
|
|
if (Found.isAmbiguous())
|
2009-11-16 02:45:20 +08:00
|
|
|
return true;
|
|
|
|
|
2010-06-28 08:30:51 +08:00
|
|
|
Found.suppressDiagnostics();
|
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
SmallVector<DeclAccessPair,4> Matches;
|
2009-11-16 02:45:20 +08:00
|
|
|
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
|
|
|
|
F != FEnd; ++F) {
|
2010-08-08 15:04:00 +08:00
|
|
|
NamedDecl *ND = (*F)->getUnderlyingDecl();
|
|
|
|
|
|
|
|
// Ignore template operator delete members from the check for a usual
|
|
|
|
// deallocation function.
|
|
|
|
if (isa<FunctionTemplateDecl>(ND))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
|
2010-08-04 08:31:26 +08:00
|
|
|
Matches.push_back(F.getPair());
|
|
|
|
}
|
|
|
|
|
|
|
|
// There's exactly one suitable operator; pick it.
|
|
|
|
if (Matches.size() == 1) {
|
|
|
|
Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
|
2011-05-13 06:46:29 +08:00
|
|
|
|
|
|
|
if (Operator->isDeleted()) {
|
|
|
|
if (Diagnose) {
|
|
|
|
Diag(StartLoc, diag::err_deleted_function_use);
|
2012-03-31 04:53:28 +08:00
|
|
|
NoteDeletedFunction(Operator);
|
2011-05-13 06:46:29 +08:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2012-02-26 17:11:52 +08:00
|
|
|
if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
|
|
|
|
Matches[0], Diagnose) == AR_inaccessible)
|
|
|
|
return true;
|
|
|
|
|
2010-08-04 08:31:26 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
// We found multiple suitable operators; complain about the ambiguity.
|
|
|
|
} else if (!Matches.empty()) {
|
2011-05-13 06:46:29 +08:00
|
|
|
if (Diagnose) {
|
2011-05-13 06:46:25 +08:00
|
|
|
Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
|
|
|
|
<< Name << RD;
|
|
|
|
|
2011-07-23 18:55:15 +08:00
|
|
|
for (SmallVectorImpl<DeclAccessPair>::iterator
|
2011-05-13 06:46:25 +08:00
|
|
|
F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
|
|
|
|
Diag((*F)->getUnderlyingDecl()->getLocation(),
|
|
|
|
diag::note_member_declared_here) << Name;
|
|
|
|
}
|
2010-08-04 08:31:26 +08:00
|
|
|
return true;
|
2009-11-16 02:45:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// We did find operator delete/operator delete[] declarations, but
|
|
|
|
// none of them were suitable.
|
|
|
|
if (!Found.empty()) {
|
2011-05-13 06:46:29 +08:00
|
|
|
if (Diagnose) {
|
2011-05-13 06:46:25 +08:00
|
|
|
Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
|
|
|
|
<< Name << RD;
|
|
|
|
|
|
|
|
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
|
|
|
|
F != FEnd; ++F)
|
|
|
|
Diag((*F)->getUnderlyingDecl()->getLocation(),
|
|
|
|
diag::note_member_declared_here) << Name;
|
|
|
|
}
|
2009-11-16 02:45:20 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2013-12-05 16:30:59 +08:00
|
|
|
Operator = 0;
|
2009-11-16 02:45:20 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2008-11-22 03:14:01 +08:00
|
|
|
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
|
|
|
|
/// @code ::delete ptr; @endcode
|
|
|
|
/// or
|
|
|
|
/// @code delete [] ptr; @endcode
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2008-11-22 03:14:01 +08:00
|
|
|
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
|
2011-04-09 02:41:53 +08:00
|
|
|
bool ArrayForm, Expr *ExE) {
|
2009-09-10 07:39:55 +08:00
|
|
|
// C++ [expr.delete]p1:
|
|
|
|
// The operand shall have a pointer type, or a class type having a single
|
2013-05-22 03:05:48 +08:00
|
|
|
// non-explicit conversion function to a pointer type. The result has type
|
|
|
|
// void.
|
2009-09-10 07:39:55 +08:00
|
|
|
//
|
2008-11-22 03:14:01 +08:00
|
|
|
// DR599 amends "pointer type" to "pointer to object type" in both cases.
|
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Ex = Owned(ExE);
|
2009-08-17 04:29:29 +08:00
|
|
|
FunctionDecl *OperatorDelete = 0;
|
2010-09-14 04:15:54 +08:00
|
|
|
bool ArrayFormAsWritten = ArrayForm;
|
2011-01-27 17:37:56 +08:00
|
|
|
bool UsualArrayDeleteWantsSize = false;
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
if (!Ex.get()->isTypeDependent()) {
|
2012-03-09 12:08:29 +08:00
|
|
|
// Perform lvalue-to-rvalue cast, if needed.
|
|
|
|
Ex = DefaultLvalueConversion(Ex.take());
|
2012-12-13 08:37:17 +08:00
|
|
|
if (Ex.isInvalid())
|
|
|
|
return ExprError();
|
2012-03-09 12:08:29 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
QualType Type = Ex.get()->getType();
|
2008-11-22 03:14:01 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
class DeleteConverter : public ContextualImplicitConverter {
|
|
|
|
public:
|
|
|
|
DeleteConverter() : ContextualImplicitConverter(false, true) {}
|
|
|
|
|
2014-03-12 12:55:44 +08:00
|
|
|
bool match(QualType ConvType) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
// FIXME: If we have an operator T* and an operator void*, we must pick
|
|
|
|
// the operator T*.
|
|
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
|
|
if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType T) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
return S.Diag(Loc, diag::err_delete_operand) << T;
|
|
|
|
}
|
2010-03-31 09:36:47 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType T) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
|
|
|
|
}
|
2010-03-31 09:36:47 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType T,
|
|
|
|
QualType ConvTy) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType ConvTy) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
|
|
|
|
<< ConvTy;
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType T) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
|
2009-09-10 07:39:55 +08:00
|
|
|
}
|
2013-05-22 03:05:48 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType ConvTy) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
|
|
|
|
<< ConvTy;
|
2009-09-16 06:15:23 +08:00
|
|
|
}
|
2013-05-22 03:05:48 +08:00
|
|
|
|
|
|
|
SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
|
2014-03-12 12:55:44 +08:00
|
|
|
QualType T,
|
|
|
|
QualType ConvTy) override {
|
2013-05-22 03:05:48 +08:00
|
|
|
llvm_unreachable("conversion functions are permitted");
|
2009-09-10 07:39:55 +08:00
|
|
|
}
|
2013-05-22 03:05:48 +08:00
|
|
|
} Converter;
|
2008-11-22 03:14:01 +08:00
|
|
|
|
2013-05-22 03:05:48 +08:00
|
|
|
Ex = PerformContextualImplicitConversion(StartLoc, Ex.take(), Converter);
|
|
|
|
if (Ex.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
Type = Ex.get()->getType();
|
|
|
|
if (!Converter.match(Type))
|
|
|
|
// FIXME: PerformContextualImplicitConversion should return ExprError
|
|
|
|
// itself in this case.
|
|
|
|
return ExprError();
|
2008-11-22 03:14:01 +08:00
|
|
|
|
2009-07-30 05:53:49 +08:00
|
|
|
QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
|
2011-07-27 06:25:31 +08:00
|
|
|
QualType PointeeElem = Context.getBaseElementType(Pointee);
|
|
|
|
|
|
|
|
if (unsigned AddressSpace = Pointee.getAddressSpace())
|
|
|
|
return Diag(Ex.get()->getLocStart(),
|
|
|
|
diag::err_address_space_qualified_delete)
|
|
|
|
<< Pointee.getUnqualifiedType() << AddressSpace;
|
|
|
|
|
|
|
|
CXXRecordDecl *PointeeRD = 0;
|
2010-05-25 01:01:56 +08:00
|
|
|
if (Pointee->isVoidType() && !isSFINAEContext()) {
|
2011-01-27 15:10:08 +08:00
|
|
|
// The C++ standard bans deleting a pointer to a non-object type, which
|
2010-05-25 01:01:56 +08:00
|
|
|
// effectively bans deletion of "void*". However, most compilers support
|
|
|
|
// this, so we treat it as a warning unless we're in a SFINAE context.
|
|
|
|
Diag(StartLoc, diag::ext_delete_void_ptr_operand)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< Type << Ex.get()->getSourceRange();
|
2011-07-27 06:25:31 +08:00
|
|
|
} else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
|
2009-03-16 01:47:39 +08:00
|
|
|
return ExprError(Diag(StartLoc, diag::err_delete_operand)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< Type << Ex.get()->getSourceRange());
|
2011-07-27 06:25:31 +08:00
|
|
|
} else if (!Pointee->isDependentType()) {
|
|
|
|
if (!RequireCompleteType(StartLoc, Pointee,
|
2012-05-05 00:32:21 +08:00
|
|
|
diag::warn_delete_incomplete, Ex.get())) {
|
2011-07-27 06:25:31 +08:00
|
|
|
if (const RecordType *RT = PointeeElem->getAs<RecordType>())
|
|
|
|
PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-09-30 05:38:53 +08:00
|
|
|
// C++ [expr.delete]p2:
|
2011-01-27 15:10:08 +08:00
|
|
|
// [Note: a pointer to a const type can be the operand of a
|
|
|
|
// delete-expression; it is not necessary to cast away the constness
|
|
|
|
// (5.2.11) of the pointer expression before it is used as the operand
|
2009-09-30 05:38:53 +08:00
|
|
|
// of the delete-expression. ]
|
2010-09-14 04:15:54 +08:00
|
|
|
|
|
|
|
if (Pointee->isArrayType() && !ArrayForm) {
|
|
|
|
Diag(StartLoc, diag::warn_delete_array_type)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< Type << Ex.get()->getSourceRange()
|
2010-09-14 04:15:54 +08:00
|
|
|
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
|
|
|
|
ArrayForm = true;
|
|
|
|
}
|
|
|
|
|
2009-08-17 04:29:29 +08:00
|
|
|
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
|
|
|
|
ArrayForm ? OO_Array_Delete : OO_Delete);
|
|
|
|
|
2011-07-27 06:25:31 +08:00
|
|
|
if (PointeeRD) {
|
2011-01-27 15:10:08 +08:00
|
|
|
if (!UseGlobal &&
|
2011-07-27 06:25:31 +08:00
|
|
|
FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
|
|
|
|
OperatorDelete))
|
2009-11-16 00:43:15 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-01-27 17:37:56 +08:00
|
|
|
// If we're allocating an array of records, check whether the
|
|
|
|
// usual operator delete[] has a size_t parameter.
|
|
|
|
if (ArrayForm) {
|
|
|
|
// If the user specifically asked to use the global allocator,
|
|
|
|
// we'll need to do the lookup into the class.
|
|
|
|
if (UseGlobal)
|
|
|
|
UsualArrayDeleteWantsSize =
|
|
|
|
doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
|
|
|
|
|
|
|
|
// Otherwise, the usual operator delete[] should be the
|
|
|
|
// function we just found.
|
2013-12-05 16:30:59 +08:00
|
|
|
else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
|
2011-01-27 17:37:56 +08:00
|
|
|
UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
|
|
|
|
}
|
|
|
|
|
2012-02-18 12:13:32 +08:00
|
|
|
if (!PointeeRD->hasIrrelevantDestructor())
|
2011-07-27 06:25:31 +08:00
|
|
|
if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(StartLoc,
|
2009-09-04 07:18:17 +08:00
|
|
|
const_cast<CXXDestructorDecl*>(Dtor));
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(Dtor, StartLoc))
|
|
|
|
return ExprError();
|
2010-10-13 07:32:35 +08:00
|
|
|
}
|
2011-05-25 03:53:26 +08:00
|
|
|
|
|
|
|
// C++ [expr.delete]p3:
|
|
|
|
// In the first alternative (delete object), if the static type of the
|
|
|
|
// object to be deleted is different from its dynamic type, the static
|
|
|
|
// type shall be a base class of the dynamic type of the object to be
|
|
|
|
// deleted and the static type shall have a virtual destructor or the
|
|
|
|
// behavior is undefined.
|
|
|
|
//
|
|
|
|
// Note: a final class cannot be derived from, no issue there
|
2011-07-27 07:27:24 +08:00
|
|
|
if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
|
2011-07-27 06:25:31 +08:00
|
|
|
CXXDestructorDecl *dtor = PointeeRD->getDestructor();
|
2011-07-27 07:27:24 +08:00
|
|
|
if (dtor && !dtor->isVirtual()) {
|
|
|
|
if (PointeeRD->isAbstract()) {
|
|
|
|
// If the class is abstract, we warn by default, because we're
|
|
|
|
// sure the code has undefined behavior.
|
|
|
|
Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
|
|
|
|
<< PointeeElem;
|
|
|
|
} else if (!ArrayForm) {
|
|
|
|
// Otherwise, if this is not an array delete, it's a bit suspect,
|
|
|
|
// but not necessarily wrong.
|
|
|
|
Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
|
|
|
|
}
|
|
|
|
}
|
2011-05-25 03:53:26 +08:00
|
|
|
}
|
2011-06-16 07:02:42 +08:00
|
|
|
|
2009-08-17 04:29:29 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-09-29 12:40:38 +08:00
|
|
|
if (!OperatorDelete)
|
2009-11-16 02:45:20 +08:00
|
|
|
// Look for a global declaration.
|
2013-09-29 12:40:38 +08:00
|
|
|
OperatorDelete = FindUsualDeallocationFunction(
|
|
|
|
StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
|
|
|
|
(!ArrayForm || UsualArrayDeleteWantsSize ||
|
|
|
|
Pointee.isDestructedType()),
|
|
|
|
DeleteName);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(StartLoc, OperatorDelete);
|
2011-01-27 17:37:56 +08:00
|
|
|
|
2011-02-01 23:50:11 +08:00
|
|
|
// Check access and ambiguity of operator delete and destructor.
|
2011-07-27 06:25:31 +08:00
|
|
|
if (PointeeRD) {
|
|
|
|
if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
|
2011-04-09 02:41:53 +08:00
|
|
|
CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
|
2011-02-01 23:50:11 +08:00
|
|
|
PDiag(diag::err_access_dtor) << PointeeElem);
|
|
|
|
}
|
|
|
|
}
|
2009-02-26 22:39:58 +08:00
|
|
|
}
|
2008-11-22 03:14:01 +08:00
|
|
|
|
2009-03-16 01:47:39 +08:00
|
|
|
return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
|
2011-01-27 17:37:56 +08:00
|
|
|
ArrayFormAsWritten,
|
|
|
|
UsualArrayDeleteWantsSize,
|
2011-04-09 02:41:53 +08:00
|
|
|
OperatorDelete, Ex.take(), StartLoc));
|
2008-11-22 03:14:01 +08:00
|
|
|
}
|
|
|
|
|
2009-11-24 07:44:04 +08:00
|
|
|
/// \brief Check the use of the given variable as a C++ condition in an if,
|
|
|
|
/// while, do-while, or switch statement.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
|
2010-11-18 14:31:45 +08:00
|
|
|
SourceLocation StmtLoc,
|
|
|
|
bool ConvertToBoolean) {
|
2013-04-30 21:56:41 +08:00
|
|
|
if (ConditionVar->isInvalidDecl())
|
|
|
|
return ExprError();
|
|
|
|
|
2009-11-24 07:44:04 +08:00
|
|
|
QualType T = ConditionVar->getType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-11-24 07:44:04 +08:00
|
|
|
// C++ [stmt.select]p2:
|
|
|
|
// The declarator shall not specify a function or an array.
|
|
|
|
if (T->isFunctionType())
|
2011-01-27 15:10:08 +08:00
|
|
|
return ExprError(Diag(ConditionVar->getLocation(),
|
2009-11-24 07:44:04 +08:00
|
|
|
diag::err_invalid_use_of_function_type)
|
|
|
|
<< ConditionVar->getSourceRange());
|
|
|
|
else if (T->isArrayType())
|
2011-01-27 15:10:08 +08:00
|
|
|
return ExprError(Diag(ConditionVar->getLocation(),
|
2009-11-24 07:44:04 +08:00
|
|
|
diag::err_invalid_use_of_array_type)
|
|
|
|
<< ConditionVar->getSourceRange());
|
2009-11-25 00:07:02 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Condition =
|
2012-01-27 17:46:47 +08:00
|
|
|
Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
|
|
|
|
SourceLocation(),
|
|
|
|
ConditionVar,
|
2012-03-10 17:33:50 +08:00
|
|
|
/*enclosing*/ false,
|
2012-01-27 17:46:47 +08:00
|
|
|
ConditionVar->getLocation(),
|
|
|
|
ConditionVar->getType().getNonReferenceType(),
|
2011-04-09 02:41:53 +08:00
|
|
|
VK_LValue));
|
2012-01-17 05:00:51 +08:00
|
|
|
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
|
2012-01-17 05:00:51 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
if (ConvertToBoolean) {
|
|
|
|
Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
|
|
|
|
if (Condition.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-08-24 05:35:17 +08:00
|
|
|
return Condition;
|
2009-11-24 07:44:04 +08:00
|
|
|
}
|
|
|
|
|
2008-09-10 10:17:11 +08:00
|
|
|
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
|
2008-09-10 10:17:11 +08:00
|
|
|
// C++ 6.4p4:
|
|
|
|
// The value of a condition that is an initialized declaration in a statement
|
|
|
|
// other than a switch statement is the value of the declared variable
|
|
|
|
// implicitly converted to type bool. If that conversion is ill-formed, the
|
|
|
|
// program is ill-formed.
|
|
|
|
// The value of a condition that is an expression is the value of the
|
|
|
|
// expression, implicitly converted to bool.
|
|
|
|
//
|
2009-01-14 23:45:31 +08:00
|
|
|
return PerformContextuallyConvertToBool(CondExpr);
|
2008-09-10 10:17:11 +08:00
|
|
|
}
|
2008-09-12 08:47:35 +08:00
|
|
|
|
|
|
|
/// Helper function to determine whether this is the (deprecated) C++
|
|
|
|
/// conversion from a string literal to a pointer to non-const char or
|
|
|
|
/// non-const wchar_t (for narrow and wide string literals,
|
|
|
|
/// respectively).
|
2009-09-09 23:08:12 +08:00
|
|
|
bool
|
2008-09-12 08:47:35 +08:00
|
|
|
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
|
|
|
|
// Look inside the implicit cast, if it exists.
|
|
|
|
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
|
|
|
|
From = Cast->getSubExpr();
|
|
|
|
|
|
|
|
// A string literal (2.13.4) that is not a wide string literal can
|
|
|
|
// be converted to an rvalue of type "pointer to char"; a wide
|
|
|
|
// string literal can be converted to an rvalue of type "pointer
|
|
|
|
// to wchar_t" (C++ 4.2p2).
|
2010-06-23 07:47:37 +08:00
|
|
|
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
|
2009-07-30 05:53:49 +08:00
|
|
|
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
|
2009-09-09 23:08:12 +08:00
|
|
|
if (const BuiltinType *ToPointeeType
|
2009-09-22 07:43:11 +08:00
|
|
|
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
|
2008-09-12 08:47:35 +08:00
|
|
|
// This conversion is considered only when there is an
|
|
|
|
// explicit appropriate pointer target type (C++ 4.2p2).
|
2011-07-27 13:40:30 +08:00
|
|
|
if (!ToPtrType->getPointeeType().hasQualifiers()) {
|
|
|
|
switch (StrLit->getKind()) {
|
|
|
|
case StringLiteral::UTF8:
|
|
|
|
case StringLiteral::UTF16:
|
|
|
|
case StringLiteral::UTF32:
|
|
|
|
// We don't allow UTF literals to be implicitly converted
|
|
|
|
break;
|
|
|
|
case StringLiteral::Ascii:
|
|
|
|
return (ToPointeeType->getKind() == BuiltinType::Char_U ||
|
|
|
|
ToPointeeType->getKind() == BuiltinType::Char_S);
|
|
|
|
case StringLiteral::Wide:
|
|
|
|
return ToPointeeType->isWideCharType();
|
|
|
|
}
|
|
|
|
}
|
2008-09-12 08:47:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
2008-10-24 12:54:22 +08:00
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
static ExprResult BuildCXXCastArgument(Sema &S,
|
2010-08-25 19:45:40 +08:00
|
|
|
SourceLocation CastLoc,
|
|
|
|
QualType Ty,
|
|
|
|
CastKind Kind,
|
|
|
|
CXXMethodDecl *Method,
|
2011-09-21 16:36:56 +08:00
|
|
|
DeclAccessPair FoundDecl,
|
2011-10-05 15:56:41 +08:00
|
|
|
bool HadMultipleCandidates,
|
2010-08-25 19:45:40 +08:00
|
|
|
Expr *From) {
|
2010-04-17 06:17:36 +08:00
|
|
|
switch (Kind) {
|
2011-09-23 13:06:16 +08:00
|
|
|
default: llvm_unreachable("Unhandled cast kind!");
|
2010-08-25 19:45:40 +08:00
|
|
|
case CK_ConstructorConversion: {
|
2011-10-11 06:41:00 +08:00
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
|
2012-08-24 06:51:59 +08:00
|
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-07-21 03:41:36 +08:00
|
|
|
if (S.RequireNonAbstractType(CastLoc, Ty,
|
|
|
|
diag::err_allocation_of_abstract_type))
|
|
|
|
return ExprError();
|
|
|
|
|
2012-08-24 07:38:35 +08:00
|
|
|
if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
|
2010-08-27 07:41:50 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
Fix several problems with protected access control:
- The [class.protected] restriction is non-trivial for any instance
member, even if the access lacks an object (for example, if it's
a pointer-to-member constant). In this case, it is equivalent to
requiring the naming class to equal the context class.
- The [class.protected] restriction applies to accesses to constructors
and destructors. A protected constructor or destructor can only be
used to create or destroy a base subobject, as a direct result.
- Several places were dropping or misapplying object information.
The standard could really be much clearer about what the object type is
supposed to be in some of these accesses. Usually it's easy enough to
find a reasonable answer, but still, the standard makes a very confident
statement about accesses to instance members only being possible in
either pointer-to-member literals or member access expressions, which
just completely ignores concepts like constructor and destructor
calls, using declarations, unevaluated field references, etc.
llvm-svn: 154248
2012-04-07 11:04:20 +08:00
|
|
|
S.CheckConstructorAccess(CastLoc, Constructor,
|
|
|
|
InitializedEntity::InitializeTemporary(Ty),
|
|
|
|
Constructor->getAccess());
|
2012-12-19 09:39:02 +08:00
|
|
|
|
2011-10-11 06:41:00 +08:00
|
|
|
ExprResult Result
|
|
|
|
= S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
|
2012-12-19 09:39:02 +08:00
|
|
|
ConstructorArgs, HadMultipleCandidates,
|
|
|
|
/*ListInit*/ false, /*ZeroInit*/ false,
|
2011-10-11 06:41:00 +08:00
|
|
|
CXXConstructExpr::CK_Complete, SourceRange());
|
2010-04-17 06:17:36 +08:00
|
|
|
if (Result.isInvalid())
|
2010-08-27 07:41:50 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-17 06:17:36 +08:00
|
|
|
return S.MaybeBindToTemporary(Result.takeAs<Expr>());
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-08-25 19:45:40 +08:00
|
|
|
case CK_UserDefinedConversion: {
|
2010-04-17 06:17:36 +08:00
|
|
|
assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-17 06:17:36 +08:00
|
|
|
// Create an implicit call expr that calls it.
|
2012-03-01 09:30:04 +08:00
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
|
|
|
|
ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
|
2011-10-05 15:56:41 +08:00
|
|
|
HadMultipleCandidates);
|
2011-01-20 08:18:04 +08:00
|
|
|
if (Result.isInvalid())
|
|
|
|
return ExprError();
|
2011-11-17 06:46:05 +08:00
|
|
|
// Record usage of conversion in an implicit cast.
|
|
|
|
Result = S.Owned(ImplicitCastExpr::Create(S.Context,
|
|
|
|
Result.get()->getType(),
|
|
|
|
CK_UserDefinedConversion,
|
|
|
|
Result.get(), 0,
|
|
|
|
Result.get()->getValueKind()));
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-09-21 16:36:56 +08:00
|
|
|
S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
|
|
|
|
|
2011-01-20 08:18:04 +08:00
|
|
|
return S.MaybeBindToTemporary(Result.get());
|
2010-04-17 06:17:36 +08:00
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
}
|
2010-04-17 06:17:36 +08:00
|
|
|
|
2009-01-14 23:45:31 +08:00
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
|
|
/// expression From to the type ToType using the pre-computed implicit
|
2011-04-09 02:41:53 +08:00
|
|
|
/// conversion sequence ICS. Returns the converted
|
2009-12-16 11:45:30 +08:00
|
|
|
/// expression. Action is the kind of conversion we're performing,
|
2009-01-14 23:45:31 +08:00
|
|
|
/// used in the error message.
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult
|
|
|
|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
2009-01-14 23:45:31 +08:00
|
|
|
const ImplicitConversionSequence &ICS,
|
2011-06-16 07:02:42 +08:00
|
|
|
AssignmentAction Action,
|
|
|
|
CheckedConversionKind CCK) {
|
2010-01-12 08:44:57 +08:00
|
|
|
switch (ICS.getKind()) {
|
2011-04-09 02:41:53 +08:00
|
|
|
case ImplicitConversionSequence::StandardConversion: {
|
2011-11-30 06:48:16 +08:00
|
|
|
ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
|
|
|
|
Action, CCK);
|
2011-04-09 02:41:53 +08:00
|
|
|
if (Res.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
From = Res.take();
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
2011-04-09 02:41:53 +08:00
|
|
|
}
|
2008-10-24 12:54:22 +08:00
|
|
|
|
2009-09-15 14:28:28 +08:00
|
|
|
case ImplicitConversionSequence::UserDefinedConversion: {
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-08-29 06:04:50 +08:00
|
|
|
FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
|
2010-11-15 17:13:47 +08:00
|
|
|
CastKind CastKind;
|
2009-09-15 14:28:28 +08:00
|
|
|
QualType BeforeToType;
|
2011-11-01 23:53:09 +08:00
|
|
|
assert(FD && "FIXME: aggregate initialization from init list");
|
2009-09-15 14:28:28 +08:00
|
|
|
if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
|
2010-08-25 19:45:40 +08:00
|
|
|
CastKind = CK_UserDefinedConversion;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-09-15 14:28:28 +08:00
|
|
|
// If the user-defined conversion is specified by a conversion function,
|
|
|
|
// the initial standard conversion sequence converts the source type to
|
|
|
|
// the implicit object parameter of the conversion function.
|
|
|
|
BeforeToType = Context.getTagDeclType(Conv->getParent());
|
2010-12-04 17:57:16 +08:00
|
|
|
} else {
|
|
|
|
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
|
2010-08-25 19:45:40 +08:00
|
|
|
CastKind = CK_ConstructorConversion;
|
2009-11-06 08:23:08 +08:00
|
|
|
// Do no conversion if dealing with ... for the first conversion.
|
2009-11-20 10:31:03 +08:00
|
|
|
if (!ICS.UserDefined.EllipsisConversion) {
|
2011-01-27 15:10:08 +08:00
|
|
|
// If the user-defined conversion is specified by a constructor, the
|
2009-11-06 08:23:08 +08:00
|
|
|
// initial standard conversion sequence converts the source type to the
|
|
|
|
// type required by the argument of the constructor
|
2009-11-20 10:31:03 +08:00
|
|
|
BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
}
|
2013-07-21 03:41:36 +08:00
|
|
|
// Watch out for ellipsis conversion.
|
2009-11-06 08:55:14 +08:00
|
|
|
if (!ICS.UserDefined.EllipsisConversion) {
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Res =
|
2011-11-30 06:48:16 +08:00
|
|
|
PerformImplicitConversion(From, BeforeToType,
|
|
|
|
ICS.UserDefined.Before, AA_Converting,
|
|
|
|
CCK);
|
2011-04-09 02:41:53 +08:00
|
|
|
if (Res.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
From = Res.take();
|
2009-11-06 08:23:08 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
|
|
|
ExprResult CastArg
|
2010-04-17 06:17:36 +08:00
|
|
|
= BuildCXXCastArgument(*this,
|
|
|
|
From->getLocStart(),
|
2009-09-10 05:33:21 +08:00
|
|
|
ToType.getNonReferenceType(),
|
2011-01-20 09:32:05 +08:00
|
|
|
CastKind, cast<CXXMethodDecl>(FD),
|
|
|
|
ICS.UserDefined.FoundConversionFunction,
|
2011-10-05 15:56:41 +08:00
|
|
|
ICS.UserDefined.HadMultipleCandidates,
|
2010-08-24 07:25:46 +08:00
|
|
|
From);
|
2009-09-10 05:33:21 +08:00
|
|
|
|
|
|
|
if (CastArg.isInvalid())
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2009-11-27 12:41:50 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
From = CastArg.take();
|
2009-11-27 12:41:50 +08:00
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
|
|
|
|
AA_Converting, CCK);
|
2009-10-17 03:20:59 +08:00
|
|
|
}
|
2010-01-12 08:44:57 +08:00
|
|
|
|
|
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
2010-08-25 04:38:10 +08:00
|
|
|
ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
|
2010-01-12 08:44:57 +08:00
|
|
|
PDiag(diag::err_typecheck_ambiguous_condition)
|
|
|
|
<< From->getSourceRange());
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2008-10-24 12:54:22 +08:00
|
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Cannot perform an ellipsis conversion");
|
2008-10-24 12:54:22 +08:00
|
|
|
|
|
|
|
case ImplicitConversionSequence::BadConversion:
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2008-10-24 12:54:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Everything went well.
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(From);
|
2008-10-24 12:54:22 +08:00
|
|
|
}
|
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
2008-10-24 12:54:22 +08:00
|
|
|
/// expression From to the type ToType by following the standard
|
2011-04-09 02:41:53 +08:00
|
|
|
/// conversion sequence SCS. Returns the converted
|
2008-12-20 01:40:08 +08:00
|
|
|
/// expression. Flavor is the context in which we're performing this
|
|
|
|
/// conversion, for use in error messages.
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult
|
2011-11-30 06:48:16 +08:00
|
|
|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
2008-12-20 01:40:08 +08:00
|
|
|
const StandardConversionSequence& SCS,
|
2011-06-16 07:02:42 +08:00
|
|
|
AssignmentAction Action,
|
|
|
|
CheckedConversionKind CCK) {
|
|
|
|
bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
|
|
|
|
|
2009-05-16 15:39:55 +08:00
|
|
|
// Overall FIXME: we are recomputing too many types here and doing far too
|
|
|
|
// much extra work. What this means is that we need to keep track of more
|
|
|
|
// information that is computed when we try the implicit conversion initially,
|
|
|
|
// so that we don't need to recompute anything here.
|
2008-10-24 12:54:22 +08:00
|
|
|
QualType FromType = From->getType();
|
2011-06-16 07:02:42 +08:00
|
|
|
|
2008-11-04 03:09:14 +08:00
|
|
|
if (SCS.CopyConstructor) {
|
2009-05-19 12:45:15 +08:00
|
|
|
// FIXME: When can ToType be a reference type?
|
|
|
|
assert(!ToType->isReferenceType());
|
2009-09-26 02:59:21 +08:00
|
|
|
if (SCS.Second == ICK_Derived_To_Base) {
|
2012-08-24 06:51:59 +08:00
|
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
2009-09-26 02:59:21 +08:00
|
|
|
if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
|
2012-08-24 07:38:35 +08:00
|
|
|
From, /*FIXME:ConstructLoc*/SourceLocation(),
|
2009-09-26 02:59:21 +08:00
|
|
|
ConstructorArgs))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
|
|
|
return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
|
|
|
|
ToType, SCS.CopyConstructor,
|
2012-08-24 05:35:17 +08:00
|
|
|
ConstructorArgs,
|
2011-10-05 15:56:41 +08:00
|
|
|
/*HadMultipleCandidates*/ false,
|
2012-12-19 09:39:02 +08:00
|
|
|
/*ListInit*/ false, /*ZeroInit*/ false,
|
2011-04-09 02:41:53 +08:00
|
|
|
CXXConstructExpr::CK_Complete,
|
|
|
|
SourceRange());
|
2009-09-26 02:59:21 +08:00
|
|
|
}
|
2011-04-09 02:41:53 +08:00
|
|
|
return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
|
|
|
|
ToType, SCS.CopyConstructor,
|
2012-08-24 07:38:35 +08:00
|
|
|
From, /*HadMultipleCandidates*/ false,
|
2012-12-19 09:39:02 +08:00
|
|
|
/*ListInit*/ false, /*ZeroInit*/ false,
|
2011-04-09 02:41:53 +08:00
|
|
|
CXXConstructExpr::CK_Complete,
|
|
|
|
SourceRange());
|
2008-11-04 03:09:14 +08:00
|
|
|
}
|
|
|
|
|
2010-04-30 02:24:40 +08:00
|
|
|
// Resolve overloaded function references.
|
|
|
|
if (Context.hasSameType(FromType, Context.OverloadTy)) {
|
|
|
|
DeclAccessPair Found;
|
|
|
|
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
|
|
|
|
true, Found);
|
|
|
|
if (!Fn)
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2010-04-30 02:24:40 +08:00
|
|
|
|
2012-03-10 02:35:03 +08:00
|
|
|
if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-30 02:24:40 +08:00
|
|
|
From = FixOverloadedFunctionReference(From, Found, Fn);
|
|
|
|
FromType = From->getType();
|
|
|
|
}
|
|
|
|
|
2013-05-23 08:30:41 +08:00
|
|
|
// If we're converting to an atomic type, first convert to the corresponding
|
|
|
|
// non-atomic type.
|
|
|
|
QualType ToAtomicType;
|
|
|
|
if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
|
|
|
|
ToAtomicType = ToType;
|
|
|
|
ToType = ToAtomic->getValueType();
|
|
|
|
}
|
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
// Perform the first implicit conversion.
|
2008-10-24 12:54:22 +08:00
|
|
|
switch (SCS.First) {
|
|
|
|
case ICK_Identity:
|
|
|
|
// Nothing to do.
|
|
|
|
break;
|
|
|
|
|
2012-01-25 06:51:26 +08:00
|
|
|
case ICK_Lvalue_To_Rvalue: {
|
2011-10-26 01:37:35 +08:00
|
|
|
assert(From->getObjectKind() != OK_ObjCProperty);
|
2010-12-04 11:47:34 +08:00
|
|
|
FromType = FromType.getUnqualifiedType();
|
2012-01-25 06:51:26 +08:00
|
|
|
ExprResult FromRes = DefaultLvalueConversion(From);
|
|
|
|
assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
|
|
|
|
From = FromRes.take();
|
2010-12-04 11:47:34 +08:00
|
|
|
break;
|
2012-01-25 06:51:26 +08:00
|
|
|
}
|
2010-12-04 11:47:34 +08:00
|
|
|
|
2008-10-24 12:54:22 +08:00
|
|
|
case ICK_Array_To_Pointer:
|
2009-02-19 05:56:37 +08:00
|
|
|
FromType = Context.getArrayDecayedType(FromType);
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2009-02-19 05:56:37 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ICK_Function_To_Pointer:
|
2008-10-24 12:54:22 +08:00
|
|
|
FromType = Context.getPointerType(FromType);
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Improper first standard conversion");
|
2008-10-24 12:54:22 +08:00
|
|
|
}
|
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
// Perform the second implicit conversion
|
2008-10-24 12:54:22 +08:00
|
|
|
switch (SCS.Second) {
|
|
|
|
case ICK_Identity:
|
2009-10-10 20:04:10 +08:00
|
|
|
// If both sides are functions (or pointers/references to them), there could
|
|
|
|
// be incompatible exception declarations.
|
|
|
|
if (CheckExceptionSpecCompatibility(From, ToType))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2009-10-10 20:04:10 +08:00
|
|
|
// Nothing else to do.
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
|
|
|
|
2009-12-09 08:47:37 +08:00
|
|
|
case ICK_NoReturn_Adjustment:
|
|
|
|
// If both sides are functions (or pointers/references to them), there could
|
|
|
|
// be incompatible exception declarations.
|
|
|
|
if (CheckExceptionSpecCompatibility(From, ToType))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_NoOp,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2009-12-09 08:47:37 +08:00
|
|
|
break;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2008-10-24 12:54:22 +08:00
|
|
|
case ICK_Integral_Promotion:
|
|
|
|
case ICK_Integral_Conversion:
|
2012-09-14 05:18:54 +08:00
|
|
|
if (ToType->isBooleanType()) {
|
|
|
|
assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
|
|
|
|
SCS.Second == ICK_Integral_Promotion &&
|
|
|
|
"only enums with fixed underlying type can promote to bool");
|
|
|
|
From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
|
|
|
} else {
|
|
|
|
From = ImpCastExprToType(From, ToType, CK_IntegralCast,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
|
|
|
}
|
2009-10-20 16:27:19 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ICK_Floating_Promotion:
|
2008-10-24 12:54:22 +08:00
|
|
|
case ICK_Floating_Conversion:
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_FloatingCast,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2009-10-20 16:27:19 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ICK_Complex_Promotion:
|
2010-11-15 17:13:47 +08:00
|
|
|
case ICK_Complex_Conversion: {
|
|
|
|
QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
|
|
|
|
QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
|
|
|
|
CastKind CK;
|
|
|
|
if (FromEl->isRealFloatingType()) {
|
|
|
|
if (ToEl->isRealFloatingType())
|
|
|
|
CK = CK_FloatingComplexCast;
|
|
|
|
else
|
|
|
|
CK = CK_FloatingComplexToIntegralComplex;
|
|
|
|
} else if (ToEl->isRealFloatingType()) {
|
|
|
|
CK = CK_IntegralComplexToFloatingComplex;
|
|
|
|
} else {
|
|
|
|
CK = CK_IntegralComplexCast;
|
|
|
|
}
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2009-10-20 16:27:19 +08:00
|
|
|
break;
|
2010-11-15 17:13:47 +08:00
|
|
|
}
|
2009-10-20 16:27:19 +08:00
|
|
|
|
2008-10-24 12:54:22 +08:00
|
|
|
case ICK_Floating_Integral:
|
2010-06-23 07:07:26 +08:00
|
|
|
if (ToType->isRealFloatingType())
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2009-10-20 16:27:19 +08:00
|
|
|
else
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2009-10-20 16:27:19 +08:00
|
|
|
break;
|
|
|
|
|
Initial implementation of function overloading in C.
This commit adds a new attribute, "overloadable", that enables C++
function overloading in C. The attribute can only be added to function
declarations, e.g.,
int *f(int) __attribute__((overloadable));
If the "overloadable" attribute exists on a function with a given
name, *all* functions with that name (and in that scope) must have the
"overloadable" attribute. Sets of overloaded functions with the
"overloadable" attribute then follow the normal C++ rules for
overloaded functions, e.g., overloads must have different
parameter-type-lists from each other.
When calling an overloaded function in C, we follow the same
overloading rules as C++, with three extensions to the set of standard
conversions:
- A value of a given struct or union type T can be converted to the
type T. This is just the identity conversion. (In C++, this would
go through a copy constructor).
- A value of pointer type T* can be converted to a value of type U*
if T and U are compatible types. This conversion has Conversion
rank (it's considered a pointer conversion in C).
- A value of type T can be converted to a value of type U if T and U
are compatible (and are not both pointer types). This conversion
has Conversion rank (it's considered to be a new kind of
conversion unique to C, a "compatible" conversion).
Known defects (and, therefore, next steps):
1) The standard-conversion handling does not understand conversions
involving _Complex or vector extensions, so it is likely to get
these wrong. We need to add these conversions.
2) All overloadable functions with the same name will have the same
linkage name, which means we'll get a collision in the linker (if
not sooner). We'll need to mangle the names of these functions.
llvm-svn: 64336
2009-02-12 07:02:49 +08:00
|
|
|
case ICK_Compatible_Conversion:
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_NoOp,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
case ICK_Writeback_Conversion:
|
2009-09-12 12:46:44 +08:00
|
|
|
case ICK_Pointer_Conversion: {
|
2010-12-03 05:47:04 +08:00
|
|
|
if (SCS.IncompatibleObjC && Action != AA_Casting) {
|
2008-12-20 01:40:08 +08:00
|
|
|
// Diagnose incompatible Objective-C conversions
|
2011-06-11 12:42:12 +08:00
|
|
|
if (Action == AA_Initializing || Action == AA_Assigning)
|
2012-03-10 02:35:03 +08:00
|
|
|
Diag(From->getLocStart(),
|
2011-03-22 03:08:42 +08:00
|
|
|
diag::ext_typecheck_convert_incompatible_pointer)
|
|
|
|
<< ToType << From->getType() << Action
|
2011-07-29 03:51:27 +08:00
|
|
|
<< From->getSourceRange() << 0;
|
2011-03-22 03:08:42 +08:00
|
|
|
else
|
2012-03-10 02:35:03 +08:00
|
|
|
Diag(From->getLocStart(),
|
2011-03-22 03:08:42 +08:00
|
|
|
diag::ext_typecheck_convert_incompatible_pointer)
|
|
|
|
<< From->getType() << ToType << Action
|
2011-07-29 03:51:27 +08:00
|
|
|
<< From->getSourceRange() << 0;
|
2011-06-16 07:02:42 +08:00
|
|
|
|
2011-06-11 09:09:30 +08:00
|
|
|
if (From->getType()->isObjCObjectPointerType() &&
|
|
|
|
ToType->isObjCObjectPointerType())
|
|
|
|
EmitRelatedResultTypeNote(From);
|
2011-07-09 01:41:42 +08:00
|
|
|
}
|
2012-03-11 15:00:24 +08:00
|
|
|
else if (getLangOpts().ObjCAutoRefCount &&
|
2011-07-09 01:41:42 +08:00
|
|
|
!CheckObjCARCUnavailableWeakConversion(ToType,
|
|
|
|
From->getType())) {
|
2011-09-09 14:12:06 +08:00
|
|
|
if (Action == AA_Initializing)
|
2012-03-10 02:35:03 +08:00
|
|
|
Diag(From->getLocStart(),
|
2011-09-09 14:12:06 +08:00
|
|
|
diag::err_arc_weak_unavailable_assign);
|
|
|
|
else
|
2012-03-10 02:35:03 +08:00
|
|
|
Diag(From->getLocStart(),
|
2011-09-09 14:12:06 +08:00
|
|
|
diag::err_arc_convesion_of_weak_unavailable)
|
|
|
|
<< (Action == AA_Casting) << From->getType() << ToType
|
|
|
|
<< From->getSourceRange();
|
|
|
|
}
|
2011-07-09 01:41:42 +08:00
|
|
|
|
2010-11-15 17:13:47 +08:00
|
|
|
CastKind Kind = CK_Invalid;
|
2010-08-07 14:22:56 +08:00
|
|
|
CXXCastPath BasePath;
|
2011-01-27 08:58:17 +08:00
|
|
|
if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2011-09-10 09:16:55 +08:00
|
|
|
|
|
|
|
// Make sure we extend blocks if necessary.
|
|
|
|
// FIXME: doing this here is really ugly.
|
|
|
|
if (Kind == CK_BlockPointerToObjCPointerCast) {
|
|
|
|
ExprResult E = From;
|
|
|
|
(void) PrepareCastToObjCObjectPointer(E);
|
|
|
|
From = E.take();
|
|
|
|
}
|
2013-08-01 01:12:26 +08:00
|
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
|
|
CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
|
|
|
|
.take();
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
2009-09-12 12:46:44 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-09-12 12:46:44 +08:00
|
|
|
case ICK_Pointer_Member: {
|
2010-11-15 17:13:47 +08:00
|
|
|
CastKind Kind = CK_Invalid;
|
2010-08-07 14:22:56 +08:00
|
|
|
CXXCastPath BasePath;
|
2011-01-27 08:58:17 +08:00
|
|
|
if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2009-10-10 20:04:10 +08:00
|
|
|
if (CheckExceptionSpecCompatibility(From, ToType))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
|
|
|
|
.take();
|
2009-09-12 12:46:44 +08:00
|
|
|
break;
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-04-07 17:26:19 +08:00
|
|
|
case ICK_Boolean_Conversion:
|
2011-10-15 07:23:15 +08:00
|
|
|
// Perform half-to-boolean conversion via float.
|
|
|
|
if (From->getType()->isHalfType()) {
|
|
|
|
From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
|
|
|
|
FromType = Context.FloatTy;
|
|
|
|
}
|
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, Context.BoolTy,
|
|
|
|
ScalarTypeToBooleanCastKind(FromType),
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
|
|
|
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
case ICK_Derived_To_Base: {
|
2010-08-07 14:22:56 +08:00
|
|
|
CXXCastPath BasePath;
|
2011-01-27 15:10:08 +08:00
|
|
|
if (CheckDerivedToBaseConversion(From->getType(),
|
2009-11-06 09:02:41 +08:00
|
|
|
ToType.getNonReferenceType(),
|
|
|
|
From->getLocStart(),
|
2011-01-27 15:10:08 +08:00
|
|
|
From->getSourceRange(),
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
&BasePath,
|
2011-01-27 08:58:17 +08:00
|
|
|
CStyle))
|
2011-04-09 02:41:53 +08:00
|
|
|
return ExprError();
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType.getNonReferenceType(),
|
|
|
|
CK_DerivedToBase, From->getValueKind(),
|
|
|
|
&BasePath, CCK).take();
|
2009-11-06 09:02:41 +08:00
|
|
|
break;
|
Rework when and how vtables are emitted, by tracking where vtables are
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
2010-05-14 00:44:06 +08:00
|
|
|
}
|
|
|
|
|
2010-05-19 06:42:18 +08:00
|
|
|
case ICK_Vector_Conversion:
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_BitCast,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2010-05-19 06:42:18 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ICK_Vector_Splat:
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType, CK_VectorSplat,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2010-05-19 06:42:18 +08:00
|
|
|
break;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-05-19 06:42:18 +08:00
|
|
|
case ICK_Complex_Real:
|
2010-11-15 17:13:47 +08:00
|
|
|
// Case 1. x -> _Complex y
|
|
|
|
if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
|
|
|
|
QualType ElType = ToComplex->getElementType();
|
|
|
|
bool isFloatingComplex = ElType->isRealFloatingType();
|
|
|
|
|
|
|
|
// x -> y
|
|
|
|
if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
|
|
|
|
// do nothing
|
|
|
|
} else if (From->getType()->isRealFloatingType()) {
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ElType,
|
|
|
|
isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
|
2010-11-15 17:13:47 +08:00
|
|
|
} else {
|
|
|
|
assert(From->getType()->isIntegerType());
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ElType,
|
|
|
|
isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
|
2010-11-15 17:13:47 +08:00
|
|
|
}
|
|
|
|
// y -> _Complex y
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType,
|
|
|
|
isFloatingComplex ? CK_FloatingRealToComplex
|
|
|
|
: CK_IntegralRealToComplex).take();
|
2010-11-15 17:13:47 +08:00
|
|
|
|
|
|
|
// Case 2. _Complex x -> y
|
|
|
|
} else {
|
|
|
|
const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
|
|
|
|
assert(FromComplex);
|
|
|
|
|
|
|
|
QualType ElType = FromComplex->getElementType();
|
|
|
|
bool isFloatingComplex = ElType->isRealFloatingType();
|
|
|
|
|
|
|
|
// _Complex x -> x
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ElType,
|
|
|
|
isFloatingComplex ? CK_FloatingComplexToReal
|
|
|
|
: CK_IntegralComplexToReal,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2010-11-15 17:13:47 +08:00
|
|
|
|
|
|
|
// x -> y
|
|
|
|
if (Context.hasSameUnqualifiedType(ElType, ToType)) {
|
|
|
|
// do nothing
|
|
|
|
} else if (ToType->isRealFloatingType()) {
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType,
|
|
|
|
isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2010-11-15 17:13:47 +08:00
|
|
|
} else {
|
|
|
|
assert(ToType->isIntegerType());
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType,
|
|
|
|
isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2010-11-15 17:13:47 +08:00
|
|
|
}
|
|
|
|
}
|
2010-05-19 06:42:18 +08:00
|
|
|
break;
|
2011-02-13 03:07:46 +08:00
|
|
|
|
|
|
|
case ICK_Block_Pointer_Conversion: {
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
|
|
|
|
VK_RValue, /*BasePath=*/0, CCK).take();
|
2011-06-16 07:02:42 +08:00
|
|
|
break;
|
|
|
|
}
|
2011-02-13 03:07:46 +08:00
|
|
|
|
2011-03-24 03:50:54 +08:00
|
|
|
case ICK_TransparentUnionConversion: {
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult FromRes = Owned(From);
|
2011-03-24 03:50:54 +08:00
|
|
|
Sema::AssignConvertType ConvTy =
|
2011-04-09 02:41:53 +08:00
|
|
|
CheckTransparentUnionArgumentConstraints(ToType, FromRes);
|
|
|
|
if (FromRes.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
From = FromRes.take();
|
2011-03-24 03:50:54 +08:00
|
|
|
assert ((ConvTy == Sema::Compatible) &&
|
|
|
|
"Improper transparent union conversion");
|
|
|
|
(void)ConvTy;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2013-02-08 00:05:33 +08:00
|
|
|
case ICK_Zero_Event_Conversion:
|
|
|
|
From = ImpCastExprToType(From, ToType,
|
|
|
|
CK_ZeroToOCLEvent,
|
|
|
|
From->getValueKind()).take();
|
|
|
|
break;
|
|
|
|
|
2010-05-19 06:42:18 +08:00
|
|
|
case ICK_Lvalue_To_Rvalue:
|
|
|
|
case ICK_Array_To_Pointer:
|
|
|
|
case ICK_Function_To_Pointer:
|
|
|
|
case ICK_Qualification:
|
|
|
|
case ICK_Num_Conversion_Kinds:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Improper second standard conversion");
|
2008-10-24 12:54:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
switch (SCS.Third) {
|
|
|
|
case ICK_Identity:
|
|
|
|
// Nothing to do.
|
|
|
|
break;
|
|
|
|
|
2010-07-20 12:20:21 +08:00
|
|
|
case ICK_Qualification: {
|
|
|
|
// The qualification keeps the category of the inner expression, unless the
|
|
|
|
// target type isn't a reference.
|
2010-08-25 18:28:54 +08:00
|
|
|
ExprValueKind VK = ToType->isReferenceType() ?
|
2011-09-28 05:58:52 +08:00
|
|
|
From->getValueKind() : VK_RValue;
|
2011-11-30 06:48:16 +08:00
|
|
|
From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
|
|
|
|
CK_NoOp, VK, /*BasePath=*/0, CCK).take();
|
2010-03-01 02:30:25 +08:00
|
|
|
|
2011-03-15 00:13:32 +08:00
|
|
|
if (SCS.DeprecatedStringLiteralToCharPtr &&
|
2014-01-18 05:08:52 +08:00
|
|
|
!getLangOpts().WritableStrings) {
|
|
|
|
Diag(From->getLocStart(), getLangOpts().CPlusPlus11
|
|
|
|
? diag::ext_deprecated_string_literal_conversion
|
|
|
|
: diag::warn_deprecated_string_literal_conversion)
|
2010-03-01 02:30:25 +08:00
|
|
|
<< ToType.getNonReferenceType();
|
2014-01-18 05:08:52 +08:00
|
|
|
}
|
2010-03-01 02:30:25 +08:00
|
|
|
|
2008-10-24 12:54:22 +08:00
|
|
|
break;
|
2013-05-23 08:30:41 +08:00
|
|
|
}
|
2010-07-20 12:20:21 +08:00
|
|
|
|
2008-10-24 12:54:22 +08:00
|
|
|
default:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Improper third standard conversion");
|
2008-10-24 12:54:22 +08:00
|
|
|
}
|
|
|
|
|
2012-04-13 04:42:30 +08:00
|
|
|
// If this conversion sequence involved a scalar -> atomic conversion, perform
|
|
|
|
// that conversion now.
|
2013-05-23 08:30:41 +08:00
|
|
|
if (!ToAtomicType.isNull()) {
|
|
|
|
assert(Context.hasSameType(
|
|
|
|
ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
|
|
|
|
From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
|
|
|
|
VK_RValue, 0, CCK).take();
|
|
|
|
}
|
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(From);
|
2008-10-24 12:54:22 +08:00
|
|
|
}
|
|
|
|
|
2011-05-01 14:51:22 +08:00
|
|
|
/// \brief Check the completeness of a type in a unary type trait.
|
|
|
|
///
|
|
|
|
/// If the particular type trait requires a complete type, tries to complete
|
|
|
|
/// it. If completing the type fails, a diagnostic is emitted and false
|
|
|
|
/// returned. If completing the type succeeds or no completion was required,
|
|
|
|
/// returns true.
|
2014-01-01 13:57:51 +08:00
|
|
|
static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
|
2011-05-01 14:51:22 +08:00
|
|
|
SourceLocation Loc,
|
|
|
|
QualType ArgTy) {
|
|
|
|
// C++0x [meta.unary.prop]p3:
|
|
|
|
// For all of the class templates X declared in this Clause, instantiating
|
|
|
|
// that template with a template argument that is a class template
|
|
|
|
// specialization may result in the implicit instantiation of the template
|
|
|
|
// argument if and only if the semantics of X require that the argument
|
|
|
|
// must be a complete type.
|
|
|
|
// We apply this rule to all the type trait expressions used to implement
|
|
|
|
// these class templates. We also try to follow any GCC documented behavior
|
|
|
|
// in these expressions to ensure portability of standard libraries.
|
|
|
|
switch (UTT) {
|
2014-01-01 13:57:51 +08:00
|
|
|
default: llvm_unreachable("not a UTT");
|
2011-05-01 14:51:22 +08:00
|
|
|
// is_complete_type somewhat obviously cannot require a complete type.
|
|
|
|
case UTT_IsCompleteType:
|
2011-05-02 03:18:02 +08:00
|
|
|
// Fall-through
|
2011-05-01 14:51:22 +08:00
|
|
|
|
|
|
|
// These traits are modeled on the type predicates in C++0x
|
|
|
|
// [meta.unary.cat] and [meta.unary.comp]. They are not specified as
|
|
|
|
// requiring a complete type, as whether or not they return true cannot be
|
|
|
|
// impacted by the completeness of the type.
|
|
|
|
case UTT_IsVoid:
|
|
|
|
case UTT_IsIntegral:
|
|
|
|
case UTT_IsFloatingPoint:
|
|
|
|
case UTT_IsArray:
|
|
|
|
case UTT_IsPointer:
|
|
|
|
case UTT_IsLvalueReference:
|
|
|
|
case UTT_IsRvalueReference:
|
|
|
|
case UTT_IsMemberFunctionPointer:
|
|
|
|
case UTT_IsMemberObjectPointer:
|
|
|
|
case UTT_IsEnum:
|
|
|
|
case UTT_IsUnion:
|
|
|
|
case UTT_IsClass:
|
|
|
|
case UTT_IsFunction:
|
|
|
|
case UTT_IsReference:
|
|
|
|
case UTT_IsArithmetic:
|
|
|
|
case UTT_IsFundamental:
|
|
|
|
case UTT_IsObject:
|
|
|
|
case UTT_IsScalar:
|
|
|
|
case UTT_IsCompound:
|
|
|
|
case UTT_IsMemberPointer:
|
2011-05-02 03:18:02 +08:00
|
|
|
// Fall-through
|
2011-05-01 14:51:22 +08:00
|
|
|
|
|
|
|
// These traits are modeled on type predicates in C++0x [meta.unary.prop]
|
|
|
|
// which requires some of its traits to have the complete type. However,
|
|
|
|
// the completeness of the type cannot impact these traits' semantics, and
|
|
|
|
// so they don't require it. This matches the comments on these traits in
|
|
|
|
// Table 49.
|
|
|
|
case UTT_IsConst:
|
|
|
|
case UTT_IsVolatile:
|
|
|
|
case UTT_IsSigned:
|
|
|
|
case UTT_IsUnsigned:
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// C++0x [meta.unary.prop] Table 49 requires the following traits to be
|
2011-05-02 03:18:02 +08:00
|
|
|
// applied to a complete type.
|
2011-05-01 14:51:22 +08:00
|
|
|
case UTT_IsTrivial:
|
2011-05-13 08:31:07 +08:00
|
|
|
case UTT_IsTriviallyCopyable:
|
2011-05-01 14:51:22 +08:00
|
|
|
case UTT_IsStandardLayout:
|
|
|
|
case UTT_IsPOD:
|
|
|
|
case UTT_IsLiteral:
|
|
|
|
case UTT_IsEmpty:
|
|
|
|
case UTT_IsPolymorphic:
|
|
|
|
case UTT_IsAbstract:
|
2012-09-25 15:32:49 +08:00
|
|
|
case UTT_IsInterfaceClass:
|
2014-01-20 08:24:09 +08:00
|
|
|
case UTT_IsDestructible:
|
|
|
|
case UTT_IsNothrowDestructible:
|
2011-05-02 03:18:02 +08:00
|
|
|
// Fall-through
|
2011-05-01 14:51:22 +08:00
|
|
|
|
2011-12-04 02:14:24 +08:00
|
|
|
// These traits require a complete type.
|
|
|
|
case UTT_IsFinal:
|
2013-10-18 08:33:31 +08:00
|
|
|
case UTT_IsSealed:
|
2011-12-04 02:14:24 +08:00
|
|
|
|
2011-05-02 03:18:02 +08:00
|
|
|
// These trait expressions are designed to help implement predicates in
|
2011-05-01 14:51:22 +08:00
|
|
|
// [meta.unary.prop] despite not being named the same. They are specified
|
|
|
|
// by both GCC and the Embarcadero C++ compiler, and require the complete
|
|
|
|
// type due to the overarching C++0x type predicates being implemented
|
|
|
|
// requiring the complete type.
|
|
|
|
case UTT_HasNothrowAssign:
|
2013-03-27 09:34:16 +08:00
|
|
|
case UTT_HasNothrowMoveAssign:
|
2011-05-01 14:51:22 +08:00
|
|
|
case UTT_HasNothrowConstructor:
|
|
|
|
case UTT_HasNothrowCopy:
|
|
|
|
case UTT_HasTrivialAssign:
|
2013-03-27 09:34:16 +08:00
|
|
|
case UTT_HasTrivialMoveAssign:
|
2011-05-10 02:22:59 +08:00
|
|
|
case UTT_HasTrivialDefaultConstructor:
|
2013-03-27 09:34:16 +08:00
|
|
|
case UTT_HasTrivialMoveConstructor:
|
2011-05-01 14:51:22 +08:00
|
|
|
case UTT_HasTrivialCopy:
|
|
|
|
case UTT_HasTrivialDestructor:
|
|
|
|
case UTT_HasVirtualDestructor:
|
|
|
|
// Arrays of unknown bound are expressly allowed.
|
|
|
|
QualType ElTy = ArgTy;
|
|
|
|
if (ArgTy->isIncompleteArrayType())
|
|
|
|
ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
|
|
|
|
|
|
|
|
// The void type is expressly allowed.
|
|
|
|
if (ElTy->isVoidType())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return !S.RequireCompleteType(
|
|
|
|
Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
|
2011-04-28 10:06:46 +08:00
|
|
|
}
|
2011-05-01 14:51:22 +08:00
|
|
|
}
|
|
|
|
|
2013-03-27 09:34:16 +08:00
|
|
|
static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
|
|
|
|
Sema &Self, SourceLocation KeyLoc, ASTContext &C,
|
|
|
|
bool (CXXRecordDecl::*HasTrivial)() const,
|
|
|
|
bool (CXXRecordDecl::*HasNonTrivial)() const,
|
|
|
|
bool (CXXMethodDecl::*IsDesiredOp)() const)
|
|
|
|
{
|
|
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
DeclarationNameInfo NameInfo(Name, KeyLoc);
|
|
|
|
LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
|
|
|
|
if (Self.LookupQualifiedName(Res, RD)) {
|
|
|
|
bool FoundOperator = false;
|
|
|
|
Res.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
|
|
|
|
Op != OpEnd; ++Op) {
|
|
|
|
if (isa<FunctionTemplateDecl>(*Op))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
|
|
|
|
if((Operator->*IsDesiredOp)()) {
|
|
|
|
FoundOperator = true;
|
|
|
|
const FunctionProtoType *CPT =
|
|
|
|
Operator->getType()->getAs<FunctionProtoType>();
|
|
|
|
CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
|
2014-01-20 08:24:09 +08:00
|
|
|
if (!CPT || !CPT->isNothrow(C))
|
2013-03-27 09:34:16 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FoundOperator;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-01-01 13:57:51 +08:00
|
|
|
static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
|
2011-05-01 14:51:22 +08:00
|
|
|
SourceLocation KeyLoc, QualType T) {
|
2011-05-01 16:41:10 +08:00
|
|
|
assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
|
2011-04-28 10:06:46 +08:00
|
|
|
|
2010-09-14 04:56:31 +08:00
|
|
|
ASTContext &C = Self.Context;
|
|
|
|
switch(UTT) {
|
2014-01-01 13:57:51 +08:00
|
|
|
default: llvm_unreachable("not a UTT");
|
2011-05-01 14:11:07 +08:00
|
|
|
// Type trait expressions corresponding to the primary type category
|
|
|
|
// predicates in C++0x [meta.unary.cat].
|
|
|
|
case UTT_IsVoid:
|
|
|
|
return T->isVoidType();
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsIntegral:
|
|
|
|
return T->isIntegralType(C);
|
|
|
|
case UTT_IsFloatingPoint:
|
|
|
|
return T->isFloatingType();
|
|
|
|
case UTT_IsArray:
|
|
|
|
return T->isArrayType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsPointer:
|
|
|
|
return T->isPointerType();
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsLvalueReference:
|
|
|
|
return T->isLValueReferenceType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsRvalueReference:
|
|
|
|
return T->isRValueReferenceType();
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsMemberFunctionPointer:
|
|
|
|
return T->isMemberFunctionPointerType();
|
|
|
|
case UTT_IsMemberObjectPointer:
|
|
|
|
return T->isMemberDataPointerType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsEnum:
|
|
|
|
return T->isEnumeralType();
|
|
|
|
case UTT_IsUnion:
|
2011-05-01 17:29:58 +08:00
|
|
|
return T->isUnionType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsClass:
|
2012-09-01 02:45:21 +08:00
|
|
|
return T->isClassType() || T->isStructureType() || T->isInterfaceType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsFunction:
|
|
|
|
return T->isFunctionType();
|
|
|
|
|
|
|
|
// Type trait expressions which correspond to the convenient composition
|
|
|
|
// predicates in C++0x [meta.unary.comp].
|
|
|
|
case UTT_IsReference:
|
|
|
|
return T->isReferenceType();
|
|
|
|
case UTT_IsArithmetic:
|
2011-05-01 17:29:58 +08:00
|
|
|
return T->isArithmeticType() && !T->isEnumeralType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsFundamental:
|
2011-05-01 17:29:58 +08:00
|
|
|
return T->isFundamentalType();
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsObject:
|
2011-05-01 17:29:58 +08:00
|
|
|
return T->isObjectType();
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsScalar:
|
2011-06-16 07:02:42 +08:00
|
|
|
// Note: semantic analysis depends on Objective-C lifetime types to be
|
|
|
|
// considered scalar types. However, such types do not actually behave
|
|
|
|
// like scalar types at run time (since they may require retain/release
|
|
|
|
// operations), so we report them as non-scalar.
|
|
|
|
if (T->isObjCLifetimeType()) {
|
|
|
|
switch (T.getObjCLifetime()) {
|
|
|
|
case Qualifiers::OCL_None:
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
|
|
return true;
|
|
|
|
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-05-01 17:29:55 +08:00
|
|
|
return T->isScalarType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsCompound:
|
2011-05-01 17:29:58 +08:00
|
|
|
return T->isCompoundType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsMemberPointer:
|
|
|
|
return T->isMemberPointerType();
|
|
|
|
|
|
|
|
// Type trait expressions which correspond to the type property predicates
|
|
|
|
// in C++0x [meta.unary.prop].
|
|
|
|
case UTT_IsConst:
|
|
|
|
return T.isConstQualified();
|
|
|
|
case UTT_IsVolatile:
|
|
|
|
return T.isVolatileQualified();
|
|
|
|
case UTT_IsTrivial:
|
2011-06-16 07:02:42 +08:00
|
|
|
return T.isTrivialType(Self.Context);
|
2011-05-13 08:31:07 +08:00
|
|
|
case UTT_IsTriviallyCopyable:
|
2011-06-16 07:02:42 +08:00
|
|
|
return T.isTriviallyCopyableType(Self.Context);
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsStandardLayout:
|
2011-04-30 17:17:49 +08:00
|
|
|
return T->isStandardLayoutType();
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsPOD:
|
2012-04-28 18:00:33 +08:00
|
|
|
return T.isPODType(Self.Context);
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsLiteral:
|
2013-04-22 23:31:51 +08:00
|
|
|
return T->isLiteralType(Self.Context);
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsEmpty:
|
|
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return !RD->isUnion() && RD->isEmpty();
|
|
|
|
return false;
|
|
|
|
case UTT_IsPolymorphic:
|
|
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return RD->isPolymorphic();
|
|
|
|
return false;
|
|
|
|
case UTT_IsAbstract:
|
|
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return RD->isAbstract();
|
|
|
|
return false;
|
2012-09-25 15:32:49 +08:00
|
|
|
case UTT_IsInterfaceClass:
|
|
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return RD->isInterface();
|
|
|
|
return false;
|
2011-12-04 02:14:24 +08:00
|
|
|
case UTT_IsFinal:
|
|
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return RD->hasAttr<FinalAttr>();
|
|
|
|
return false;
|
2013-10-18 08:33:31 +08:00
|
|
|
case UTT_IsSealed:
|
|
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
if (FinalAttr *FA = RD->getAttr<FinalAttr>())
|
|
|
|
return FA->isSpelledAsSealed();
|
|
|
|
return false;
|
2011-05-01 14:11:07 +08:00
|
|
|
case UTT_IsSigned:
|
|
|
|
return T->isSignedIntegerType();
|
2011-04-28 07:09:49 +08:00
|
|
|
case UTT_IsUnsigned:
|
|
|
|
return T->isUnsignedIntegerType();
|
2011-05-01 14:11:07 +08:00
|
|
|
|
|
|
|
// Type trait expressions which query classes regarding their construction,
|
|
|
|
// destruction, and copying. Rather than being based directly on the
|
|
|
|
// related type predicates in the standard, they are specified by both
|
|
|
|
// GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
|
|
|
|
// specifications.
|
|
|
|
//
|
|
|
|
// 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
|
|
|
|
// 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
|
2012-12-08 10:53:02 +08:00
|
|
|
//
|
|
|
|
// Note that these builtins do not behave as documented in g++: if a class
|
|
|
|
// has both a trivial and a non-trivial special member of a particular kind,
|
|
|
|
// they return false! For now, we emulate this behavior.
|
|
|
|
// FIXME: This appears to be a g++ bug: more complex cases reveal that it
|
|
|
|
// does not correctly compute triviality in the presence of multiple special
|
|
|
|
// members of the same kind. Revisit this once the g++ bug is fixed.
|
2011-05-10 02:22:59 +08:00
|
|
|
case UTT_HasTrivialDefaultConstructor:
|
2010-09-14 04:56:31 +08:00
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
|
|
// If __is_pod (type) is true then the trait is true, else if type is
|
|
|
|
// a cv class or union type (or array thereof) with a trivial default
|
|
|
|
// constructor ([class.ctor]) then the trait is true, else it is false.
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(Self.Context))
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
|
|
return RD->hasTrivialDefaultConstructor() &&
|
|
|
|
!RD->hasNonTrivialDefaultConstructor();
|
2010-09-14 04:56:31 +08:00
|
|
|
return false;
|
2013-03-27 09:34:16 +08:00
|
|
|
case UTT_HasTrivialMoveConstructor:
|
|
|
|
// This trait is implemented by MSVC 2012 and needed to parse the
|
|
|
|
// standard library headers. Specifically this is used as the logic
|
|
|
|
// behind std::is_trivially_move_constructible (20.9.4.3).
|
|
|
|
if (T.isPODType(Self.Context))
|
|
|
|
return true;
|
|
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
|
|
return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
|
|
|
|
return false;
|
2010-09-14 04:56:31 +08:00
|
|
|
case UTT_HasTrivialCopy:
|
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
|
|
// If __is_pod (type) is true or type is a reference type then
|
|
|
|
// the trait is true, else if type is a cv class or union type
|
|
|
|
// with a trivial copy constructor ([class.copy]) then the trait
|
|
|
|
// is true, else it is false.
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(Self.Context) || T->isReferenceType())
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return RD->hasTrivialCopyConstructor() &&
|
|
|
|
!RD->hasNonTrivialCopyConstructor();
|
2010-09-14 04:56:31 +08:00
|
|
|
return false;
|
2013-03-27 09:34:16 +08:00
|
|
|
case UTT_HasTrivialMoveAssign:
|
|
|
|
// This trait is implemented by MSVC 2012 and needed to parse the
|
|
|
|
// standard library headers. Specifically it is used as the logic
|
|
|
|
// behind std::is_trivially_move_assignable (20.9.4.3)
|
|
|
|
if (T.isPODType(Self.Context))
|
|
|
|
return true;
|
|
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
|
|
return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
|
|
|
|
return false;
|
2010-09-14 04:56:31 +08:00
|
|
|
case UTT_HasTrivialAssign:
|
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
|
|
// If type is const qualified or is a reference type then the
|
|
|
|
// trait is false. Otherwise if __is_pod (type) is true then the
|
|
|
|
// trait is true, else if type is a cv class or union type with
|
|
|
|
// a trivial copy assignment ([class.copy]) then the trait is
|
|
|
|
// true, else it is false.
|
|
|
|
// Note: the const and reference restrictions are interesting,
|
|
|
|
// given that const and reference members don't prevent a class
|
|
|
|
// from having a trivial copy assignment operator (but do cause
|
|
|
|
// errors if the copy assignment operator is actually used, q.v.
|
|
|
|
// [class.copy]p12).
|
|
|
|
|
2012-12-08 10:53:02 +08:00
|
|
|
if (T.isConstQualified())
|
2010-09-14 04:56:31 +08:00
|
|
|
return false;
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(Self.Context))
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
|
|
return RD->hasTrivialCopyAssignment() &&
|
|
|
|
!RD->hasNonTrivialCopyAssignment();
|
2010-09-14 04:56:31 +08:00
|
|
|
return false;
|
2014-01-20 08:24:09 +08:00
|
|
|
case UTT_IsDestructible:
|
|
|
|
case UTT_IsNothrowDestructible:
|
|
|
|
// FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
|
|
|
|
// For now, let's fall through.
|
2010-09-14 04:56:31 +08:00
|
|
|
case UTT_HasTrivialDestructor:
|
2014-01-20 08:24:09 +08:00
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
|
2010-09-14 04:56:31 +08:00
|
|
|
// If __is_pod (type) is true or type is a reference type
|
|
|
|
// then the trait is true, else if type is a cv class or union
|
|
|
|
// type (or array thereof) with a trivial destructor
|
|
|
|
// ([class.dtor]) then the trait is true, else it is
|
|
|
|
// false.
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(Self.Context) || T->isReferenceType())
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
2011-06-16 07:02:42 +08:00
|
|
|
|
|
|
|
// Objective-C++ ARC: autorelease types don't require destruction.
|
|
|
|
if (T->isObjCLifetimeType() &&
|
|
|
|
T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
|
|
|
|
return true;
|
|
|
|
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
|
|
return RD->hasTrivialDestructor();
|
2010-09-14 04:56:31 +08:00
|
|
|
return false;
|
|
|
|
// TODO: Propagate nothrowness for implicitly declared special members.
|
|
|
|
case UTT_HasNothrowAssign:
|
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
|
|
// If type is const qualified or is a reference type then the
|
|
|
|
// trait is false. Otherwise if __has_trivial_assign (type)
|
|
|
|
// is true then the trait is true, else if type is a cv class
|
|
|
|
// or union type with copy assignment operators that are known
|
|
|
|
// not to throw an exception then the trait is true, else it is
|
|
|
|
// false.
|
|
|
|
if (C.getBaseElementType(T).isConstQualified())
|
|
|
|
return false;
|
|
|
|
if (T->isReferenceType())
|
|
|
|
return false;
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
|
2013-03-27 09:34:16 +08:00
|
|
|
return true;
|
2010-09-14 04:56:31 +08:00
|
|
|
|
2013-03-27 09:34:16 +08:00
|
|
|
if (const RecordType *RT = T->getAs<RecordType>())
|
|
|
|
return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
|
|
|
|
&CXXRecordDecl::hasTrivialCopyAssignment,
|
|
|
|
&CXXRecordDecl::hasNonTrivialCopyAssignment,
|
|
|
|
&CXXMethodDecl::isCopyAssignmentOperator);
|
|
|
|
return false;
|
|
|
|
case UTT_HasNothrowMoveAssign:
|
|
|
|
// This trait is implemented by MSVC 2012 and needed to parse the
|
|
|
|
// standard library headers. Specifically this is used as the logic
|
|
|
|
// behind std::is_nothrow_move_assignable (20.9.4.3).
|
|
|
|
if (T.isPODType(Self.Context))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
|
|
|
|
return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
|
|
|
|
&CXXRecordDecl::hasTrivialMoveAssignment,
|
|
|
|
&CXXRecordDecl::hasNonTrivialMoveAssignment,
|
|
|
|
&CXXMethodDecl::isMoveAssignmentOperator);
|
2010-09-14 04:56:31 +08:00
|
|
|
return false;
|
|
|
|
case UTT_HasNothrowCopy:
|
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
|
|
// If __has_trivial_copy (type) is true then the trait is true, else
|
|
|
|
// if type is a cv class or union type with copy constructors that are
|
|
|
|
// known not to throw an exception then the trait is true, else it is
|
|
|
|
// false.
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
|
|
|
|
if (RD->hasTrivialCopyConstructor() &&
|
|
|
|
!RD->hasNonTrivialCopyConstructor())
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
|
|
|
|
|
|
|
bool FoundConstructor = false;
|
|
|
|
unsigned FoundTQs;
|
2012-12-19 08:45:41 +08:00
|
|
|
DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
|
|
|
|
for (DeclContext::lookup_const_iterator Con = R.begin(),
|
|
|
|
ConEnd = R.end(); Con != ConEnd; ++Con) {
|
2010-09-14 06:18:28 +08:00
|
|
|
// A template constructor is never a copy constructor.
|
|
|
|
// FIXME: However, it may actually be selected at the actual overload
|
|
|
|
// resolution point.
|
|
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
|
|
continue;
|
2010-09-14 04:56:31 +08:00
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
|
|
if (Constructor->isCopyConstructor(FoundTQs)) {
|
|
|
|
FoundConstructor = true;
|
|
|
|
const FunctionProtoType *CPT
|
|
|
|
= Constructor->getType()->getAs<FunctionProtoType>();
|
Implement DR1330 in C++11 mode, to support libstdc++4.7 which uses it.
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
2012-04-17 08:58:00 +08:00
|
|
|
CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
|
|
|
|
if (!CPT)
|
|
|
|
return false;
|
2014-01-20 08:24:09 +08:00
|
|
|
// TODO: check whether evaluating default arguments can throw.
|
2010-09-14 06:02:47 +08:00
|
|
|
// For now, we'll be conservative and assume that they can throw.
|
2014-01-21 04:26:09 +08:00
|
|
|
if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
|
2011-06-12 01:19:42 +08:00
|
|
|
return false;
|
2010-09-14 04:56:31 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-06-12 01:19:42 +08:00
|
|
|
return FoundConstructor;
|
2010-09-14 04:56:31 +08:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
case UTT_HasNothrowConstructor:
|
2014-01-20 08:23:47 +08:00
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
|
2010-09-14 04:56:31 +08:00
|
|
|
// If __has_trivial_constructor (type) is true then the trait is
|
|
|
|
// true, else if type is a cv class or union type (or array
|
|
|
|
// thereof) with a default constructor that is known not to
|
|
|
|
// throw an exception then the trait is true, else it is false.
|
2011-06-16 07:02:42 +08:00
|
|
|
if (T.isPODType(C) || T->isObjCLifetimeType())
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
|
|
|
|
if (RD->hasTrivialDefaultConstructor() &&
|
|
|
|
!RD->hasNonTrivialDefaultConstructor())
|
2010-09-14 04:56:31 +08:00
|
|
|
return true;
|
|
|
|
|
2014-01-20 08:23:47 +08:00
|
|
|
bool FoundConstructor = false;
|
2012-12-19 08:45:41 +08:00
|
|
|
DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
|
|
|
|
for (DeclContext::lookup_const_iterator Con = R.begin(),
|
|
|
|
ConEnd = R.end(); Con != ConEnd; ++Con) {
|
2010-09-14 06:18:28 +08:00
|
|
|
// FIXME: In C++0x, a constructor template can be a default constructor.
|
|
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
|
|
continue;
|
2010-09-14 06:02:47 +08:00
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
|
|
if (Constructor->isDefaultConstructor()) {
|
2014-01-20 08:23:47 +08:00
|
|
|
FoundConstructor = true;
|
2010-09-14 06:02:47 +08:00
|
|
|
const FunctionProtoType *CPT
|
|
|
|
= Constructor->getType()->getAs<FunctionProtoType>();
|
Implement DR1330 in C++11 mode, to support libstdc++4.7 which uses it.
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
2012-04-17 08:58:00 +08:00
|
|
|
CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
|
|
|
|
if (!CPT)
|
|
|
|
return false;
|
2014-01-20 08:23:47 +08:00
|
|
|
// FIXME: check whether evaluating default arguments can throw.
|
2010-09-14 06:02:47 +08:00
|
|
|
// For now, we'll be conservative and assume that they can throw.
|
2014-01-21 04:26:09 +08:00
|
|
|
if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
|
2014-01-20 08:23:47 +08:00
|
|
|
return false;
|
2010-09-14 06:02:47 +08:00
|
|
|
}
|
2010-09-14 04:56:31 +08:00
|
|
|
}
|
2014-01-20 08:23:47 +08:00
|
|
|
return FoundConstructor;
|
2010-09-14 04:56:31 +08:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
case UTT_HasVirtualDestructor:
|
|
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
|
|
// If type is a class type with a virtual destructor ([class.dtor])
|
|
|
|
// then the trait is true, else it is false.
|
2012-12-08 10:53:02 +08:00
|
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
2010-09-15 07:40:14 +08:00
|
|
|
if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
|
2010-09-14 04:56:31 +08:00
|
|
|
return Destructor->isVirtual();
|
|
|
|
return false;
|
2011-05-01 14:11:07 +08:00
|
|
|
|
|
|
|
// These type trait expressions are modeled on the specifications for the
|
|
|
|
// Embarcadero C++0x type trait functions:
|
|
|
|
// http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
|
|
|
|
case UTT_IsCompleteType:
|
|
|
|
// http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
|
|
|
|
// Returns True if and only if T is a complete type at the point of the
|
|
|
|
// function call.
|
|
|
|
return !T->isIncompleteType();
|
2010-09-14 04:56:31 +08:00
|
|
|
}
|
2009-01-06 04:52:13 +08:00
|
|
|
}
|
2009-02-08 04:10:22 +08:00
|
|
|
|
2012-06-29 08:49:17 +08:00
|
|
|
/// \brief Determine whether T has a non-trivial Objective-C lifetime in
|
|
|
|
/// ARC mode.
|
|
|
|
static bool hasNontrivialObjCLifetime(QualType T) {
|
|
|
|
switch (T.getObjCLifetime()) {
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
|
|
return false;
|
|
|
|
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
|
|
return true;
|
|
|
|
|
|
|
|
case Qualifiers::OCL_None:
|
|
|
|
return T->isObjCLifetimeType();
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm_unreachable("Unknown ObjC lifetime qualifier");
|
|
|
|
}
|
|
|
|
|
2013-12-14 04:49:58 +08:00
|
|
|
static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
|
|
|
|
QualType RhsT, SourceLocation KeyLoc);
|
|
|
|
|
2012-02-24 15:38:34 +08:00
|
|
|
static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
|
|
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
|
|
SourceLocation RParenLoc) {
|
2014-01-01 13:57:51 +08:00
|
|
|
if (Kind <= UTT_Last)
|
|
|
|
return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
|
|
|
|
|
2013-12-14 04:49:58 +08:00
|
|
|
if (Kind <= BTT_Last)
|
|
|
|
return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
|
|
|
|
Args[1]->getType(), RParenLoc);
|
|
|
|
|
2012-02-24 15:38:34 +08:00
|
|
|
switch (Kind) {
|
2014-01-20 08:24:09 +08:00
|
|
|
case clang::TT_IsConstructible:
|
|
|
|
case clang::TT_IsNothrowConstructible:
|
2012-02-24 15:38:34 +08:00
|
|
|
case clang::TT_IsTriviallyConstructible: {
|
|
|
|
// C++11 [meta.unary.prop]:
|
2012-02-25 04:03:35 +08:00
|
|
|
// is_trivially_constructible is defined as:
|
2012-02-24 15:38:34 +08:00
|
|
|
//
|
2012-02-25 04:03:35 +08:00
|
|
|
// is_constructible<T, Args...>::value is true and the variable
|
2013-11-04 09:48:18 +08:00
|
|
|
// definition for is_constructible, as defined below, is known to call
|
|
|
|
// no operation that is not trivial.
|
2012-02-24 15:38:34 +08:00
|
|
|
//
|
|
|
|
// The predicate condition for a template specialization
|
|
|
|
// is_constructible<T, Args...> shall be satisfied if and only if the
|
|
|
|
// following variable definition would be well-formed for some invented
|
|
|
|
// variable t:
|
|
|
|
//
|
|
|
|
// T t(create<Args>()...);
|
2013-12-13 05:23:03 +08:00
|
|
|
assert(!Args.empty());
|
2013-09-11 10:53:02 +08:00
|
|
|
|
|
|
|
// Precondition: T and all types in the parameter pack Args shall be
|
|
|
|
// complete types, (possibly cv-qualified) void, or arrays of
|
|
|
|
// unknown bound.
|
2012-02-24 15:38:34 +08:00
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
2013-09-11 10:53:02 +08:00
|
|
|
QualType ArgTy = Args[I]->getType();
|
|
|
|
if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
|
2012-02-24 15:38:34 +08:00
|
|
|
continue;
|
2013-09-11 10:53:02 +08:00
|
|
|
|
|
|
|
if (S.RequireCompleteType(KWLoc, ArgTy,
|
2012-02-24 15:38:34 +08:00
|
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
|
|
return false;
|
|
|
|
}
|
2013-09-11 10:53:02 +08:00
|
|
|
|
|
|
|
// Make sure the first argument is a complete type.
|
|
|
|
if (Args[0]->getType()->isIncompleteType())
|
2012-02-24 15:38:34 +08:00
|
|
|
return false;
|
2013-09-11 10:53:02 +08:00
|
|
|
|
2014-04-15 19:30:15 +08:00
|
|
|
// Make sure the first argument is not an abstract type.
|
|
|
|
CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
|
|
|
|
if (RD && RD->isAbstract())
|
|
|
|
return false;
|
|
|
|
|
2013-01-13 03:30:44 +08:00
|
|
|
SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
|
|
|
|
SmallVector<Expr *, 2> ArgExprs;
|
2012-02-24 15:38:34 +08:00
|
|
|
ArgExprs.reserve(Args.size() - 1);
|
|
|
|
for (unsigned I = 1, N = Args.size(); I != N; ++I) {
|
|
|
|
QualType T = Args[I]->getType();
|
|
|
|
if (T->isObjectType() || T->isFunctionType())
|
|
|
|
T = S.Context.getRValueReferenceType(T);
|
|
|
|
OpaqueArgExprs.push_back(
|
2012-03-10 02:35:03 +08:00
|
|
|
OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
|
2012-02-24 15:38:34 +08:00
|
|
|
T.getNonLValueExprType(S.Context),
|
|
|
|
Expr::getValueKindForType(T)));
|
|
|
|
ArgExprs.push_back(&OpaqueArgExprs.back());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Perform the initialization in an unevaluated context within a SFINAE
|
|
|
|
// trap at translation unit scope.
|
|
|
|
EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
|
|
|
|
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
|
|
|
|
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
|
|
|
|
InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
|
|
|
|
InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
|
|
|
|
RParenLoc));
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence Init(S, To, InitKind, ArgExprs);
|
2012-02-24 15:38:34 +08:00
|
|
|
if (Init.Failed())
|
|
|
|
return false;
|
2014-01-20 08:24:09 +08:00
|
|
|
|
2012-08-24 07:38:35 +08:00
|
|
|
ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
|
2012-02-24 15:38:34 +08:00
|
|
|
if (Result.isInvalid() || SFINAE.hasErrorOccurred())
|
|
|
|
return false;
|
2012-06-29 08:49:17 +08:00
|
|
|
|
2014-01-20 08:24:09 +08:00
|
|
|
if (Kind == clang::TT_IsConstructible)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (Kind == clang::TT_IsNothrowConstructible)
|
|
|
|
return S.canThrow(Result.get()) == CT_Cannot;
|
2012-06-29 08:49:17 +08:00
|
|
|
|
2014-01-20 08:24:09 +08:00
|
|
|
if (Kind == clang::TT_IsTriviallyConstructible) {
|
|
|
|
// Under Objective-C ARC, if the destination has non-trivial Objective-C
|
|
|
|
// lifetime, this is a non-trivial construction.
|
|
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
|
|
hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// The initialization succeeded; now make sure there are no non-trivial
|
|
|
|
// calls.
|
|
|
|
return !Result.get()->hasNonTrivialCall(S.Context);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm_unreachable("unhandled type trait");
|
|
|
|
return false;
|
2012-02-24 15:38:34 +08:00
|
|
|
}
|
2013-12-14 04:49:58 +08:00
|
|
|
default: llvm_unreachable("not a TT");
|
2012-02-24 15:38:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
|
|
SourceLocation RParenLoc) {
|
2013-12-25 09:47:02 +08:00
|
|
|
QualType ResultType = Context.getLogicalOperationType();
|
2013-12-14 04:49:58 +08:00
|
|
|
|
2014-01-01 13:57:51 +08:00
|
|
|
if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
|
|
|
|
*this, Kind, KWLoc, Args[0]->getType()))
|
|
|
|
return ExprError();
|
|
|
|
|
2012-02-24 15:38:34 +08:00
|
|
|
bool Dependent = false;
|
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
|
|
if (Args[I]->getType()->isDependentType()) {
|
|
|
|
Dependent = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2013-12-14 04:49:58 +08:00
|
|
|
|
|
|
|
bool Result = false;
|
2012-02-24 15:38:34 +08:00
|
|
|
if (!Dependent)
|
2013-12-14 04:49:58 +08:00
|
|
|
Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
|
|
|
|
|
|
|
|
return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
|
|
|
|
RParenLoc, Result);
|
2012-02-24 15:38:34 +08:00
|
|
|
}
|
|
|
|
|
2013-12-14 05:19:30 +08:00
|
|
|
ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
|
|
ArrayRef<ParsedType> Args,
|
2012-02-24 15:38:34 +08:00
|
|
|
SourceLocation RParenLoc) {
|
2013-01-13 03:30:44 +08:00
|
|
|
SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
|
2012-02-24 15:38:34 +08:00
|
|
|
ConvertedArgs.reserve(Args.size());
|
|
|
|
|
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
|
|
TypeSourceInfo *TInfo;
|
|
|
|
QualType T = GetTypeFromParser(Args[I], &TInfo);
|
|
|
|
if (!TInfo)
|
|
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
|
|
|
|
|
|
|
|
ConvertedArgs.push_back(TInfo);
|
|
|
|
}
|
2013-12-14 04:49:58 +08:00
|
|
|
|
2012-02-24 15:38:34 +08:00
|
|
|
return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
|
|
|
|
}
|
|
|
|
|
2013-12-14 04:49:58 +08:00
|
|
|
static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
|
|
|
|
QualType RhsT, SourceLocation KeyLoc) {
|
2011-05-01 16:41:10 +08:00
|
|
|
assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
|
|
|
|
"Cannot evaluate traits of dependent types");
|
2010-12-07 08:08:36 +08:00
|
|
|
|
|
|
|
switch(BTT) {
|
2011-01-29 06:02:36 +08:00
|
|
|
case BTT_IsBaseOf: {
|
2010-12-07 08:08:36 +08:00
|
|
|
// C++0x [meta.rel]p2
|
2011-01-29 06:02:36 +08:00
|
|
|
// Base is a base class of Derived without regard to cv-qualifiers or
|
2010-12-07 08:08:36 +08:00
|
|
|
// Base and Derived are not unions and name the same class type without
|
|
|
|
// regard to cv-qualifiers.
|
|
|
|
|
2011-01-29 06:02:36 +08:00
|
|
|
const RecordType *lhsRecord = LhsT->getAs<RecordType>();
|
|
|
|
if (!lhsRecord) return false;
|
|
|
|
|
|
|
|
const RecordType *rhsRecord = RhsT->getAs<RecordType>();
|
|
|
|
if (!rhsRecord) return false;
|
|
|
|
|
|
|
|
assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
|
|
|
|
== (lhsRecord == rhsRecord));
|
|
|
|
|
|
|
|
if (lhsRecord == rhsRecord)
|
|
|
|
return !lhsRecord->getDecl()->isUnion();
|
|
|
|
|
|
|
|
// C++0x [meta.rel]p2:
|
|
|
|
// If Base and Derived are class types and are different types
|
|
|
|
// (ignoring possible cv-qualifiers) then Derived shall be a
|
|
|
|
// complete type.
|
|
|
|
if (Self.RequireCompleteType(KeyLoc, RhsT,
|
|
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return cast<CXXRecordDecl>(rhsRecord->getDecl())
|
|
|
|
->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
|
|
|
|
}
|
2011-04-28 07:09:49 +08:00
|
|
|
case BTT_IsSame:
|
|
|
|
return Self.Context.hasSameType(LhsT, RhsT);
|
2010-12-09 06:35:30 +08:00
|
|
|
case BTT_TypeCompatible:
|
|
|
|
return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
|
|
|
|
RhsT.getUnqualifiedType());
|
2011-04-28 07:09:49 +08:00
|
|
|
case BTT_IsConvertible:
|
2011-01-28 04:28:01 +08:00
|
|
|
case BTT_IsConvertibleTo: {
|
|
|
|
// C++0x [meta.rel]p4:
|
|
|
|
// Given the following function prototype:
|
|
|
|
//
|
|
|
|
// template <class T>
|
|
|
|
// typename add_rvalue_reference<T>::type create();
|
|
|
|
//
|
|
|
|
// the predicate condition for a template specialization
|
|
|
|
// is_convertible<From, To> shall be satisfied if and only if
|
|
|
|
// the return expression in the following code would be
|
|
|
|
// well-formed, including any implicit conversions to the return
|
|
|
|
// type of the function:
|
|
|
|
//
|
|
|
|
// To test() {
|
|
|
|
// return create<From>();
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// Access checking is performed as if in a context unrelated to To and
|
|
|
|
// From. Only the validity of the immediate context of the expression
|
|
|
|
// of the return-statement (including conversions to the return type)
|
|
|
|
// is considered.
|
|
|
|
//
|
|
|
|
// We model the initialization as a copy-initialization of a temporary
|
|
|
|
// of the appropriate type, which for this expression is identical to the
|
|
|
|
// return statement (since NRVO doesn't apply).
|
2012-08-14 10:06:07 +08:00
|
|
|
|
|
|
|
// Functions aren't allowed to return function or array types.
|
|
|
|
if (RhsT->isFunctionType() || RhsT->isArrayType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// A return statement in a void function must have void type.
|
|
|
|
if (RhsT->isVoidType())
|
|
|
|
return LhsT->isVoidType();
|
|
|
|
|
|
|
|
// A function definition requires a complete, non-abstract return type.
|
|
|
|
if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
|
|
|
|
Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Compute the result of add_rvalue_reference.
|
2011-01-28 04:28:01 +08:00
|
|
|
if (LhsT->isObjectType() || LhsT->isFunctionType())
|
|
|
|
LhsT = Self.Context.getRValueReferenceType(LhsT);
|
2012-08-14 10:06:07 +08:00
|
|
|
|
|
|
|
// Build a fake source and destination for initialization.
|
2011-01-28 04:28:01 +08:00
|
|
|
InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
|
2011-01-28 10:26:04 +08:00
|
|
|
OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
|
2011-01-28 04:28:01 +08:00
|
|
|
Expr::getValueKindForType(LhsT));
|
|
|
|
Expr *FromPtr = &From;
|
|
|
|
InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
|
|
|
|
SourceLocation()));
|
|
|
|
|
2012-01-25 09:05:57 +08:00
|
|
|
// Perform the initialization in an unevaluated context within a SFINAE
|
|
|
|
// trap at translation unit scope.
|
|
|
|
EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
|
2011-01-28 06:31:44 +08:00
|
|
|
Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
|
|
|
|
Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence Init(Self, To, Kind, FromPtr);
|
2011-06-05 20:23:28 +08:00
|
|
|
if (Init.Failed())
|
2011-01-28 04:28:01 +08:00
|
|
|
return false;
|
2011-01-28 06:31:44 +08:00
|
|
|
|
2012-08-24 07:38:35 +08:00
|
|
|
ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
|
2011-01-28 04:28:01 +08:00
|
|
|
return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
|
|
|
|
}
|
2014-01-20 08:24:09 +08:00
|
|
|
|
|
|
|
case BTT_IsNothrowAssignable:
|
2012-02-23 15:33:15 +08:00
|
|
|
case BTT_IsTriviallyAssignable: {
|
|
|
|
// C++11 [meta.unary.prop]p3:
|
|
|
|
// is_trivially_assignable is defined as:
|
|
|
|
// is_assignable<T, U>::value is true and the assignment, as defined by
|
|
|
|
// is_assignable, is known to call no operation that is not trivial
|
|
|
|
//
|
|
|
|
// is_assignable is defined as:
|
|
|
|
// The expression declval<T>() = declval<U>() is well-formed when
|
|
|
|
// treated as an unevaluated operand (Clause 5).
|
|
|
|
//
|
|
|
|
// For both, T and U shall be complete types, (possibly cv-qualified)
|
|
|
|
// void, or arrays of unknown bound.
|
|
|
|
if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
|
|
|
|
Self.RequireCompleteType(KeyLoc, LhsT,
|
|
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
|
|
return false;
|
|
|
|
if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
|
|
|
|
Self.RequireCompleteType(KeyLoc, RhsT,
|
|
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// cv void is never assignable.
|
|
|
|
if (LhsT->isVoidType() || RhsT->isVoidType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Build expressions that emulate the effect of declval<T>() and
|
|
|
|
// declval<U>().
|
|
|
|
if (LhsT->isObjectType() || LhsT->isFunctionType())
|
|
|
|
LhsT = Self.Context.getRValueReferenceType(LhsT);
|
|
|
|
if (RhsT->isObjectType() || RhsT->isFunctionType())
|
|
|
|
RhsT = Self.Context.getRValueReferenceType(RhsT);
|
|
|
|
OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
|
|
|
|
Expr::getValueKindForType(LhsT));
|
|
|
|
OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
|
|
|
|
Expr::getValueKindForType(RhsT));
|
|
|
|
|
|
|
|
// Attempt the assignment in an unevaluated context within a SFINAE
|
|
|
|
// trap at translation unit scope.
|
|
|
|
EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
|
|
|
|
Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
|
|
|
|
Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
|
|
|
|
ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
|
|
|
|
if (Result.isInvalid() || SFINAE.hasErrorOccurred())
|
|
|
|
return false;
|
|
|
|
|
2014-01-20 08:24:09 +08:00
|
|
|
if (BTT == BTT_IsNothrowAssignable)
|
|
|
|
return Self.canThrow(Result.get()) == CT_Cannot;
|
2012-06-29 08:49:17 +08:00
|
|
|
|
2014-01-20 08:24:09 +08:00
|
|
|
if (BTT == BTT_IsTriviallyAssignable) {
|
|
|
|
// Under Objective-C ARC, if the destination has non-trivial Objective-C
|
|
|
|
// lifetime, this is a non-trivial assignment.
|
|
|
|
if (Self.getLangOpts().ObjCAutoRefCount &&
|
|
|
|
hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return !Result.get()->hasNonTrivialCall(Self.Context);
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm_unreachable("unhandled type trait");
|
|
|
|
return false;
|
2012-02-23 15:33:15 +08:00
|
|
|
}
|
2013-12-14 04:49:58 +08:00
|
|
|
default: llvm_unreachable("not a BTT");
|
2010-12-07 08:08:36 +08:00
|
|
|
}
|
|
|
|
llvm_unreachable("Unknown type trait or not implemented");
|
|
|
|
}
|
|
|
|
|
2011-04-28 08:16:57 +08:00
|
|
|
ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
|
|
|
|
SourceLocation KWLoc,
|
|
|
|
ParsedType Ty,
|
|
|
|
Expr* DimExpr,
|
|
|
|
SourceLocation RParen) {
|
|
|
|
TypeSourceInfo *TSInfo;
|
|
|
|
QualType T = GetTypeFromParser(Ty, &TSInfo);
|
|
|
|
if (!TSInfo)
|
|
|
|
TSInfo = Context.getTrivialTypeSourceInfo(T);
|
|
|
|
|
|
|
|
return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
|
|
|
|
QualType T, Expr *DimExpr,
|
|
|
|
SourceLocation KeyLoc) {
|
2011-05-01 16:41:10 +08:00
|
|
|
assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
|
2011-04-28 08:16:57 +08:00
|
|
|
|
|
|
|
switch(ATT) {
|
|
|
|
case ATT_ArrayRank:
|
|
|
|
if (T->isArrayType()) {
|
|
|
|
unsigned Dim = 0;
|
|
|
|
while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
|
|
|
|
++Dim;
|
|
|
|
T = AT->getElementType();
|
|
|
|
}
|
|
|
|
return Dim;
|
|
|
|
}
|
2011-04-28 10:06:46 +08:00
|
|
|
return 0;
|
|
|
|
|
2011-04-28 08:16:57 +08:00
|
|
|
case ATT_ArrayExtent: {
|
|
|
|
llvm::APSInt Value;
|
|
|
|
uint64_t Dim;
|
2012-02-04 17:53:13 +08:00
|
|
|
if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
|
2012-05-05 06:38:52 +08:00
|
|
|
diag::err_dimension_expr_not_constant_integer,
|
2012-02-04 17:53:13 +08:00
|
|
|
false).isInvalid())
|
|
|
|
return 0;
|
|
|
|
if (Value.isSigned() && Value.isNegative()) {
|
2012-03-10 05:38:22 +08:00
|
|
|
Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
|
|
|
|
<< DimExpr->getSourceRange();
|
2012-02-04 17:53:13 +08:00
|
|
|
return 0;
|
2011-04-28 10:06:46 +08:00
|
|
|
}
|
2012-02-04 17:53:13 +08:00
|
|
|
Dim = Value.getLimitedValue();
|
2011-04-28 08:16:57 +08:00
|
|
|
|
|
|
|
if (T->isArrayType()) {
|
|
|
|
unsigned D = 0;
|
|
|
|
bool Matched = false;
|
|
|
|
while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
|
|
|
|
if (Dim == D) {
|
|
|
|
Matched = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
++D;
|
|
|
|
T = AT->getElementType();
|
|
|
|
}
|
|
|
|
|
2011-04-28 10:06:46 +08:00
|
|
|
if (Matched && T->isArrayType()) {
|
|
|
|
if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
|
|
|
|
return CAT->getSize().getLimitedValue();
|
|
|
|
}
|
2011-04-28 08:16:57 +08:00
|
|
|
}
|
2011-04-28 10:06:46 +08:00
|
|
|
return 0;
|
2011-04-28 08:16:57 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
llvm_unreachable("Unknown type trait or not implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
|
|
|
|
SourceLocation KWLoc,
|
|
|
|
TypeSourceInfo *TSInfo,
|
|
|
|
Expr* DimExpr,
|
|
|
|
SourceLocation RParen) {
|
|
|
|
QualType T = TSInfo->getType();
|
|
|
|
|
2011-05-01 16:48:21 +08:00
|
|
|
// FIXME: This should likely be tracked as an APInt to remove any host
|
|
|
|
// assumptions about the width of size_t on the target.
|
2011-05-01 16:41:10 +08:00
|
|
|
uint64_t Value = 0;
|
|
|
|
if (!T->isDependentType())
|
|
|
|
Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
|
|
|
|
|
2011-05-01 16:48:21 +08:00
|
|
|
// While the specification for these traits from the Embarcadero C++
|
|
|
|
// compiler's documentation says the return type is 'unsigned int', Clang
|
|
|
|
// returns 'size_t'. On Windows, the primary platform for the Embarcadero
|
|
|
|
// compiler, there is no difference. On several other platforms this is an
|
|
|
|
// important distinction.
|
2011-04-28 08:16:57 +08:00
|
|
|
return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
|
2011-05-01 15:49:26 +08:00
|
|
|
DimExpr, RParen,
|
2011-05-01 16:48:21 +08:00
|
|
|
Context.getSizeType()));
|
2011-04-28 08:16:57 +08:00
|
|
|
}
|
|
|
|
|
2011-04-25 14:54:41 +08:00
|
|
|
ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
|
2011-05-01 15:44:20 +08:00
|
|
|
SourceLocation KWLoc,
|
|
|
|
Expr *Queried,
|
|
|
|
SourceLocation RParen) {
|
2011-04-25 14:54:41 +08:00
|
|
|
// If error parsing the expression, ignore.
|
|
|
|
if (!Queried)
|
2011-05-01 15:44:20 +08:00
|
|
|
return ExprError();
|
2011-04-25 14:54:41 +08:00
|
|
|
|
2011-05-01 15:44:20 +08:00
|
|
|
ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
|
2011-04-25 14:54:41 +08:00
|
|
|
|
2012-08-24 05:35:17 +08:00
|
|
|
return Result;
|
2011-04-25 14:54:41 +08:00
|
|
|
}
|
|
|
|
|
2011-05-01 15:44:20 +08:00
|
|
|
static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
|
|
|
|
switch (ET) {
|
|
|
|
case ET_IsLValueExpr: return E->isLValue();
|
|
|
|
case ET_IsRValueExpr: return E->isRValue();
|
|
|
|
}
|
|
|
|
llvm_unreachable("Expression trait not covered by switch");
|
|
|
|
}
|
|
|
|
|
2011-04-25 14:54:41 +08:00
|
|
|
ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
|
2011-05-01 15:44:20 +08:00
|
|
|
SourceLocation KWLoc,
|
|
|
|
Expr *Queried,
|
|
|
|
SourceLocation RParen) {
|
2011-04-25 14:54:41 +08:00
|
|
|
if (Queried->isTypeDependent()) {
|
|
|
|
// Delay type-checking for type-dependent expressions.
|
|
|
|
} else if (Queried->getType()->isPlaceholderType()) {
|
|
|
|
ExprResult PE = CheckPlaceholderExpr(Queried);
|
|
|
|
if (PE.isInvalid()) return ExprError();
|
|
|
|
return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
|
|
|
|
}
|
|
|
|
|
2011-05-01 15:44:20 +08:00
|
|
|
bool Value = EvaluateExpressionTrait(ET, Queried);
|
2011-05-01 16:48:19 +08:00
|
|
|
|
2011-05-01 15:44:20 +08:00
|
|
|
return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
|
|
|
|
RParen, Context.BoolTy));
|
2011-04-25 14:54:41 +08:00
|
|
|
}
|
|
|
|
|
2011-09-16 05:56:47 +08:00
|
|
|
QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
|
2010-11-18 14:31:45 +08:00
|
|
|
ExprValueKind &VK,
|
|
|
|
SourceLocation Loc,
|
|
|
|
bool isIndirect) {
|
2011-09-16 05:56:47 +08:00
|
|
|
assert(!LHS.get()->getType()->isPlaceholderType() &&
|
|
|
|
!RHS.get()->getType()->isPlaceholderType() &&
|
2011-07-01 01:15:34 +08:00
|
|
|
"placeholders should have been weeded out by now");
|
|
|
|
|
|
|
|
// The LHS undergoes lvalue conversions if this is ->*.
|
|
|
|
if (isIndirect) {
|
2011-09-16 05:56:47 +08:00
|
|
|
LHS = DefaultLvalueConversion(LHS.take());
|
|
|
|
if (LHS.isInvalid()) return QualType();
|
2011-07-01 01:15:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// The RHS always undergoes lvalue conversions.
|
2011-09-16 05:56:47 +08:00
|
|
|
RHS = DefaultLvalueConversion(RHS.take());
|
|
|
|
if (RHS.isInvalid()) return QualType();
|
2011-07-01 01:15:34 +08:00
|
|
|
|
2009-02-08 04:10:22 +08:00
|
|
|
const char *OpSpelling = isIndirect ? "->*" : ".*";
|
|
|
|
// C++ 5.5p2
|
|
|
|
// The binary operator .* [p3: ->*] binds its second operand, which shall
|
|
|
|
// be of type "pointer to member of T" (where T is a completely-defined
|
|
|
|
// class type) [...]
|
2011-09-16 05:56:47 +08:00
|
|
|
QualType RHSType = RHS.get()->getType();
|
|
|
|
const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
|
2009-03-25 03:52:54 +08:00
|
|
|
if (!MemPtr) {
|
2009-02-08 04:10:22 +08:00
|
|
|
Diag(Loc, diag::err_bad_memptr_rhs)
|
2011-09-16 05:56:47 +08:00
|
|
|
<< OpSpelling << RHSType << RHS.get()->getSourceRange();
|
2009-02-08 04:10:22 +08:00
|
|
|
return QualType();
|
2009-09-09 23:08:12 +08:00
|
|
|
}
|
2009-03-25 03:52:54 +08:00
|
|
|
|
2009-02-08 04:10:22 +08:00
|
|
|
QualType Class(MemPtr->getClass(), 0);
|
|
|
|
|
2010-10-14 04:41:14 +08:00
|
|
|
// Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
|
|
|
|
// member pointer points must be completely-defined. However, there is no
|
|
|
|
// reason for this semantic distinction, and the rule is not enforced by
|
|
|
|
// other compilers. Therefore, we do not check this property, as it is
|
|
|
|
// likely to be considered a defect.
|
2010-04-10 18:14:54 +08:00
|
|
|
|
2009-02-08 04:10:22 +08:00
|
|
|
// C++ 5.5p2
|
|
|
|
// [...] to its first operand, which shall be of class T or of a class of
|
|
|
|
// which T is an unambiguous and accessible base class. [p3: a pointer to
|
|
|
|
// such a class]
|
2011-09-16 05:56:47 +08:00
|
|
|
QualType LHSType = LHS.get()->getType();
|
2009-02-08 04:10:22 +08:00
|
|
|
if (isIndirect) {
|
2011-09-16 05:56:47 +08:00
|
|
|
if (const PointerType *Ptr = LHSType->getAs<PointerType>())
|
|
|
|
LHSType = Ptr->getPointeeType();
|
2009-02-08 04:10:22 +08:00
|
|
|
else {
|
|
|
|
Diag(Loc, diag::err_bad_memptr_lhs)
|
2011-09-16 05:56:47 +08:00
|
|
|
<< OpSpelling << 1 << LHSType
|
2010-04-01 01:46:05 +08:00
|
|
|
<< FixItHint::CreateReplacement(SourceRange(Loc), ".*");
|
2009-02-08 04:10:22 +08:00
|
|
|
return QualType();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-09-16 05:56:47 +08:00
|
|
|
if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
|
2010-04-24 01:18:26 +08:00
|
|
|
// If we want to check the hierarchy, we need a complete type.
|
2012-05-05 00:32:21 +08:00
|
|
|
if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
|
|
|
|
OpSpelling, (int)isIndirect)) {
|
2010-04-24 01:18:26 +08:00
|
|
|
return QualType();
|
|
|
|
}
|
2013-12-12 11:40:18 +08:00
|
|
|
|
|
|
|
if (!IsDerivedFrom(LHSType, Class)) {
|
2009-02-08 04:10:22 +08:00
|
|
|
Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
|
2011-09-16 05:56:47 +08:00
|
|
|
<< (int)isIndirect << LHS.get()->getType();
|
2009-02-08 04:10:22 +08:00
|
|
|
return QualType();
|
|
|
|
}
|
2013-12-12 11:40:18 +08:00
|
|
|
|
|
|
|
CXXCastPath BasePath;
|
|
|
|
if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
|
|
|
|
SourceRange(LHS.get()->getLocStart(),
|
|
|
|
RHS.get()->getLocEnd()),
|
|
|
|
&BasePath))
|
|
|
|
return QualType();
|
|
|
|
|
2010-01-16 08:00:48 +08:00
|
|
|
// Cast LHS to type of use.
|
|
|
|
QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
|
2011-09-28 05:58:52 +08:00
|
|
|
ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
|
2011-09-16 05:56:47 +08:00
|
|
|
LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
|
|
|
|
&BasePath);
|
2009-02-08 04:10:22 +08:00
|
|
|
}
|
|
|
|
|
2011-09-16 05:56:47 +08:00
|
|
|
if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
|
2009-11-19 05:54:48 +08:00
|
|
|
// Diagnose use of pointer-to-member type which when used as
|
|
|
|
// the functional cast in a pointer-to-member expression.
|
|
|
|
Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
|
|
|
|
return QualType();
|
|
|
|
}
|
2010-11-18 14:31:45 +08:00
|
|
|
|
2009-02-08 04:10:22 +08:00
|
|
|
// C++ 5.5p2
|
|
|
|
// The result is an object or a function of the type specified by the
|
|
|
|
// second operand.
|
|
|
|
// The cv qualifiers are the union of those in the pointer and the left side,
|
|
|
|
// in accordance with 5.5p5 and 5.2.5.
|
|
|
|
QualType Result = MemPtr->getPointeeType();
|
2011-09-16 05:56:47 +08:00
|
|
|
Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
|
2010-11-18 14:31:45 +08:00
|
|
|
|
2011-01-27 00:40:18 +08:00
|
|
|
// C++0x [expr.mptr.oper]p6:
|
|
|
|
// In a .* expression whose object expression is an rvalue, the program is
|
2011-01-27 15:10:08 +08:00
|
|
|
// ill-formed if the second operand is a pointer to member function with
|
|
|
|
// ref-qualifier &. In a ->* expression or in a .* expression whose object
|
|
|
|
// expression is an lvalue, the program is ill-formed if the second operand
|
2011-01-27 00:40:18 +08:00
|
|
|
// is a pointer to member function with ref-qualifier &&.
|
|
|
|
if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
|
|
|
|
switch (Proto->getRefQualifier()) {
|
|
|
|
case RQ_None:
|
|
|
|
// Do nothing
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RQ_LValue:
|
2011-09-16 05:56:47 +08:00
|
|
|
if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
|
2011-01-27 00:40:18 +08:00
|
|
|
Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
|
2011-09-16 05:56:47 +08:00
|
|
|
<< RHSType << 1 << LHS.get()->getSourceRange();
|
2011-01-27 00:40:18 +08:00
|
|
|
break;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-01-27 00:40:18 +08:00
|
|
|
case RQ_RValue:
|
2011-09-16 05:56:47 +08:00
|
|
|
if (isIndirect || !LHS.get()->Classify(Context).isRValue())
|
2011-01-27 00:40:18 +08:00
|
|
|
Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
|
2011-09-16 05:56:47 +08:00
|
|
|
<< RHSType << 0 << LHS.get()->getSourceRange();
|
2011-01-27 00:40:18 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-11-18 14:31:45 +08:00
|
|
|
// C++ [expr.mptr.oper]p6:
|
|
|
|
// The result of a .* expression whose second operand is a pointer
|
|
|
|
// to a data member is of the same value category as its
|
|
|
|
// first operand. The result of a .* expression whose second
|
|
|
|
// operand is a pointer to a member function is a prvalue. The
|
|
|
|
// result of an ->* expression is an lvalue if its second operand
|
|
|
|
// is a pointer to data member and a prvalue otherwise.
|
2011-04-27 04:42:42 +08:00
|
|
|
if (Result->isFunctionType()) {
|
2010-11-18 14:31:45 +08:00
|
|
|
VK = VK_RValue;
|
2011-04-27 04:42:42 +08:00
|
|
|
return Context.BoundMemberTy;
|
|
|
|
} else if (isIndirect) {
|
2010-11-18 14:31:45 +08:00
|
|
|
VK = VK_LValue;
|
2011-04-27 04:42:42 +08:00
|
|
|
} else {
|
2011-09-16 05:56:47 +08:00
|
|
|
VK = LHS.get()->getValueKind();
|
2011-04-27 04:42:42 +08:00
|
|
|
}
|
2010-11-18 14:31:45 +08:00
|
|
|
|
2009-02-08 04:10:22 +08:00
|
|
|
return Result;
|
|
|
|
}
|
2009-04-17 01:51:27 +08:00
|
|
|
|
|
|
|
/// \brief Try to convert a type to another according to C++0x 5.16p3.
|
|
|
|
///
|
|
|
|
/// This is part of the parameter validation for the ? operator. If either
|
|
|
|
/// value operand is a class type, the two operands are attempted to be
|
|
|
|
/// converted to each other. This function does the conversion in one direction.
|
2010-03-27 04:14:36 +08:00
|
|
|
/// It returns true if the program is ill-formed and has already been diagnosed
|
|
|
|
/// as such.
|
2009-04-17 01:51:27 +08:00
|
|
|
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
|
|
|
|
SourceLocation QuestionLoc,
|
2010-03-27 04:14:36 +08:00
|
|
|
bool &HaveConversion,
|
|
|
|
QualType &ToType) {
|
|
|
|
HaveConversion = false;
|
|
|
|
ToType = To->getType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
|
|
|
InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
|
2010-03-27 04:14:36 +08:00
|
|
|
SourceLocation());
|
2009-04-17 01:51:27 +08:00
|
|
|
// C++0x 5.16p3
|
|
|
|
// The process for determining whether an operand expression E1 of type T1
|
|
|
|
// can be converted to match an operand expression E2 of type T2 is defined
|
|
|
|
// as follows:
|
|
|
|
// -- If E2 is an lvalue:
|
2010-11-24 13:12:34 +08:00
|
|
|
bool ToIsLvalue = To->isLValue();
|
2010-03-27 04:59:55 +08:00
|
|
|
if (ToIsLvalue) {
|
2009-04-17 01:51:27 +08:00
|
|
|
// E1 can be converted to match E2 if E1 can be implicitly converted to
|
|
|
|
// type "lvalue reference to T2", subject to the constraint that in the
|
|
|
|
// conversion the reference must bind directly to E1.
|
2010-03-27 04:14:36 +08:00
|
|
|
QualType T = Self.Context.getLValueReferenceType(ToType);
|
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence InitSeq(Self, Entity, Kind, From);
|
2010-03-27 04:14:36 +08:00
|
|
|
if (InitSeq.isDirectReferenceBinding()) {
|
|
|
|
ToType = T;
|
|
|
|
HaveConversion = true;
|
|
|
|
return false;
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-03-27 04:14:36 +08:00
|
|
|
if (InitSeq.isAmbiguous())
|
2013-05-03 23:05:50 +08:00
|
|
|
return InitSeq.Diagnose(Self, Entity, Kind, From);
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
2010-02-25 09:37:24 +08:00
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
// -- If E2 is an rvalue, or if the conversion above cannot be done:
|
|
|
|
// -- if E1 and E2 have class type, and the underlying class types are
|
|
|
|
// the same or one is a base class of the other:
|
|
|
|
QualType FTy = From->getType();
|
|
|
|
QualType TTy = To->getType();
|
2009-07-30 05:53:49 +08:00
|
|
|
const RecordType *FRec = FTy->getAs<RecordType>();
|
|
|
|
const RecordType *TRec = TTy->getAs<RecordType>();
|
2011-01-27 15:10:08 +08:00
|
|
|
bool FDerivedFromT = FRec && TRec && FRec != TRec &&
|
2010-03-27 04:14:36 +08:00
|
|
|
Self.IsDerivedFrom(FTy, TTy);
|
2011-01-27 15:10:08 +08:00
|
|
|
if (FRec && TRec &&
|
2010-03-27 04:14:36 +08:00
|
|
|
(FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
|
2009-04-17 01:51:27 +08:00
|
|
|
// E1 can be converted to match E2 if the class of T2 is the
|
|
|
|
// same type as, or a base class of, the class of T1, and
|
|
|
|
// [cv2 > cv1].
|
2010-02-25 09:37:24 +08:00
|
|
|
if (FRec == TRec || FDerivedFromT) {
|
|
|
|
if (TTy.isAtLeastAsQualifiedAs(FTy)) {
|
2010-03-27 04:14:36 +08:00
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence InitSeq(Self, Entity, Kind, From);
|
2011-06-05 20:23:28 +08:00
|
|
|
if (InitSeq) {
|
2010-03-27 04:14:36 +08:00
|
|
|
HaveConversion = true;
|
|
|
|
return false;
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-03-27 04:14:36 +08:00
|
|
|
if (InitSeq.isAmbiguous())
|
2013-05-03 23:05:50 +08:00
|
|
|
return InitSeq.Diagnose(Self, Entity, Kind, From);
|
2011-01-27 15:10:08 +08:00
|
|
|
}
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-03-27 04:14:36 +08:00
|
|
|
return false;
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-03-27 04:14:36 +08:00
|
|
|
// -- Otherwise: E1 can be converted to match E2 if E1 can be
|
|
|
|
// implicitly converted to the type that expression E2 would have
|
2011-01-27 15:10:08 +08:00
|
|
|
// if E2 were converted to an rvalue (or the type it has, if E2 is
|
2010-03-27 04:59:55 +08:00
|
|
|
// an rvalue).
|
|
|
|
//
|
|
|
|
// This actually refers very narrowly to the lvalue-to-rvalue conversion, not
|
|
|
|
// to the array-to-pointer or function-to-pointer conversions.
|
|
|
|
if (!TTy->getAs<TagType>())
|
|
|
|
TTy = TTy.getUnqualifiedType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-03-27 04:14:36 +08:00
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence InitSeq(Self, Entity, Kind, From);
|
2011-06-05 20:23:28 +08:00
|
|
|
HaveConversion = !InitSeq.Failed();
|
2010-03-27 04:14:36 +08:00
|
|
|
ToType = TTy;
|
|
|
|
if (InitSeq.isAmbiguous())
|
2013-05-03 23:05:50 +08:00
|
|
|
return InitSeq.Diagnose(Self, Entity, Kind, From);
|
2010-03-27 04:14:36 +08:00
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Try to find a common type for two according to C++0x 5.16p5.
|
|
|
|
///
|
|
|
|
/// This is part of the parameter validation for the ? operator. If either
|
|
|
|
/// value operand is a class type, overload resolution is used to find a
|
|
|
|
/// conversion to a common type.
|
2011-04-09 02:41:53 +08:00
|
|
|
static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
|
2011-02-19 07:54:50 +08:00
|
|
|
SourceLocation QuestionLoc) {
|
2011-04-09 02:41:53 +08:00
|
|
|
Expr *Args[2] = { LHS.get(), RHS.get() };
|
2014-04-17 09:52:14 +08:00
|
|
|
OverloadCandidateSet CandidateSet(QuestionLoc,
|
|
|
|
OverloadCandidateSet::CSK_Operator);
|
2013-05-05 23:51:06 +08:00
|
|
|
Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
|
2011-02-19 07:54:50 +08:00
|
|
|
CandidateSet);
|
2009-04-17 01:51:27 +08:00
|
|
|
|
|
|
|
OverloadCandidateSet::iterator Best;
|
2011-02-19 07:54:50 +08:00
|
|
|
switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
|
2011-04-09 02:41:53 +08:00
|
|
|
case OR_Success: {
|
2009-04-17 01:51:27 +08:00
|
|
|
// We found a match. Perform the conversions on the arguments and move on.
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult LHSRes =
|
|
|
|
Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
|
|
|
|
Best->Conversions[0], Sema::AA_Converting);
|
|
|
|
if (LHSRes.isInvalid())
|
2009-04-17 01:51:27 +08:00
|
|
|
break;
|
2012-08-24 05:35:17 +08:00
|
|
|
LHS = LHSRes;
|
2011-04-09 02:41:53 +08:00
|
|
|
|
|
|
|
ExprResult RHSRes =
|
|
|
|
Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
|
|
|
|
Best->Conversions[1], Sema::AA_Converting);
|
|
|
|
if (RHSRes.isInvalid())
|
|
|
|
break;
|
2012-08-24 05:35:17 +08:00
|
|
|
RHS = RHSRes;
|
2011-02-26 03:41:05 +08:00
|
|
|
if (Best->Function)
|
2012-02-02 11:46:19 +08:00
|
|
|
Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
|
2009-04-17 01:51:27 +08:00
|
|
|
return false;
|
2011-04-09 02:41:53 +08:00
|
|
|
}
|
|
|
|
|
2009-12-10 07:02:17 +08:00
|
|
|
case OR_No_Viable_Function:
|
2011-02-19 07:54:50 +08:00
|
|
|
|
|
|
|
// Emit a better diagnostic if one of the expressions is a null pointer
|
|
|
|
// constant and the other is a pointer type. In this case, the user most
|
|
|
|
// likely forgot to take the address of the other expression.
|
2011-04-09 02:41:53 +08:00
|
|
|
if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
|
2011-02-19 07:54:50 +08:00
|
|
|
return true;
|
|
|
|
|
|
|
|
Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
2009-04-17 01:51:27 +08:00
|
|
|
return true;
|
|
|
|
|
2009-12-10 07:02:17 +08:00
|
|
|
case OR_Ambiguous:
|
2011-02-19 07:54:50 +08:00
|
|
|
Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
2009-05-16 15:39:55 +08:00
|
|
|
// FIXME: Print the possible common types by printing the return types of
|
|
|
|
// the viable candidates.
|
2009-04-17 01:51:27 +08:00
|
|
|
break;
|
|
|
|
|
2009-12-10 07:02:17 +08:00
|
|
|
case OR_Deleted:
|
2011-09-23 13:06:16 +08:00
|
|
|
llvm_unreachable("Conditional operator has only built-in overloads");
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2009-04-18 00:30:52 +08:00
|
|
|
/// \brief Perform an "extended" implicit conversion as returned by
|
|
|
|
/// TryClassUnification.
|
2011-04-09 02:41:53 +08:00
|
|
|
static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
|
2010-03-27 04:14:36 +08:00
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
|
2011-04-09 02:41:53 +08:00
|
|
|
InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
|
2010-03-27 04:14:36 +08:00
|
|
|
SourceLocation());
|
2011-04-09 02:41:53 +08:00
|
|
|
Expr *Arg = E.take();
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence InitSeq(Self, Entity, Kind, Arg);
|
2012-08-24 07:38:35 +08:00
|
|
|
ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
|
2010-03-27 04:14:36 +08:00
|
|
|
if (Result.isInvalid())
|
2009-04-18 00:30:52 +08:00
|
|
|
return true;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
E = Result;
|
2009-04-18 00:30:52 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
/// \brief Check the operands of ?: under C++ semantics.
|
|
|
|
///
|
|
|
|
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
|
|
|
|
/// extension. In this case, LHS == Cond. (But they're not aliases.)
|
2012-08-08 14:13:49 +08:00
|
|
|
QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
|
|
|
|
ExprResult &RHS, ExprValueKind &VK,
|
|
|
|
ExprObjectKind &OK,
|
2009-04-17 01:51:27 +08:00
|
|
|
SourceLocation QuestionLoc) {
|
2009-05-16 15:39:55 +08:00
|
|
|
// FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
|
|
|
|
// interface pointers.
|
2009-04-17 01:51:27 +08:00
|
|
|
|
2012-08-08 06:06:48 +08:00
|
|
|
// C++11 [expr.cond]p1
|
2009-04-17 01:51:27 +08:00
|
|
|
// The first expression is contextually converted to bool.
|
2011-04-09 02:41:53 +08:00
|
|
|
if (!Cond.get()->isTypeDependent()) {
|
|
|
|
ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
|
|
|
|
if (CondRes.isInvalid())
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
2012-08-24 05:35:17 +08:00
|
|
|
Cond = CondRes;
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
|
|
|
|
2010-11-18 14:31:45 +08:00
|
|
|
// Assume r-value.
|
|
|
|
VK = VK_RValue;
|
2010-11-19 03:01:18 +08:00
|
|
|
OK = OK_Ordinary;
|
2010-11-18 14:31:45 +08:00
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
// Either of the arguments dependent?
|
2011-04-09 02:41:53 +08:00
|
|
|
if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
|
2009-04-17 01:51:27 +08:00
|
|
|
return Context.DependentTy;
|
|
|
|
|
2012-08-08 06:06:48 +08:00
|
|
|
// C++11 [expr.cond]p2
|
2009-04-17 01:51:27 +08:00
|
|
|
// If either the second or the third operand has type (cv) void, ...
|
2011-04-09 02:41:53 +08:00
|
|
|
QualType LTy = LHS.get()->getType();
|
|
|
|
QualType RTy = RHS.get()->getType();
|
2009-04-17 01:51:27 +08:00
|
|
|
bool LVoid = LTy->isVoidType();
|
|
|
|
bool RVoid = RTy->isVoidType();
|
|
|
|
if (LVoid || RVoid) {
|
2014-01-27 12:19:56 +08:00
|
|
|
// ... one of the following shall hold:
|
|
|
|
// -- The second or the third operand (but not both) is a (possibly
|
|
|
|
// parenthesized) throw-expression; the result is of the type
|
|
|
|
// and value category of the other.
|
|
|
|
bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
|
|
|
|
bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
|
|
|
|
if (LThrow != RThrow) {
|
|
|
|
Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
|
|
|
|
VK = NonThrow->getValueKind();
|
|
|
|
// DR (no number yet): the result is a bit-field if the
|
|
|
|
// non-throw-expression operand is a bit-field.
|
|
|
|
OK = NonThrow->getObjectKind();
|
|
|
|
return NonThrow->getType();
|
2012-08-08 06:06:48 +08:00
|
|
|
}
|
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
// -- Both the second and third operands have type void; the result is of
|
2012-08-08 06:06:48 +08:00
|
|
|
// type void and is a prvalue.
|
2009-04-17 01:51:27 +08:00
|
|
|
if (LVoid && RVoid)
|
|
|
|
return Context.VoidTy;
|
|
|
|
|
|
|
|
// Neither holds, error.
|
|
|
|
Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
|
|
|
|
<< (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Neither is void.
|
|
|
|
|
2012-08-08 14:13:49 +08:00
|
|
|
// C++11 [expr.cond]p3
|
2009-04-17 01:51:27 +08:00
|
|
|
// Otherwise, if the second and third operand have different types, and
|
2012-08-08 14:13:49 +08:00
|
|
|
// either has (cv) class type [...] an attempt is made to convert each of
|
|
|
|
// those operands to the type of the other.
|
2011-01-27 15:10:08 +08:00
|
|
|
if (!Context.hasSameType(LTy, RTy) &&
|
2009-04-17 01:51:27 +08:00
|
|
|
(LTy->isRecordType() || RTy->isRecordType())) {
|
|
|
|
// These return true if a single direction is already ambiguous.
|
2010-03-27 04:14:36 +08:00
|
|
|
QualType L2RType, R2LType;
|
|
|
|
bool HaveL2R, HaveR2L;
|
2011-04-09 02:41:53 +08:00
|
|
|
if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
2011-04-09 02:41:53 +08:00
|
|
|
if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
// If both can be converted, [...] the program is ill-formed.
|
|
|
|
if (HaveL2R && HaveR2L) {
|
|
|
|
Diag(QuestionLoc, diag::err_conditional_ambiguous)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
|
|
|
}
|
|
|
|
|
|
|
|
// If exactly one conversion is possible, that conversion is applied to
|
|
|
|
// the chosen operand and the converted operands are used in place of the
|
|
|
|
// original operands for the remainder of this section.
|
|
|
|
if (HaveL2R) {
|
2011-04-09 02:41:53 +08:00
|
|
|
if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
2011-04-09 02:41:53 +08:00
|
|
|
LTy = LHS.get()->getType();
|
2009-04-17 01:51:27 +08:00
|
|
|
} else if (HaveR2L) {
|
2011-04-09 02:41:53 +08:00
|
|
|
if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
2011-04-09 02:41:53 +08:00
|
|
|
RTy = RHS.get()->getType();
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-08-08 14:13:49 +08:00
|
|
|
// C++11 [expr.cond]p3
|
|
|
|
// if both are glvalues of the same value category and the same type except
|
|
|
|
// for cv-qualification, an attempt is made to convert each of those
|
|
|
|
// operands to the type of the other.
|
|
|
|
ExprValueKind LVK = LHS.get()->getValueKind();
|
|
|
|
ExprValueKind RVK = RHS.get()->getValueKind();
|
|
|
|
if (!Context.hasSameType(LTy, RTy) &&
|
|
|
|
Context.hasSameUnqualifiedType(LTy, RTy) &&
|
|
|
|
LVK == RVK && LVK != VK_RValue) {
|
|
|
|
// Since the unqualified types are reference-related and we require the
|
|
|
|
// result to be as if a reference bound directly, the only conversion
|
|
|
|
// we can perform is to add cv-qualifiers.
|
|
|
|
Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
|
|
|
|
Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
|
|
|
|
if (RCVR.isStrictSupersetOf(LCVR)) {
|
|
|
|
LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
|
|
|
|
LTy = LHS.get()->getType();
|
|
|
|
}
|
|
|
|
else if (LCVR.isStrictSupersetOf(RCVR)) {
|
|
|
|
RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
|
|
|
|
RTy = RHS.get()->getType();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// C++11 [expr.cond]p4
|
2010-11-18 14:31:45 +08:00
|
|
|
// If the second and third operands are glvalues of the same value
|
|
|
|
// category and have the same type, the result is of that type and
|
|
|
|
// value category and it is a bit-field if the second or the third
|
|
|
|
// operand is a bit-field, or if both are bit-fields.
|
2010-11-19 03:01:18 +08:00
|
|
|
// We only extend this to bitfields, not to the crazy other kinds of
|
|
|
|
// l-values.
|
2010-04-02 06:47:07 +08:00
|
|
|
bool Same = Context.hasSameType(LTy, RTy);
|
2012-08-08 14:13:49 +08:00
|
|
|
if (Same && LVK == RVK && LVK != VK_RValue &&
|
2011-04-09 02:41:53 +08:00
|
|
|
LHS.get()->isOrdinaryOrBitFieldObject() &&
|
|
|
|
RHS.get()->isOrdinaryOrBitFieldObject()) {
|
|
|
|
VK = LHS.get()->getValueKind();
|
|
|
|
if (LHS.get()->getObjectKind() == OK_BitField ||
|
|
|
|
RHS.get()->getObjectKind() == OK_BitField)
|
2010-11-19 03:01:18 +08:00
|
|
|
OK = OK_BitField;
|
2010-11-18 14:31:45 +08:00
|
|
|
return LTy;
|
2010-09-25 09:08:05 +08:00
|
|
|
}
|
2009-04-17 01:51:27 +08:00
|
|
|
|
2012-08-08 14:13:49 +08:00
|
|
|
// C++11 [expr.cond]p5
|
|
|
|
// Otherwise, the result is a prvalue. If the second and third operands
|
2009-04-17 01:51:27 +08:00
|
|
|
// do not have the same type, and either has (cv) class type, ...
|
|
|
|
if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
|
|
|
|
// ... overload resolution is used to determine the conversions (if any)
|
|
|
|
// to be applied to the operands. If the overload resolution fails, the
|
|
|
|
// program is ill-formed.
|
|
|
|
if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
|
|
|
|
return QualType();
|
|
|
|
}
|
|
|
|
|
2012-08-08 14:13:49 +08:00
|
|
|
// C++11 [expr.cond]p6
|
|
|
|
// Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
|
2009-04-17 01:51:27 +08:00
|
|
|
// conversions are performed on the second and third operands.
|
2011-04-09 02:41:53 +08:00
|
|
|
LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
|
|
|
|
RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
|
|
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
|
|
return QualType();
|
|
|
|
LTy = LHS.get()->getType();
|
|
|
|
RTy = RHS.get()->getType();
|
2009-04-17 01:51:27 +08:00
|
|
|
|
|
|
|
// After those conversions, one of the following shall hold:
|
|
|
|
// -- The second and third operands have the same type; the result
|
2010-05-20 07:40:50 +08:00
|
|
|
// is of that type. If the operands have class type, the result
|
|
|
|
// is a prvalue temporary of the result type, which is
|
|
|
|
// copy-initialized from either the second operand or the third
|
|
|
|
// operand depending on the value of the first operand.
|
|
|
|
if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
|
|
|
|
if (LTy->isRecordType()) {
|
|
|
|
// The operands have class type. Make a temporary copy.
|
2012-09-11 06:05:41 +08:00
|
|
|
if (RequireNonAbstractType(QuestionLoc, LTy,
|
|
|
|
diag::err_allocation_of_abstract_type))
|
|
|
|
return QualType();
|
2010-05-20 07:40:50 +08:00
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
|
2012-09-11 06:05:41 +08:00
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
ExprResult LHSCopy = PerformCopyInitialization(Entity,
|
|
|
|
SourceLocation(),
|
2011-04-09 02:41:53 +08:00
|
|
|
LHS);
|
2010-05-20 07:40:50 +08:00
|
|
|
if (LHSCopy.isInvalid())
|
|
|
|
return QualType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
|
|
|
ExprResult RHSCopy = PerformCopyInitialization(Entity,
|
|
|
|
SourceLocation(),
|
2011-04-09 02:41:53 +08:00
|
|
|
RHS);
|
2010-05-20 07:40:50 +08:00
|
|
|
if (RHSCopy.isInvalid())
|
|
|
|
return QualType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
LHS = LHSCopy;
|
|
|
|
RHS = RHSCopy;
|
2010-05-20 07:40:50 +08:00
|
|
|
}
|
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
return LTy;
|
2010-05-20 07:40:50 +08:00
|
|
|
}
|
2009-04-17 01:51:27 +08:00
|
|
|
|
2010-05-19 06:42:18 +08:00
|
|
|
// Extension: conditional operator involving vector types.
|
2011-01-27 15:10:08 +08:00
|
|
|
if (LTy->isVectorType() || RTy->isVectorType())
|
2011-06-24 02:10:35 +08:00
|
|
|
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
|
2010-05-19 06:42:18 +08:00
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
// -- The second and third operands have arithmetic or enumeration type;
|
|
|
|
// the usual arithmetic conversions are performed to bring them to a
|
|
|
|
// common type, and the result is of that type.
|
|
|
|
if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
|
|
|
|
UsualArithmeticConversions(LHS, RHS);
|
2011-04-09 02:41:53 +08:00
|
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
|
|
return QualType();
|
|
|
|
return LHS.get()->getType();
|
2009-04-17 01:51:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// -- The second and third operands have pointer type, or one has pointer
|
2012-08-08 14:13:49 +08:00
|
|
|
// type and the other is a null pointer constant, or both are null
|
|
|
|
// pointer constants, at least one of which is non-integral; pointer
|
|
|
|
// conversions and qualification conversions are performed to bring them
|
|
|
|
// to their composite pointer type. The result is of the composite
|
|
|
|
// pointer type.
|
2010-01-03 06:56:07 +08:00
|
|
|
// -- The second and third operands have pointer to member type, or one has
|
|
|
|
// pointer to member type and the other is a null pointer constant;
|
|
|
|
// pointer to member conversions and qualification conversions are
|
|
|
|
// performed to bring them to a common type, whose cv-qualification
|
|
|
|
// shall match the cv-qualification of either the second or the third
|
|
|
|
// operand. The result is of the common type.
|
2010-02-26 06:29:57 +08:00
|
|
|
bool NonStandardCompositeType = false;
|
2010-04-17 07:20:25 +08:00
|
|
|
QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
|
2010-02-26 06:29:57 +08:00
|
|
|
isSFINAEContext()? 0 : &NonStandardCompositeType);
|
|
|
|
if (!Composite.isNull()) {
|
|
|
|
if (NonStandardCompositeType)
|
2011-01-27 15:10:08 +08:00
|
|
|
Diag(QuestionLoc,
|
2010-02-26 06:29:57 +08:00
|
|
|
diag::ext_typecheck_cond_incompatible_operands_nonstandard)
|
|
|
|
<< LTy << RTy << Composite
|
2011-04-09 02:41:53 +08:00
|
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-04-20 03:26:31 +08:00
|
|
|
return Composite;
|
2010-02-26 06:29:57 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-02 06:47:07 +08:00
|
|
|
// Similarly, attempt to find composite type of two objective-c pointers.
|
2009-12-11 04:46:08 +08:00
|
|
|
Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
|
|
|
|
if (!Composite.isNull())
|
|
|
|
return Composite;
|
2009-04-17 01:51:27 +08:00
|
|
|
|
2011-02-19 08:13:59 +08:00
|
|
|
// Check if we are using a null with a non-pointer type.
|
2011-04-09 02:41:53 +08:00
|
|
|
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
|
2011-02-19 08:13:59 +08:00
|
|
|
return QualType();
|
|
|
|
|
2009-04-17 01:51:27 +08:00
|
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
2011-04-09 02:41:53 +08:00
|
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
2009-04-17 01:51:27 +08:00
|
|
|
return QualType();
|
|
|
|
}
|
2009-04-20 03:26:31 +08:00
|
|
|
|
|
|
|
/// \brief Find a merged pointer type and convert the two expressions to it.
|
|
|
|
///
|
2009-08-25 01:42:35 +08:00
|
|
|
/// This finds the composite pointer type (or member pointer type) for @p E1
|
2012-08-08 14:13:49 +08:00
|
|
|
/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
|
2009-08-25 01:42:35 +08:00
|
|
|
/// type and returns it.
|
2009-04-20 03:26:31 +08:00
|
|
|
/// It does not emit diagnostics.
|
2010-02-26 06:29:57 +08:00
|
|
|
///
|
2010-04-17 07:20:25 +08:00
|
|
|
/// \param Loc The location of the operator requiring these two expressions to
|
|
|
|
/// be converted to the composite pointer type.
|
|
|
|
///
|
2010-02-26 06:29:57 +08:00
|
|
|
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
|
|
|
|
/// a non-standard (but still sane) composite type to which both expressions
|
|
|
|
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
|
|
|
|
/// will be set true.
|
2011-01-27 15:10:08 +08:00
|
|
|
QualType Sema::FindCompositePointerType(SourceLocation Loc,
|
2010-04-17 07:20:25 +08:00
|
|
|
Expr *&E1, Expr *&E2,
|
2010-02-26 06:29:57 +08:00
|
|
|
bool *NonStandardCompositeType) {
|
|
|
|
if (NonStandardCompositeType)
|
|
|
|
*NonStandardCompositeType = false;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2012-03-11 15:00:24 +08:00
|
|
|
assert(getLangOpts().CPlusPlus && "This function assumes C++");
|
2009-04-20 03:26:31 +08:00
|
|
|
QualType T1 = E1->getType(), T2 = E2->getType();
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-08-08 14:13:49 +08:00
|
|
|
// C++11 5.9p2
|
2009-04-20 03:26:31 +08:00
|
|
|
// Pointer conversions and qualification conversions are performed on
|
|
|
|
// pointer operands to bring them to their composite pointer type. If
|
|
|
|
// one operand is a null pointer constant, the composite pointer type is
|
2012-08-08 14:13:49 +08:00
|
|
|
// std::nullptr_t if the other operand is also a null pointer constant or,
|
|
|
|
// if the other operand is a pointer, the type of the other operand.
|
|
|
|
if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
|
|
|
|
!T2->isAnyPointerType() && !T2->isMemberPointerType()) {
|
|
|
|
if (T1->isNullPtrType() &&
|
|
|
|
E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
|
|
E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
|
|
|
|
return T1;
|
|
|
|
}
|
|
|
|
if (T2->isNullPtrType() &&
|
|
|
|
E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
|
|
E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
|
|
|
|
return T2;
|
|
|
|
}
|
|
|
|
return QualType();
|
|
|
|
}
|
|
|
|
|
2009-09-25 12:25:58 +08:00
|
|
|
if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
2009-10-20 16:27:19 +08:00
|
|
|
if (T2->isMemberPointerType())
|
2011-04-09 02:41:53 +08:00
|
|
|
E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
|
2009-10-20 16:27:19 +08:00
|
|
|
else
|
2011-04-09 02:41:53 +08:00
|
|
|
E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
|
2009-04-20 03:26:31 +08:00
|
|
|
return T2;
|
|
|
|
}
|
2009-09-25 12:25:58 +08:00
|
|
|
if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
2009-10-20 16:27:19 +08:00
|
|
|
if (T1->isMemberPointerType())
|
2011-04-09 02:41:53 +08:00
|
|
|
E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
|
2009-10-20 16:27:19 +08:00
|
|
|
else
|
2011-04-09 02:41:53 +08:00
|
|
|
E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
|
2009-04-20 03:26:31 +08:00
|
|
|
return T1;
|
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
// Now both have to be pointers or member pointers.
|
2009-11-17 05:03:45 +08:00
|
|
|
if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
|
|
|
|
(!T2->isPointerType() && !T2->isMemberPointerType()))
|
2009-04-20 03:26:31 +08:00
|
|
|
return QualType();
|
|
|
|
|
|
|
|
// Otherwise, of one of the operands has type "pointer to cv1 void," then
|
|
|
|
// the other has type "pointer to cv2 T" and the composite pointer type is
|
|
|
|
// "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
|
|
|
|
// Otherwise, the composite pointer type is a pointer type similar to the
|
|
|
|
// type of one of the operands, with a cv-qualification signature that is
|
|
|
|
// the union of the cv-qualification signatures of the operand types.
|
|
|
|
// In practice, the first part here is redundant; it's subsumed by the second.
|
|
|
|
// What we do here is, we build the two possible composite types, and try the
|
|
|
|
// conversions in both directions. If only one works, or if the two composite
|
|
|
|
// types are the same, we have succeeded.
|
2009-09-25 03:53:00 +08:00
|
|
|
// FIXME: extended qualifiers?
|
2011-07-23 18:55:15 +08:00
|
|
|
typedef SmallVector<unsigned, 4> QualifierVector;
|
2009-11-17 05:03:45 +08:00
|
|
|
QualifierVector QualifierUnion;
|
2011-07-23 18:55:15 +08:00
|
|
|
typedef SmallVector<std::pair<const Type *, const Type *>, 4>
|
2009-11-17 05:03:45 +08:00
|
|
|
ContainingClassVector;
|
|
|
|
ContainingClassVector MemberOfClass;
|
|
|
|
QualType Composite1 = Context.getCanonicalType(T1),
|
|
|
|
Composite2 = Context.getCanonicalType(T2);
|
2011-01-27 15:10:08 +08:00
|
|
|
unsigned NeedConstBefore = 0;
|
2009-08-25 01:42:35 +08:00
|
|
|
do {
|
|
|
|
const PointerType *Ptr1, *Ptr2;
|
|
|
|
if ((Ptr1 = Composite1->getAs<PointerType>()) &&
|
|
|
|
(Ptr2 = Composite2->getAs<PointerType>())) {
|
|
|
|
Composite1 = Ptr1->getPointeeType();
|
|
|
|
Composite2 = Ptr2->getPointeeType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-26 06:29:57 +08:00
|
|
|
// If we're allowed to create a non-standard composite type, keep track
|
2011-01-27 15:10:08 +08:00
|
|
|
// of where we need to fill in additional 'const' qualifiers.
|
2010-02-26 06:29:57 +08:00
|
|
|
if (NonStandardCompositeType &&
|
|
|
|
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
|
|
|
|
NeedConstBefore = QualifierUnion.size();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
QualifierUnion.push_back(
|
|
|
|
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
|
|
|
|
MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
|
|
|
|
continue;
|
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
const MemberPointerType *MemPtr1, *MemPtr2;
|
|
|
|
if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
|
|
|
|
(MemPtr2 = Composite2->getAs<MemberPointerType>())) {
|
|
|
|
Composite1 = MemPtr1->getPointeeType();
|
|
|
|
Composite2 = MemPtr2->getPointeeType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-26 06:29:57 +08:00
|
|
|
// If we're allowed to create a non-standard composite type, keep track
|
2011-01-27 15:10:08 +08:00
|
|
|
// of where we need to fill in additional 'const' qualifiers.
|
2010-02-26 06:29:57 +08:00
|
|
|
if (NonStandardCompositeType &&
|
|
|
|
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
|
|
|
|
NeedConstBefore = QualifierUnion.size();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
QualifierUnion.push_back(
|
|
|
|
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
|
|
|
|
MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
|
|
|
|
MemPtr2->getClass()));
|
|
|
|
continue;
|
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
// FIXME: block pointer types?
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
// Cannot unwrap any more types.
|
|
|
|
break;
|
|
|
|
} while (true);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2010-02-26 06:29:57 +08:00
|
|
|
if (NeedConstBefore && NonStandardCompositeType) {
|
|
|
|
// Extension: Add 'const' to qualifiers that come before the first qualifier
|
2011-01-27 15:10:08 +08:00
|
|
|
// mismatch, so that our (non-standard!) composite type meets the
|
2010-02-26 06:29:57 +08:00
|
|
|
// requirements of C++ [conv.qual]p4 bullet 3.
|
|
|
|
for (unsigned I = 0; I != NeedConstBefore; ++I) {
|
|
|
|
if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
|
|
|
|
QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
|
|
|
|
*NonStandardCompositeType = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-08-25 01:42:35 +08:00
|
|
|
// Rewrap the composites as pointers or member pointers with the union CVRs.
|
2009-11-17 05:03:45 +08:00
|
|
|
ContainingClassVector::reverse_iterator MOC
|
|
|
|
= MemberOfClass.rbegin();
|
|
|
|
for (QualifierVector::reverse_iterator
|
|
|
|
I = QualifierUnion.rbegin(),
|
|
|
|
E = QualifierUnion.rend();
|
2009-08-25 01:42:35 +08:00
|
|
|
I != E; (void)++I, ++MOC) {
|
2009-09-25 03:53:00 +08:00
|
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(*I);
|
2009-08-25 01:42:35 +08:00
|
|
|
if (MOC->first && MOC->second) {
|
|
|
|
// Rebuild member pointer type
|
2009-09-25 03:53:00 +08:00
|
|
|
Composite1 = Context.getMemberPointerType(
|
|
|
|
Context.getQualifiedType(Composite1, Quals),
|
|
|
|
MOC->first);
|
|
|
|
Composite2 = Context.getMemberPointerType(
|
|
|
|
Context.getQualifiedType(Composite2, Quals),
|
|
|
|
MOC->second);
|
2009-08-25 01:42:35 +08:00
|
|
|
} else {
|
|
|
|
// Rebuild pointer type
|
2009-09-25 03:53:00 +08:00
|
|
|
Composite1
|
|
|
|
= Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
|
|
|
|
Composite2
|
|
|
|
= Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
|
2009-08-25 01:42:35 +08:00
|
|
|
}
|
2009-04-20 03:26:31 +08:00
|
|
|
}
|
|
|
|
|
2010-04-17 07:20:25 +08:00
|
|
|
// Try to convert to the first composite pointer type.
|
|
|
|
InitializedEntity Entity1
|
|
|
|
= InitializedEntity::InitializeTemporary(Composite1);
|
|
|
|
InitializationKind Kind
|
|
|
|
= InitializationKind::CreateCopy(Loc, SourceLocation());
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
|
|
|
|
InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
|
2010-04-17 07:20:25 +08:00
|
|
|
|
|
|
|
if (E1ToC1 && E2ToC1) {
|
|
|
|
// Conversion to Composite1 is viable.
|
|
|
|
if (!Context.hasSameType(Composite1, Composite2)) {
|
|
|
|
// Composite2 is a different type from Composite1. Check whether
|
|
|
|
// Composite2 is also viable.
|
|
|
|
InitializedEntity Entity2
|
|
|
|
= InitializedEntity::InitializeTemporary(Composite2);
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
|
|
|
|
InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
|
2010-04-17 07:20:25 +08:00
|
|
|
if (E1ToC2 && E2ToC2) {
|
|
|
|
// Both Composite1 and Composite2 are viable and are different;
|
|
|
|
// this is an ambiguity.
|
|
|
|
return QualType();
|
|
|
|
}
|
|
|
|
}
|
2009-04-20 03:26:31 +08:00
|
|
|
|
2010-04-17 07:20:25 +08:00
|
|
|
// Convert E1 to Composite1
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult E1Result
|
2012-08-24 07:38:35 +08:00
|
|
|
= E1ToC1.Perform(*this, Entity1, Kind, E1);
|
2010-04-17 07:20:25 +08:00
|
|
|
if (E1Result.isInvalid())
|
|
|
|
return QualType();
|
|
|
|
E1 = E1Result.takeAs<Expr>();
|
|
|
|
|
|
|
|
// Convert E2 to Composite1
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult E2Result
|
2012-08-24 07:38:35 +08:00
|
|
|
= E2ToC1.Perform(*this, Entity1, Kind, E2);
|
2010-04-17 07:20:25 +08:00
|
|
|
if (E2Result.isInvalid())
|
|
|
|
return QualType();
|
|
|
|
E2 = E2Result.takeAs<Expr>();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-17 07:20:25 +08:00
|
|
|
return Composite1;
|
2009-04-20 03:26:31 +08:00
|
|
|
}
|
2010-04-17 07:20:25 +08:00
|
|
|
|
|
|
|
// Check whether Composite2 is viable.
|
|
|
|
InitializedEntity Entity2
|
|
|
|
= InitializedEntity::InitializeTemporary(Composite2);
|
2013-05-03 23:05:50 +08:00
|
|
|
InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
|
|
|
|
InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
|
2010-04-17 07:20:25 +08:00
|
|
|
if (!E1ToC2 || !E2ToC2)
|
|
|
|
return QualType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-17 07:20:25 +08:00
|
|
|
// Convert E1 to Composite2
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult E1Result
|
2012-08-24 07:38:35 +08:00
|
|
|
= E1ToC2.Perform(*this, Entity2, Kind, E1);
|
2010-04-17 07:20:25 +08:00
|
|
|
if (E1Result.isInvalid())
|
|
|
|
return QualType();
|
|
|
|
E1 = E1Result.takeAs<Expr>();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-17 07:20:25 +08:00
|
|
|
// Convert E2 to Composite2
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult E2Result
|
2012-08-24 07:38:35 +08:00
|
|
|
= E2ToC2.Perform(*this, Entity2, Kind, E2);
|
2010-04-17 07:20:25 +08:00
|
|
|
if (E2Result.isInvalid())
|
|
|
|
return QualType();
|
|
|
|
E2 = E2Result.takeAs<Expr>();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-04-17 07:20:25 +08:00
|
|
|
return Composite2;
|
2009-04-20 03:26:31 +08:00
|
|
|
}
|
2009-05-18 02:41:29 +08:00
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Sema::MaybeBindToTemporary(Expr *E) {
|
2010-11-02 05:10:29 +08:00
|
|
|
if (!E)
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
|
|
|
|
|
|
|
|
// If the result is a glvalue, we shouldn't bind it.
|
|
|
|
if (!E->isRValue())
|
2009-08-16 07:41:35 +08:00
|
|
|
return Owned(E);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
// In ARC, calls that return a retainable type can return retained,
|
|
|
|
// in which case we have to insert a consuming cast.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
2011-06-16 07:02:42 +08:00
|
|
|
E->getType()->isObjCRetainableType()) {
|
|
|
|
|
|
|
|
bool ReturnsRetained;
|
|
|
|
|
|
|
|
// For actual calls, we compute this by examining the type of the
|
|
|
|
// called value.
|
|
|
|
if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
|
|
|
|
Expr *Callee = Call->getCallee()->IgnoreParens();
|
|
|
|
QualType T = Callee->getType();
|
|
|
|
|
|
|
|
if (T == Context.BoundMemberTy) {
|
|
|
|
// Handle pointer-to-members.
|
|
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
|
|
|
|
T = BinOp->getRHS()->getType();
|
|
|
|
else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
|
|
|
|
T = Mem->getMemberDecl()->getType();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (const PointerType *Ptr = T->getAs<PointerType>())
|
|
|
|
T = Ptr->getPointeeType();
|
|
|
|
else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
|
|
|
|
T = Ptr->getPointeeType();
|
|
|
|
else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
|
|
|
|
T = MemPtr->getPointeeType();
|
|
|
|
|
|
|
|
const FunctionType *FTy = T->getAs<FunctionType>();
|
|
|
|
assert(FTy && "call to value not of function type?");
|
|
|
|
ReturnsRetained = FTy->getExtInfo().getProducesResult();
|
|
|
|
|
|
|
|
// ActOnStmtExpr arranges things so that StmtExprs of retainable
|
|
|
|
// type always produce a +1 object.
|
|
|
|
} else if (isa<StmtExpr>(E)) {
|
|
|
|
ReturnsRetained = true;
|
|
|
|
|
2012-03-07 04:05:56 +08:00
|
|
|
// We hit this case with the lambda conversion-to-block optimization;
|
|
|
|
// we don't want any extra casts here.
|
|
|
|
} else if (isa<CastExpr>(E) &&
|
|
|
|
isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
|
|
|
|
return Owned(E);
|
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
// For message sends and property references, we try to find an
|
|
|
|
// actual method. FIXME: we should infer retention by selector in
|
|
|
|
// cases where we don't have an actual method.
|
2012-03-07 04:05:56 +08:00
|
|
|
} else {
|
|
|
|
ObjCMethodDecl *D = 0;
|
|
|
|
if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
|
|
|
|
D = Send->getMethodDecl();
|
2012-04-19 08:25:12 +08:00
|
|
|
} else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
|
|
|
|
D = BoxedExpr->getBoxingMethod();
|
2012-03-07 04:05:56 +08:00
|
|
|
} else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
|
|
|
|
D = ArrayLit->getArrayWithObjectsMethod();
|
|
|
|
} else if (ObjCDictionaryLiteral *DictLit
|
|
|
|
= dyn_cast<ObjCDictionaryLiteral>(E)) {
|
|
|
|
D = DictLit->getDictWithObjectsMethod();
|
|
|
|
}
|
2009-12-25 02:51:59 +08:00
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
|
2011-08-03 15:02:44 +08:00
|
|
|
|
|
|
|
// Don't do reclaims on performSelector calls; despite their
|
|
|
|
// return type, the invoked method doesn't necessarily actually
|
|
|
|
// return an object.
|
|
|
|
if (!ReturnsRetained &&
|
|
|
|
D && D->getMethodFamily() == OMF_performSelector)
|
|
|
|
return Owned(E);
|
2011-06-16 07:02:42 +08:00
|
|
|
}
|
|
|
|
|
2011-11-15 03:53:16 +08:00
|
|
|
// Don't reclaim an object of Class type.
|
|
|
|
if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
|
|
|
|
return Owned(E);
|
|
|
|
|
2011-07-07 14:58:02 +08:00
|
|
|
ExprNeedsCleanups = true;
|
|
|
|
|
2011-09-10 14:18:15 +08:00
|
|
|
CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
|
|
|
|
: CK_ARCReclaimReturnedObject);
|
2011-07-07 14:58:02 +08:00
|
|
|
return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
|
|
|
|
VK_RValue));
|
2011-06-16 07:02:42 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-03-11 15:00:24 +08:00
|
|
|
if (!getLangOpts().CPlusPlus)
|
2011-06-16 07:02:42 +08:00
|
|
|
return Owned(E);
|
|
|
|
|
2012-01-26 11:33:51 +08:00
|
|
|
// Search for the base element type (cf. ASTContext::getBaseElementType) with
|
|
|
|
// a fast path for the common case that the type is directly a RecordType.
|
|
|
|
const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
|
|
|
|
const RecordType *RT = 0;
|
|
|
|
while (!RT) {
|
|
|
|
switch (T->getTypeClass()) {
|
|
|
|
case Type::Record:
|
|
|
|
RT = cast<RecordType>(T);
|
|
|
|
break;
|
|
|
|
case Type::ConstantArray:
|
|
|
|
case Type::IncompleteArray:
|
|
|
|
case Type::VariableArray:
|
|
|
|
case Type::DependentSizedArray:
|
|
|
|
T = cast<ArrayType>(T)->getElementType().getTypePtr();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return Owned(E);
|
|
|
|
}
|
|
|
|
}
|
2010-02-05 06:26:26 +08:00
|
|
|
|
2012-02-22 10:04:18 +08:00
|
|
|
// That should be enough to guarantee that this type is complete, if we're
|
|
|
|
// not processing a decltype expression.
|
2011-01-28 03:17:54 +08:00
|
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
2012-02-18 12:13:32 +08:00
|
|
|
if (RD->isInvalidDecl() || RD->isDependentContext())
|
2010-02-05 06:26:26 +08:00
|
|
|
return Owned(E);
|
2012-02-22 10:04:18 +08:00
|
|
|
|
|
|
|
bool IsDecltype = ExprEvalContexts.back().IsDecltype;
|
|
|
|
CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
|
2011-06-16 07:02:42 +08:00
|
|
|
|
|
|
|
if (Destructor) {
|
2012-02-02 11:46:19 +08:00
|
|
|
MarkFunctionReferenced(E->getExprLoc(), Destructor);
|
2010-04-07 08:41:46 +08:00
|
|
|
CheckDestructorAccess(E->getExprLoc(), Destructor,
|
|
|
|
PDiag(diag::err_access_dtor_temp)
|
|
|
|
<< E->getType());
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
|
|
|
|
return ExprError();
|
2012-02-18 12:13:32 +08:00
|
|
|
|
2012-02-22 10:04:18 +08:00
|
|
|
// If destructor is trivial, we can avoid the extra copy.
|
|
|
|
if (Destructor->isTrivial())
|
|
|
|
return Owned(E);
|
2011-06-16 07:02:42 +08:00
|
|
|
|
2011-11-10 13:35:25 +08:00
|
|
|
// We need a cleanup, but we don't need to remember the temporary.
|
2011-06-16 07:02:42 +08:00
|
|
|
ExprNeedsCleanups = true;
|
2012-02-22 10:04:18 +08:00
|
|
|
}
|
2012-02-18 12:13:32 +08:00
|
|
|
|
|
|
|
CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
|
2012-02-22 10:04:18 +08:00
|
|
|
CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
|
|
|
|
|
|
|
|
if (IsDecltype)
|
|
|
|
ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
|
|
|
|
|
|
|
|
return Owned(Bind);
|
2009-05-31 04:36:53 +08:00
|
|
|
}
|
|
|
|
|
2011-11-10 13:35:25 +08:00
|
|
|
ExprResult
|
|
|
|
Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
|
|
|
|
if (SubExpr.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
|
|
|
|
return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
|
|
|
|
}
|
|
|
|
|
2010-12-06 16:20:24 +08:00
|
|
|
Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
|
2013-12-07 01:56:43 +08:00
|
|
|
assert(SubExpr && "subexpression can't be null!");
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-02-03 07:15:15 +08:00
|
|
|
CleanupVarDeclMarking();
|
|
|
|
|
2011-11-10 13:35:25 +08:00
|
|
|
unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
|
|
|
|
assert(ExprCleanupObjects.size() >= FirstCleanup);
|
|
|
|
assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
|
2011-06-16 07:02:42 +08:00
|
|
|
if (!ExprNeedsCleanups)
|
2009-06-05 23:38:08 +08:00
|
|
|
return SubExpr;
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-11-10 13:35:25 +08:00
|
|
|
ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
|
|
|
|
= llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
|
|
|
|
ExprCleanupObjects.size() - FirstCleanup);
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-11-10 13:35:25 +08:00
|
|
|
Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
|
|
|
|
DiscardCleanupsInEvaluationContext();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-11-10 13:35:25 +08:00
|
|
|
return E;
|
2009-12-23 06:17:25 +08:00
|
|
|
}
|
|
|
|
|
2010-12-06 16:20:24 +08:00
|
|
|
Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
|
2013-12-07 01:56:43 +08:00
|
|
|
assert(SubStmt && "sub-statement can't be null!");
|
2010-11-02 10:33:08 +08:00
|
|
|
|
2012-02-03 07:15:15 +08:00
|
|
|
CleanupVarDeclMarking();
|
|
|
|
|
2011-06-16 07:02:42 +08:00
|
|
|
if (!ExprNeedsCleanups)
|
2010-11-02 10:33:08 +08:00
|
|
|
return SubStmt;
|
|
|
|
|
|
|
|
// FIXME: In order to attach the temporaries, wrap the statement into
|
|
|
|
// a StmtExpr; currently this is only used for asm statements.
|
|
|
|
// This is hacky, either create a new CXXStmtWithTemporaries statement or
|
|
|
|
// a new AsmStmtWithTemporaries.
|
2012-12-30 04:03:39 +08:00
|
|
|
CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
|
2010-11-02 10:33:08 +08:00
|
|
|
SourceLocation(),
|
|
|
|
SourceLocation());
|
|
|
|
Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
|
|
|
|
SourceLocation());
|
2010-12-06 16:20:24 +08:00
|
|
|
return MaybeCreateExprWithCleanups(E);
|
2010-11-02 10:33:08 +08:00
|
|
|
}
|
|
|
|
|
2012-02-22 10:04:18 +08:00
|
|
|
/// Process the expression contained within a decltype. For such expressions,
|
|
|
|
/// certain semantic checks on temporaries are delayed until this point, and
|
|
|
|
/// are omitted for the 'topmost' call in the decltype expression. If the
|
|
|
|
/// topmost call bound a temporary, strip that temporary off the expression.
|
|
|
|
ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
|
2012-11-15 23:18:42 +08:00
|
|
|
assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
|
2012-02-22 10:04:18 +08:00
|
|
|
|
|
|
|
// C++11 [expr.call]p11:
|
|
|
|
// If a function call is a prvalue of object type,
|
|
|
|
// -- if the function call is either
|
|
|
|
// -- the operand of a decltype-specifier, or
|
|
|
|
// -- the right operand of a comma operator that is the operand of a
|
|
|
|
// decltype-specifier,
|
|
|
|
// a temporary object is not introduced for the prvalue.
|
|
|
|
|
|
|
|
// Recursively rebuild ParenExprs and comma expressions to strip out the
|
|
|
|
// outermost CXXBindTemporaryExpr, if any.
|
|
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
|
|
ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
|
|
|
|
if (SubExpr.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
if (SubExpr.get() == PE->getSubExpr())
|
|
|
|
return Owned(E);
|
|
|
|
return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
|
|
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
|
|
ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
|
|
|
|
if (RHS.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
if (RHS.get() == BO->getRHS())
|
|
|
|
return Owned(E);
|
|
|
|
return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
|
|
|
|
BO_Comma, BO->getType(),
|
|
|
|
BO->getValueKind(),
|
|
|
|
BO->getObjectKind(),
|
2012-10-02 12:45:10 +08:00
|
|
|
BO->getOperatorLoc(),
|
|
|
|
BO->isFPContractable()));
|
2012-02-22 10:04:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
|
2014-02-18 11:51:47 +08:00
|
|
|
CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) : 0;
|
|
|
|
if (TopCall)
|
|
|
|
E = TopCall;
|
|
|
|
else
|
|
|
|
TopBind = 0;
|
2012-02-22 10:04:18 +08:00
|
|
|
|
|
|
|
// Disable the special decltype handling now.
|
2012-11-15 23:18:42 +08:00
|
|
|
ExprEvalContexts.back().IsDecltype = false;
|
2012-02-22 10:04:18 +08:00
|
|
|
|
2012-07-29 03:54:11 +08:00
|
|
|
// In MS mode, don't perform any extra checking of call return types within a
|
|
|
|
// decltype expression.
|
2014-01-14 20:51:41 +08:00
|
|
|
if (getLangOpts().MSVCCompat)
|
2012-07-29 03:54:11 +08:00
|
|
|
return Owned(E);
|
|
|
|
|
2012-02-22 10:04:18 +08:00
|
|
|
// Perform the semantic checks we delayed until this point.
|
2012-11-15 23:18:42 +08:00
|
|
|
for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
|
|
|
|
I != N; ++I) {
|
|
|
|
CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
|
2012-02-22 10:04:18 +08:00
|
|
|
if (Call == TopCall)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (CheckCallReturnType(Call->getCallReturnType(),
|
2012-03-10 02:35:03 +08:00
|
|
|
Call->getLocStart(),
|
2012-02-22 10:04:18 +08:00
|
|
|
Call, Call->getDirectCallee()))
|
|
|
|
return ExprError();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now all relevant types are complete, check the destructors are accessible
|
|
|
|
// and non-deleted, and annotate them on the temporaries.
|
2012-11-15 23:18:42 +08:00
|
|
|
for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
|
|
|
|
I != N; ++I) {
|
|
|
|
CXXBindTemporaryExpr *Bind =
|
|
|
|
ExprEvalContexts.back().DelayedDecltypeBinds[I];
|
2012-02-22 10:04:18 +08:00
|
|
|
if (Bind == TopBind)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
CXXTemporary *Temp = Bind->getTemporary();
|
|
|
|
|
|
|
|
CXXRecordDecl *RD =
|
|
|
|
Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
|
|
|
|
CXXDestructorDecl *Destructor = LookupDestructor(RD);
|
|
|
|
Temp->setDestructor(Destructor);
|
|
|
|
|
2012-05-12 06:20:10 +08:00
|
|
|
MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
|
|
|
|
CheckDestructorAccess(Bind->getExprLoc(), Destructor,
|
2012-02-22 10:04:18 +08:00
|
|
|
PDiag(diag::err_access_dtor_temp)
|
2012-05-12 06:20:10 +08:00
|
|
|
<< Bind->getType());
|
2013-05-04 14:44:46 +08:00
|
|
|
if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
|
|
|
|
return ExprError();
|
2012-02-22 10:04:18 +08:00
|
|
|
|
|
|
|
// We need a cleanup, but we don't need to remember the temporary.
|
|
|
|
ExprNeedsCleanups = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Possibly strip off the top CXXBindTemporaryExpr.
|
|
|
|
return Owned(E);
|
|
|
|
}
|
|
|
|
|
2013-11-07 03:31:51 +08:00
|
|
|
/// Note a set of 'operator->' functions that were used for a member access.
|
|
|
|
static void noteOperatorArrows(Sema &S,
|
|
|
|
llvm::ArrayRef<FunctionDecl *> OperatorArrows) {
|
|
|
|
unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
|
|
|
|
// FIXME: Make this configurable?
|
|
|
|
unsigned Limit = 9;
|
|
|
|
if (OperatorArrows.size() > Limit) {
|
|
|
|
// Produce Limit-1 normal notes and one 'skipping' note.
|
|
|
|
SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
|
|
|
|
SkipCount = OperatorArrows.size() - (Limit - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
|
|
|
|
if (I == SkipStart) {
|
|
|
|
S.Diag(OperatorArrows[I]->getLocation(),
|
|
|
|
diag::note_operator_arrows_suppressed)
|
|
|
|
<< SkipCount;
|
|
|
|
I += SkipCount;
|
|
|
|
} else {
|
|
|
|
S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
|
|
|
|
<< OperatorArrows[I]->getCallResultType();
|
|
|
|
++I;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult
|
2010-08-24 07:25:46 +08:00
|
|
|
Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
|
2010-08-24 13:47:05 +08:00
|
|
|
tok::TokenKind OpKind, ParsedType &ObjectType,
|
Rework parsing of pseudo-destructor expressions and explicit
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
2010-02-25 02:44:31 +08:00
|
|
|
bool &MayBePseudoDestructor) {
|
2009-09-03 06:59:36 +08:00
|
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
2010-08-24 07:25:46 +08:00
|
|
|
if (Result.isInvalid()) return ExprError();
|
|
|
|
Base = Result.get();
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2011-10-26 01:37:35 +08:00
|
|
|
Result = CheckPlaceholderExpr(Base);
|
|
|
|
if (Result.isInvalid()) return ExprError();
|
|
|
|
Base = Result.take();
|
|
|
|
|
2010-08-24 07:25:46 +08:00
|
|
|
QualType BaseType = Base->getType();
|
Rework parsing of pseudo-destructor expressions and explicit
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
2010-02-25 02:44:31 +08:00
|
|
|
MayBePseudoDestructor = false;
|
2009-09-03 06:59:36 +08:00
|
|
|
if (BaseType->isDependentType()) {
|
2009-11-05 06:49:18 +08:00
|
|
|
// If we have a pointer to a dependent type and are using the -> operator,
|
|
|
|
// the object type is the type that the pointer points to. We might still
|
|
|
|
// have enough information about that type to do something useful.
|
|
|
|
if (OpKind == tok::arrow)
|
|
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
|
|
|
BaseType = Ptr->getPointeeType();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-08-24 13:47:05 +08:00
|
|
|
ObjectType = ParsedType::make(BaseType);
|
Rework parsing of pseudo-destructor expressions and explicit
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
2010-02-25 02:44:31 +08:00
|
|
|
MayBePseudoDestructor = true;
|
2010-08-24 07:25:46 +08:00
|
|
|
return Owned(Base);
|
2009-09-03 06:59:36 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2009-09-03 06:59:36 +08:00
|
|
|
// C++ [over.match.oper]p8:
|
2009-09-09 23:08:12 +08:00
|
|
|
// [...] When operator->returns, the operator-> is applied to the value
|
2009-09-03 06:59:36 +08:00
|
|
|
// returned, with the original second operand.
|
|
|
|
if (OpKind == tok::arrow) {
|
2013-11-07 03:31:51 +08:00
|
|
|
QualType StartingType = BaseType;
|
2013-08-01 01:38:24 +08:00
|
|
|
bool NoArrowOperatorFound = false;
|
|
|
|
bool FirstIteration = true;
|
|
|
|
FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
|
2009-09-30 09:01:30 +08:00
|
|
|
// The set of types we've considered so far.
|
2009-09-30 09:30:54 +08:00
|
|
|
llvm::SmallPtrSet<CanQualType,8> CTypes;
|
2013-11-07 03:31:51 +08:00
|
|
|
SmallVector<FunctionDecl*, 8> OperatorArrows;
|
2009-09-30 09:30:54 +08:00
|
|
|
CTypes.insert(Context.getCanonicalType(BaseType));
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-09-03 06:59:36 +08:00
|
|
|
while (BaseType->isRecordType()) {
|
2013-11-07 03:31:51 +08:00
|
|
|
if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
|
|
|
|
Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
|
2013-11-07 03:43:09 +08:00
|
|
|
<< StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
|
2013-11-07 03:31:51 +08:00
|
|
|
noteOperatorArrows(*this, OperatorArrows);
|
|
|
|
Diag(OpLoc, diag::note_operator_arrow_depth)
|
|
|
|
<< getLangOpts().ArrowDepth;
|
|
|
|
return ExprError();
|
|
|
|
}
|
|
|
|
|
2013-08-01 01:38:24 +08:00
|
|
|
Result = BuildOverloadedArrowExpr(
|
|
|
|
S, Base, OpLoc,
|
|
|
|
// When in a template specialization and on the first loop iteration,
|
|
|
|
// potentially give the default diagnostic (with the fixit in a
|
|
|
|
// separate note) instead of having the error reported back to here
|
|
|
|
// and giving a diagnostic with a fixit attached to the error itself.
|
|
|
|
(FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
|
|
|
|
? 0
|
|
|
|
: &NoArrowOperatorFound);
|
|
|
|
if (Result.isInvalid()) {
|
|
|
|
if (NoArrowOperatorFound) {
|
|
|
|
if (FirstIteration) {
|
|
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
2013-11-07 03:43:09 +08:00
|
|
|
<< BaseType << 1 << Base->getSourceRange()
|
2013-08-01 01:38:24 +08:00
|
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
|
|
OpKind = tok::period;
|
|
|
|
break;
|
2013-08-01 04:16:17 +08:00
|
|
|
}
|
|
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
|
|
|
|
<< BaseType << Base->getSourceRange();
|
|
|
|
CallExpr *CE = dyn_cast<CallExpr>(Base);
|
|
|
|
if (Decl *CD = (CE ? CE->getCalleeDecl() : 0)) {
|
|
|
|
Diag(CD->getLocStart(),
|
|
|
|
diag::note_member_reference_arrow_from_operator_arrow);
|
2013-08-01 01:38:24 +08:00
|
|
|
}
|
|
|
|
}
|
2009-09-03 06:59:36 +08:00
|
|
|
return ExprError();
|
2013-08-01 01:38:24 +08:00
|
|
|
}
|
2010-08-24 07:25:46 +08:00
|
|
|
Base = Result.get();
|
|
|
|
if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
|
2013-11-07 03:31:51 +08:00
|
|
|
OperatorArrows.push_back(OpCall->getDirectCallee());
|
2010-08-24 07:25:46 +08:00
|
|
|
BaseType = Base->getType();
|
2009-09-30 09:01:30 +08:00
|
|
|
CanQualType CBaseType = Context.getCanonicalType(BaseType);
|
2009-09-30 09:30:54 +08:00
|
|
|
if (!CTypes.insert(CBaseType)) {
|
2013-11-07 03:31:51 +08:00
|
|
|
Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
|
|
|
|
noteOperatorArrows(*this, OperatorArrows);
|
2009-09-30 08:19:41 +08:00
|
|
|
return ExprError();
|
|
|
|
}
|
2013-08-01 01:38:24 +08:00
|
|
|
FirstIteration = false;
|
2009-09-03 06:59:36 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2013-08-01 01:38:24 +08:00
|
|
|
if (OpKind == tok::arrow &&
|
|
|
|
(BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
|
2009-11-21 03:58:21 +08:00
|
|
|
BaseType = BaseType->getPointeeType();
|
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-01-13 00:11:24 +08:00
|
|
|
// Objective-C properties allow "." access on Objective-C pointer types,
|
|
|
|
// so adjust the base type to the object type itself.
|
|
|
|
if (BaseType->isObjCObjectPointerType())
|
|
|
|
BaseType = BaseType->getPointeeType();
|
|
|
|
|
|
|
|
// C++ [basic.lookup.classref]p2:
|
|
|
|
// [...] If the type of the object expression is of pointer to scalar
|
|
|
|
// type, the unqualified-id is looked up in the context of the complete
|
|
|
|
// postfix-expression.
|
|
|
|
//
|
|
|
|
// This also indicates that we could be parsing a pseudo-destructor-name.
|
|
|
|
// Note that Objective-C class and object types can be pseudo-destructor
|
|
|
|
// expressions or normal member (ivar or property) access expressions.
|
|
|
|
if (BaseType->isObjCObjectOrInterfaceType()) {
|
|
|
|
MayBePseudoDestructor = true;
|
|
|
|
} else if (!BaseType->isRecordType()) {
|
2010-08-24 13:47:05 +08:00
|
|
|
ObjectType = ParsedType();
|
Rework parsing of pseudo-destructor expressions and explicit
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
2010-02-25 02:44:31 +08:00
|
|
|
MayBePseudoDestructor = true;
|
2010-08-24 07:25:46 +08:00
|
|
|
return Owned(Base);
|
2009-09-04 05:38:09 +08:00
|
|
|
}
|
2009-09-09 23:08:12 +08:00
|
|
|
|
2012-04-16 15:05:22 +08:00
|
|
|
// The object type must be complete (or dependent), or
|
|
|
|
// C++11 [expr.prim.general]p3:
|
|
|
|
// Unlike the object expression in other contexts, *this is not required to
|
|
|
|
// be of complete type for purposes of class member access (5.2.5) outside
|
|
|
|
// the member function body.
|
2009-11-17 13:17:33 +08:00
|
|
|
if (!BaseType->isDependentType() &&
|
2012-04-16 15:05:22 +08:00
|
|
|
!isThisOutsideMemberFunctionBody(BaseType) &&
|
2012-05-05 00:32:21 +08:00
|
|
|
RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
|
2009-11-17 13:17:33 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2009-09-04 05:38:09 +08:00
|
|
|
// C++ [basic.lookup.classref]p2:
|
2009-09-09 23:08:12 +08:00
|
|
|
// If the id-expression in a class member access (5.2.5) is an
|
2009-11-17 13:17:33 +08:00
|
|
|
// unqualified-id, and the type of the object expression is of a class
|
2009-09-04 05:38:09 +08:00
|
|
|
// type C (or of pointer to a class type C), the unqualified-id is looked
|
|
|
|
// up in the scope of class C. [...]
|
2010-08-24 13:47:05 +08:00
|
|
|
ObjectType = ParsedType::make(BaseType);
|
2012-08-24 05:35:17 +08:00
|
|
|
return Base;
|
2009-09-03 06:59:36 +08:00
|
|
|
}
|
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
|
2010-08-24 07:25:46 +08:00
|
|
|
Expr *MemExpr) {
|
2010-02-25 05:29:12 +08:00
|
|
|
SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
|
2010-08-24 07:25:46 +08:00
|
|
|
Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
|
|
|
|
<< isa<CXXPseudoDestructorExpr>(MemExpr)
|
2010-04-01 01:46:05 +08:00
|
|
|
<< FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 05:29:12 +08:00
|
|
|
return ActOnCallExpr(/*Scope*/ 0,
|
2010-08-24 07:25:46 +08:00
|
|
|
MemExpr,
|
2010-02-25 05:29:12 +08:00
|
|
|
/*LPLoc*/ ExpectedLParenLoc,
|
2013-05-06 04:40:26 +08:00
|
|
|
None,
|
2010-02-25 05:29:12 +08:00
|
|
|
/*RPLoc*/ ExpectedLParenLoc);
|
|
|
|
}
|
Rework parsing of pseudo-destructor expressions and explicit
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
2010-02-25 02:44:31 +08:00
|
|
|
|
2012-01-25 12:29:24 +08:00
|
|
|
static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
|
2011-12-17 00:03:09 +08:00
|
|
|
tok::TokenKind& OpKind, SourceLocation OpLoc) {
|
2012-01-25 12:29:24 +08:00
|
|
|
if (Base->hasPlaceholderType()) {
|
|
|
|
ExprResult result = S.CheckPlaceholderExpr(Base);
|
|
|
|
if (result.isInvalid()) return true;
|
|
|
|
Base = result.take();
|
|
|
|
}
|
|
|
|
ObjectType = Base->getType();
|
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
// C++ [expr.pseudo]p2:
|
2011-01-27 15:10:08 +08:00
|
|
|
// The left-hand side of the dot operator shall be of scalar type. The
|
2010-02-25 06:38:50 +08:00
|
|
|
// left-hand side of the arrow operator shall be of pointer to scalar type.
|
2011-01-27 15:10:08 +08:00
|
|
|
// This scalar type is the object type.
|
2012-01-25 12:29:24 +08:00
|
|
|
// Note that this is rather different from the normal handling for the
|
|
|
|
// arrow operator.
|
2010-02-25 06:38:50 +08:00
|
|
|
if (OpKind == tok::arrow) {
|
|
|
|
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
|
|
|
|
ObjectType = Ptr->getPointeeType();
|
2010-08-24 07:25:46 +08:00
|
|
|
} else if (!Base->isTypeDependent()) {
|
2010-02-25 06:38:50 +08:00
|
|
|
// The user wrote "p->" when she probably meant "p."; fix it.
|
2011-12-17 00:03:09 +08:00
|
|
|
S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
2010-02-25 06:38:50 +08:00
|
|
|
<< ObjectType << true
|
2010-04-01 01:46:05 +08:00
|
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
2011-12-17 00:03:09 +08:00
|
|
|
if (S.isSFINAEContext())
|
|
|
|
return true;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
OpKind = tok::period;
|
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2011-12-17 00:03:09 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
|
|
|
|
SourceLocation OpLoc,
|
|
|
|
tok::TokenKind OpKind,
|
|
|
|
const CXXScopeSpec &SS,
|
|
|
|
TypeSourceInfo *ScopeTypeInfo,
|
|
|
|
SourceLocation CCLoc,
|
|
|
|
SourceLocation TildeLoc,
|
|
|
|
PseudoDestructorTypeStorage Destructed,
|
|
|
|
bool HasTrailingLParen) {
|
|
|
|
TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
|
|
|
|
|
2012-01-25 12:35:06 +08:00
|
|
|
QualType ObjectType;
|
2011-12-17 00:03:09 +08:00
|
|
|
if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
|
|
|
|
return ExprError();
|
|
|
|
|
2012-09-10 22:57:06 +08:00
|
|
|
if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
|
|
|
|
!ObjectType->isVectorType()) {
|
2014-01-14 20:51:41 +08:00
|
|
|
if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
|
2012-01-23 14:08:16 +08:00
|
|
|
Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
|
2014-05-02 00:50:23 +08:00
|
|
|
else {
|
2012-01-23 13:50:57 +08:00
|
|
|
Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
|
|
|
|
<< ObjectType << Base->getSourceRange();
|
2014-05-02 00:50:23 +08:00
|
|
|
return ExprError();
|
|
|
|
}
|
2010-02-25 06:38:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// C++ [expr.pseudo]p2:
|
2011-01-27 15:10:08 +08:00
|
|
|
// [...] The cv-unqualified versions of the object type and of the type
|
2010-02-25 06:38:50 +08:00
|
|
|
// designated by the pseudo-destructor-name shall be the same type.
|
2010-02-25 09:56:36 +08:00
|
|
|
if (DestructedTypeInfo) {
|
|
|
|
QualType DestructedType = DestructedTypeInfo->getType();
|
|
|
|
SourceLocation DestructedTypeStart
|
2010-05-20 18:00:11 +08:00
|
|
|
= DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
2011-06-16 07:02:42 +08:00
|
|
|
if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
|
|
|
|
if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
|
|
|
|
Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
|
|
|
|
<< ObjectType << DestructedType << Base->getSourceRange()
|
|
|
|
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
|
|
|
|
// Recover by setting the destructed type to the object type.
|
|
|
|
DestructedType = ObjectType;
|
|
|
|
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
|
2010-02-25 09:56:36 +08:00
|
|
|
DestructedTypeStart);
|
2011-06-16 07:02:42 +08:00
|
|
|
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
|
|
|
} else if (DestructedType.getObjCLifetime() !=
|
|
|
|
ObjectType.getObjCLifetime()) {
|
|
|
|
|
|
|
|
if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
|
|
|
|
// Okay: just pretend that the user provided the correctly-qualified
|
|
|
|
// type.
|
|
|
|
} else {
|
|
|
|
Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
|
|
|
|
<< ObjectType << DestructedType << Base->getSourceRange()
|
|
|
|
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Recover by setting the destructed type to the object type.
|
|
|
|
DestructedType = ObjectType;
|
|
|
|
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
|
|
|
|
DestructedTypeStart);
|
|
|
|
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
|
|
|
}
|
2010-02-25 09:56:36 +08:00
|
|
|
}
|
2010-02-25 06:38:50 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
// C++ [expr.pseudo]p2:
|
|
|
|
// [...] Furthermore, the two type-names in a pseudo-destructor-name of the
|
|
|
|
// form
|
|
|
|
//
|
2011-01-27 15:10:08 +08:00
|
|
|
// ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
|
2010-02-25 06:38:50 +08:00
|
|
|
//
|
|
|
|
// shall designate the same scalar type.
|
|
|
|
if (ScopeTypeInfo) {
|
|
|
|
QualType ScopeType = ScopeTypeInfo->getType();
|
|
|
|
if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
|
2010-06-12 01:36:40 +08:00
|
|
|
!Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-05-20 18:00:11 +08:00
|
|
|
Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
|
2010-02-25 06:38:50 +08:00
|
|
|
diag::err_pseudo_dtor_type_mismatch)
|
2010-08-24 07:25:46 +08:00
|
|
|
<< ObjectType << ScopeType << Base->getSourceRange()
|
2010-05-20 18:00:11 +08:00
|
|
|
<< ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
ScopeType = QualType();
|
|
|
|
ScopeTypeInfo = 0;
|
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-08-24 07:25:46 +08:00
|
|
|
Expr *Result
|
|
|
|
= new (Context) CXXPseudoDestructorExpr(Context, Base,
|
|
|
|
OpKind == tok::arrow, OpLoc,
|
2011-02-26 02:19:59 +08:00
|
|
|
SS.getWithLocInContext(Context),
|
2010-08-24 07:25:46 +08:00
|
|
|
ScopeTypeInfo,
|
|
|
|
CCLoc,
|
|
|
|
TildeLoc,
|
|
|
|
Destructed);
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
if (HasTrailingLParen)
|
2010-08-24 07:25:46 +08:00
|
|
|
return Owned(Result);
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-08-24 07:25:46 +08:00
|
|
|
return DiagnoseDtorReference(Destructed.getLocation(), Result);
|
2010-02-25 05:29:12 +08:00
|
|
|
}
|
|
|
|
|
2010-08-24 14:29:42 +08:00
|
|
|
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
2011-02-25 13:21:17 +08:00
|
|
|
SourceLocation OpLoc,
|
|
|
|
tok::TokenKind OpKind,
|
|
|
|
CXXScopeSpec &SS,
|
|
|
|
UnqualifiedId &FirstTypeName,
|
|
|
|
SourceLocation CCLoc,
|
|
|
|
SourceLocation TildeLoc,
|
|
|
|
UnqualifiedId &SecondTypeName,
|
|
|
|
bool HasTrailingLParen) {
|
2010-02-25 05:29:12 +08:00
|
|
|
assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
|
|
|
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
|
|
|
|
"Invalid first type name in pseudo-destructor");
|
|
|
|
assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
|
|
|
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
|
|
|
|
"Invalid second type name in pseudo-destructor");
|
|
|
|
|
2012-01-25 12:35:06 +08:00
|
|
|
QualType ObjectType;
|
2011-12-17 00:03:09 +08:00
|
|
|
if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
|
|
|
|
return ExprError();
|
2010-02-25 09:56:36 +08:00
|
|
|
|
|
|
|
// Compute the object type that we should use for name lookup purposes. Only
|
|
|
|
// record types and dependent types matter.
|
2010-08-24 13:47:05 +08:00
|
|
|
ParsedType ObjectTypePtrForLookup;
|
2010-02-25 09:56:36 +08:00
|
|
|
if (!SS.isSet()) {
|
2011-02-25 13:21:17 +08:00
|
|
|
if (ObjectType->isRecordType())
|
|
|
|
ObjectTypePtrForLookup = ParsedType::make(ObjectType);
|
2010-08-24 13:47:05 +08:00
|
|
|
else if (ObjectType->isDependentType())
|
|
|
|
ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
|
2010-02-25 09:56:36 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
|
|
|
// Convert the name of the type being destructed (following the ~) into a
|
2010-02-25 06:38:50 +08:00
|
|
|
// type (with source-location information).
|
2010-02-25 05:29:12 +08:00
|
|
|
QualType DestructedType;
|
|
|
|
TypeSourceInfo *DestructedTypeInfo = 0;
|
2010-02-25 09:56:36 +08:00
|
|
|
PseudoDestructorTypeStorage Destructed;
|
2010-02-25 05:29:12 +08:00
|
|
|
if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
|
2011-01-27 15:10:08 +08:00
|
|
|
ParsedType T = getTypeName(*SecondTypeName.Identifier,
|
2010-08-24 13:47:05 +08:00
|
|
|
SecondTypeName.StartLocation,
|
2011-02-09 02:05:59 +08:00
|
|
|
S, &SS, true, false, ObjectTypePtrForLookup);
|
2011-01-27 15:10:08 +08:00
|
|
|
if (!T &&
|
2010-02-25 09:56:36 +08:00
|
|
|
((SS.isSet() && !computeDeclContext(SS, false)) ||
|
|
|
|
(!SS.isSet() && ObjectType->isDependentType()))) {
|
2011-01-27 15:10:08 +08:00
|
|
|
// The name of the type being destroyed is a dependent name, and we
|
2010-02-25 09:56:36 +08:00
|
|
|
// couldn't find anything useful in scope. Just store the identifier and
|
|
|
|
// it's location, and we'll perform (qualified) name lookup again at
|
|
|
|
// template instantiation time.
|
|
|
|
Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
|
|
|
|
SecondTypeName.StartLocation);
|
|
|
|
} else if (!T) {
|
2011-01-27 15:10:08 +08:00
|
|
|
Diag(SecondTypeName.StartLocation,
|
2010-02-25 05:29:12 +08:00
|
|
|
diag::err_pseudo_dtor_destructor_non_type)
|
|
|
|
<< SecondTypeName.Identifier << ObjectType;
|
|
|
|
if (isSFINAEContext())
|
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 05:29:12 +08:00
|
|
|
// Recover by assuming we had the right type all along.
|
|
|
|
DestructedType = ObjectType;
|
2010-02-25 06:38:50 +08:00
|
|
|
} else
|
2010-02-25 05:29:12 +08:00
|
|
|
DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
|
|
|
|
} else {
|
2010-02-25 06:38:50 +08:00
|
|
|
// Resolve the template-id to a type.
|
2010-02-25 05:29:12 +08:00
|
|
|
TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
|
2012-08-24 07:38:35 +08:00
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
2010-02-25 06:38:50 +08:00
|
|
|
TemplateId->NumArgs);
|
2011-03-02 08:47:37 +08:00
|
|
|
TypeResult T = ActOnTemplateIdType(TemplateId->SS,
|
2012-02-06 22:41:24 +08:00
|
|
|
TemplateId->TemplateKWLoc,
|
2011-03-02 08:47:37 +08:00
|
|
|
TemplateId->Template,
|
2010-02-25 06:38:50 +08:00
|
|
|
TemplateId->TemplateNameLoc,
|
|
|
|
TemplateId->LAngleLoc,
|
|
|
|
TemplateArgsPtr,
|
|
|
|
TemplateId->RAngleLoc);
|
|
|
|
if (T.isInvalid() || !T.get()) {
|
|
|
|
// Recover by assuming we had the right type all along.
|
|
|
|
DestructedType = ObjectType;
|
|
|
|
} else
|
|
|
|
DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
|
2010-02-25 05:29:12 +08:00
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
|
|
|
// If we've performed some kind of recovery, (re-)build the type source
|
2010-02-25 06:38:50 +08:00
|
|
|
// information.
|
2010-02-25 09:56:36 +08:00
|
|
|
if (!DestructedType.isNull()) {
|
|
|
|
if (!DestructedTypeInfo)
|
|
|
|
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
|
2010-02-25 06:38:50 +08:00
|
|
|
SecondTypeName.StartLocation);
|
2010-02-25 09:56:36 +08:00
|
|
|
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
// Convert the name of the scope type (the type prior to '::') into a type.
|
|
|
|
TypeSourceInfo *ScopeTypeInfo = 0;
|
2010-02-25 05:29:12 +08:00
|
|
|
QualType ScopeType;
|
2011-01-27 15:10:08 +08:00
|
|
|
if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
2010-02-25 05:29:12 +08:00
|
|
|
FirstTypeName.Identifier) {
|
|
|
|
if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
|
2011-01-27 15:10:08 +08:00
|
|
|
ParsedType T = getTypeName(*FirstTypeName.Identifier,
|
2010-08-24 13:47:05 +08:00
|
|
|
FirstTypeName.StartLocation,
|
2011-02-26 02:19:59 +08:00
|
|
|
S, &SS, true, false, ObjectTypePtrForLookup);
|
2010-02-25 05:29:12 +08:00
|
|
|
if (!T) {
|
2011-01-27 15:10:08 +08:00
|
|
|
Diag(FirstTypeName.StartLocation,
|
2010-02-25 05:29:12 +08:00
|
|
|
diag::err_pseudo_dtor_destructor_non_type)
|
|
|
|
<< FirstTypeName.Identifier << ObjectType;
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 05:29:12 +08:00
|
|
|
if (isSFINAEContext())
|
2010-02-25 06:38:50 +08:00
|
|
|
return ExprError();
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 06:38:50 +08:00
|
|
|
// Just drop this type. It's unnecessary anyway.
|
|
|
|
ScopeType = QualType();
|
|
|
|
} else
|
|
|
|
ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
|
2010-02-25 05:29:12 +08:00
|
|
|
} else {
|
2010-02-25 06:38:50 +08:00
|
|
|
// Resolve the template-id to a type.
|
2010-02-25 05:29:12 +08:00
|
|
|
TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
|
2012-08-24 07:38:35 +08:00
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
2010-02-25 06:38:50 +08:00
|
|
|
TemplateId->NumArgs);
|
2011-03-02 08:47:37 +08:00
|
|
|
TypeResult T = ActOnTemplateIdType(TemplateId->SS,
|
2012-02-06 22:41:24 +08:00
|
|
|
TemplateId->TemplateKWLoc,
|
2011-03-02 08:47:37 +08:00
|
|
|
TemplateId->Template,
|
2010-02-25 06:38:50 +08:00
|
|
|
TemplateId->TemplateNameLoc,
|
|
|
|
TemplateId->LAngleLoc,
|
|
|
|
TemplateArgsPtr,
|
|
|
|
TemplateId->RAngleLoc);
|
|
|
|
if (T.isInvalid() || !T.get()) {
|
|
|
|
// Recover by dropping this type.
|
|
|
|
ScopeType = QualType();
|
|
|
|
} else
|
2011-01-27 15:10:08 +08:00
|
|
|
ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
|
2010-02-25 05:29:12 +08:00
|
|
|
}
|
|
|
|
}
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-02-25 07:02:30 +08:00
|
|
|
if (!ScopeType.isNull() && !ScopeTypeInfo)
|
|
|
|
ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
|
|
|
|
FirstTypeName.StartLocation);
|
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
|
2010-08-24 07:25:46 +08:00
|
|
|
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
|
2010-02-25 07:50:37 +08:00
|
|
|
ScopeTypeInfo, CCLoc, TildeLoc,
|
2010-02-25 09:56:36 +08:00
|
|
|
Destructed, HasTrailingLParen);
|
Rework parsing of pseudo-destructor expressions and explicit
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
2010-02-25 02:44:31 +08:00
|
|
|
}
|
|
|
|
|
2011-12-17 00:03:09 +08:00
|
|
|
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
|
|
|
SourceLocation OpLoc,
|
|
|
|
tok::TokenKind OpKind,
|
|
|
|
SourceLocation TildeLoc,
|
|
|
|
const DeclSpec& DS,
|
|
|
|
bool HasTrailingLParen) {
|
2012-01-25 12:35:06 +08:00
|
|
|
QualType ObjectType;
|
2011-12-17 00:03:09 +08:00
|
|
|
if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
|
|
|
|
return ExprError();
|
|
|
|
|
|
|
|
QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
|
|
|
|
|
|
|
|
TypeLocBuilder TLB;
|
|
|
|
DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
|
|
|
|
DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
|
|
TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
|
|
|
|
PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
|
|
|
|
|
|
|
|
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
|
|
|
|
0, SourceLocation(), TildeLoc,
|
|
|
|
Destructed, HasTrailingLParen);
|
|
|
|
}
|
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
|
2012-03-01 09:30:04 +08:00
|
|
|
CXXConversionDecl *Method,
|
2011-10-05 15:56:41 +08:00
|
|
|
bool HadMultipleCandidates) {
|
2012-03-01 12:01:32 +08:00
|
|
|
if (Method->getParent()->isLambda() &&
|
|
|
|
Method->getConversionType()->isBlockPointerType()) {
|
|
|
|
// This is a lambda coversion to block pointer; check if the argument
|
|
|
|
// is a LambdaExpr.
|
|
|
|
Expr *SubE = E;
|
|
|
|
CastExpr *CE = dyn_cast<CastExpr>(SubE);
|
|
|
|
if (CE && CE->getCastKind() == CK_NoOp)
|
|
|
|
SubE = CE->getSubExpr();
|
|
|
|
SubE = SubE->IgnoreParens();
|
|
|
|
if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
|
|
|
|
SubE = BE->getSubExpr();
|
|
|
|
if (isa<LambdaExpr>(SubE)) {
|
|
|
|
// For the conversion to block pointer on a lambda expression, we
|
|
|
|
// construct a special BlockLiteral instead; this doesn't really make
|
|
|
|
// a difference in ARC, but outside of ARC the resulting block literal
|
|
|
|
// follows the normal lifetime rules for block literals instead of being
|
|
|
|
// autoreleased.
|
|
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
|
|
ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
|
|
|
|
E->getExprLoc(),
|
|
|
|
Method, E);
|
|
|
|
if (Exp.isInvalid())
|
|
|
|
Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
|
|
|
|
return Exp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
|
|
|
|
FoundDecl, Method);
|
|
|
|
if (Exp.isInvalid())
|
2011-01-20 08:18:04 +08:00
|
|
|
return true;
|
2009-12-09 12:53:56 +08:00
|
|
|
|
2011-01-27 15:10:08 +08:00
|
|
|
MemberExpr *ME =
|
2011-04-09 02:41:53 +08:00
|
|
|
new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
|
2011-11-17 06:46:05 +08:00
|
|
|
SourceLocation(), Context.BoundMemberTy,
|
2010-11-18 14:31:45 +08:00
|
|
|
VK_RValue, OK_Ordinary);
|
2011-10-05 15:56:41 +08:00
|
|
|
if (HadMultipleCandidates)
|
|
|
|
ME->setHadMultipleCandidates(true);
|
2013-02-12 16:08:54 +08:00
|
|
|
MarkMemberReferenced(ME);
|
2011-10-05 15:56:41 +08:00
|
|
|
|
2014-01-26 00:55:45 +08:00
|
|
|
QualType ResultType = Method->getReturnType();
|
2010-11-18 14:31:45 +08:00
|
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultType);
|
|
|
|
ResultType = ResultType.getNonLValueExprType(Context);
|
|
|
|
|
2009-11-23 20:27:39 +08:00
|
|
|
CXXMemberCallExpr *CE =
|
2013-05-06 04:40:26 +08:00
|
|
|
new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
|
2011-04-09 02:41:53 +08:00
|
|
|
Exp.get()->getLocEnd());
|
2009-09-29 07:23:40 +08:00
|
|
|
return CE;
|
|
|
|
}
|
|
|
|
|
2010-09-11 04:55:43 +08:00
|
|
|
ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
|
|
|
|
SourceLocation RParen) {
|
Implement DR1330 in C++11 mode, to support libstdc++4.7 which uses it.
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
2012-04-17 08:58:00 +08:00
|
|
|
CanThrowResult CanThrow = canThrow(Operand);
|
2010-09-11 04:55:43 +08:00
|
|
|
return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
|
Implement DR1330 in C++11 mode, to support libstdc++4.7 which uses it.
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
2012-04-17 08:58:00 +08:00
|
|
|
CanThrow, KeyLoc, RParen));
|
2010-09-11 04:55:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
|
|
|
|
Expr *Operand, SourceLocation RParen) {
|
|
|
|
return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
|
2010-09-11 04:55:37 +08:00
|
|
|
}
|
|
|
|
|
2012-05-25 06:04:19 +08:00
|
|
|
static bool IsSpecialDiscardedValue(Expr *E) {
|
|
|
|
// In C++11, discarded-value expressions of a certain form are special,
|
|
|
|
// according to [expr]p10:
|
|
|
|
// The lvalue-to-rvalue conversion (4.1) is applied only if the
|
|
|
|
// expression is an lvalue of volatile-qualified type and it has
|
|
|
|
// one of the following forms:
|
|
|
|
E = E->IgnoreParens();
|
|
|
|
|
2012-05-25 06:36:31 +08:00
|
|
|
// - id-expression (5.1.1),
|
2012-05-25 06:04:19 +08:00
|
|
|
if (isa<DeclRefExpr>(E))
|
|
|
|
return true;
|
|
|
|
|
2012-05-25 06:36:31 +08:00
|
|
|
// - subscripting (5.2.1),
|
2012-05-25 06:04:19 +08:00
|
|
|
if (isa<ArraySubscriptExpr>(E))
|
|
|
|
return true;
|
|
|
|
|
2012-05-25 06:36:31 +08:00
|
|
|
// - class member access (5.2.5),
|
2012-05-25 06:04:19 +08:00
|
|
|
if (isa<MemberExpr>(E))
|
|
|
|
return true;
|
|
|
|
|
2012-05-25 06:36:31 +08:00
|
|
|
// - indirection (5.3.1),
|
2012-05-25 06:04:19 +08:00
|
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
|
|
|
|
if (UO->getOpcode() == UO_Deref)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
2012-05-25 06:36:31 +08:00
|
|
|
// - pointer-to-member operation (5.5),
|
2012-05-25 06:04:19 +08:00
|
|
|
if (BO->isPtrMemOp())
|
|
|
|
return true;
|
|
|
|
|
2012-05-25 06:36:31 +08:00
|
|
|
// - comma expression (5.18) where the right operand is one of the above.
|
2012-05-25 06:04:19 +08:00
|
|
|
if (BO->getOpcode() == BO_Comma)
|
|
|
|
return IsSpecialDiscardedValue(BO->getRHS());
|
|
|
|
}
|
|
|
|
|
2012-05-25 06:36:31 +08:00
|
|
|
// - conditional expression (5.16) where both the second and the third
|
2012-05-25 06:04:19 +08:00
|
|
|
// operands are one of the above, or
|
|
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
|
|
|
|
return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
|
|
|
|
IsSpecialDiscardedValue(CO->getFalseExpr());
|
|
|
|
// The related edge case of "*x ?: *x".
|
|
|
|
if (BinaryConditionalOperator *BCO =
|
|
|
|
dyn_cast<BinaryConditionalOperator>(E)) {
|
|
|
|
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
|
|
|
|
return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
|
|
|
|
IsSpecialDiscardedValue(BCO->getFalseExpr());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Objective-C++ extensions to the rule.
|
|
|
|
if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-12-04 11:47:34 +08:00
|
|
|
/// Perform the conversions required for an expression used in a
|
|
|
|
/// context that ignores the result.
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Sema::IgnoredValueConversions(Expr *E) {
|
2011-10-26 01:37:35 +08:00
|
|
|
if (E->hasPlaceholderType()) {
|
|
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
|
|
if (result.isInvalid()) return Owned(E);
|
|
|
|
E = result.take();
|
|
|
|
}
|
|
|
|
|
2010-12-02 10:07:15 +08:00
|
|
|
// C99 6.3.2.1:
|
|
|
|
// [Except in specific positions,] an lvalue that does not have
|
|
|
|
// array type is converted to the value stored in the
|
|
|
|
// designated object (and is no longer an lvalue).
|
2011-06-28 05:24:11 +08:00
|
|
|
if (E->isRValue()) {
|
|
|
|
// In C, function designators (i.e. expressions of function type)
|
|
|
|
// are r-values, but we still want to do function-to-pointer decay
|
|
|
|
// on them. This is both technically correct and convenient for
|
|
|
|
// some clients.
|
2012-03-11 15:00:24 +08:00
|
|
|
if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
|
2011-06-28 05:24:11 +08:00
|
|
|
return DefaultFunctionArrayConversion(E);
|
|
|
|
|
|
|
|
return Owned(E);
|
|
|
|
}
|
2010-12-04 11:47:34 +08:00
|
|
|
|
2012-05-25 06:04:19 +08:00
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
|
|
// The C++11 standard defines the notion of a discarded-value expression;
|
|
|
|
// normally, we don't need to do anything to handle it, but if it is a
|
|
|
|
// volatile lvalue with a special form, we perform an lvalue-to-rvalue
|
|
|
|
// conversion.
|
2013-01-02 19:42:31 +08:00
|
|
|
if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
|
2012-05-25 06:04:19 +08:00
|
|
|
E->getType().isVolatileQualified() &&
|
|
|
|
IsSpecialDiscardedValue(E)) {
|
|
|
|
ExprResult Res = DefaultLvalueConversion(E);
|
|
|
|
if (Res.isInvalid())
|
|
|
|
return Owned(E);
|
|
|
|
E = Res.take();
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
}
|
2012-05-25 06:04:19 +08:00
|
|
|
return Owned(E);
|
|
|
|
}
|
2010-12-04 11:47:34 +08:00
|
|
|
|
|
|
|
// GCC seems to also exclude expressions of incomplete enum type.
|
|
|
|
if (const EnumType *T = E->getType()->getAs<EnumType>()) {
|
|
|
|
if (!T->getDecl()->isComplete()) {
|
|
|
|
// FIXME: stupid workaround for a codegen bug!
|
2011-04-09 02:41:53 +08:00
|
|
|
E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
|
|
|
|
return Owned(E);
|
2010-12-04 11:47:34 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
|
|
|
|
if (Res.isInvalid())
|
|
|
|
return Owned(E);
|
|
|
|
E = Res.take();
|
|
|
|
|
2010-12-04 20:29:11 +08:00
|
|
|
if (!E->getType()->isVoidType())
|
|
|
|
RequireCompleteType(E->getExprLoc(), E->getType(),
|
|
|
|
diag::err_incomplete_type);
|
2011-04-09 02:41:53 +08:00
|
|
|
return Owned(E);
|
2010-12-04 11:47:34 +08:00
|
|
|
}
|
|
|
|
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
// If we can unambiguously determine whether Var can never be used
|
|
|
|
// in a constant expression, return true.
|
|
|
|
// - if the variable and its initializer are non-dependent, then
|
|
|
|
// we can unambiguously check if the variable is a constant expression.
|
|
|
|
// - if the initializer is not value dependent - we can determine whether
|
|
|
|
// it can be used to initialize a constant expression. If Init can not
|
|
|
|
// be used to initialize a constant expression we conclude that Var can
|
|
|
|
// never be a constant expression.
|
|
|
|
// - FXIME: if the initializer is dependent, we can still do some analysis and
|
|
|
|
// identify certain cases unambiguously as non-const by using a Visitor:
|
|
|
|
// - such as those that involve odr-use of a ParmVarDecl, involve a new
|
|
|
|
// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
|
|
|
|
static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
|
|
|
|
ASTContext &Context) {
|
|
|
|
if (isa<ParmVarDecl>(Var)) return true;
|
|
|
|
const VarDecl *DefVD = 0;
|
|
|
|
|
|
|
|
// If there is no initializer - this can not be a constant expression.
|
|
|
|
if (!Var->getAnyInitializer(DefVD)) return true;
|
|
|
|
assert(DefVD);
|
|
|
|
if (DefVD->isWeak()) return false;
|
|
|
|
EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
|
2014-02-07 07:35:16 +08:00
|
|
|
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
Expr *Init = cast<Expr>(Eval->Value);
|
|
|
|
|
|
|
|
if (Var->getType()->isDependentType() || Init->isValueDependent()) {
|
2014-02-07 07:35:16 +08:00
|
|
|
// FIXME: Teach the constant evaluator to deal with the non-dependent parts
|
|
|
|
// of value-dependent expressions, and use it here to determine whether the
|
|
|
|
// initializer is a potential constant expression.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
return false;
|
2014-02-07 07:35:16 +08:00
|
|
|
}
|
|
|
|
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
return !IsVariableAConstantExpression(Var, Context);
|
|
|
|
}
|
|
|
|
|
2013-12-08 04:22:44 +08:00
|
|
|
/// \brief Check if the current lambda has any potential captures
|
|
|
|
/// that must be captured by any of its enclosing lambdas that are ready to
|
|
|
|
/// capture. If there is a lambda that can capture a nested
|
|
|
|
/// potential-capture, go ahead and do so. Also, check to see if any
|
|
|
|
/// variables are uncaptureable or do not involve an odr-use so do not
|
|
|
|
/// need to be captured.
|
|
|
|
|
|
|
|
static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
|
|
|
|
Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
|
|
|
|
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
assert(!S.isUnevaluatedContext());
|
|
|
|
assert(S.CurContext->isDependentContext());
|
2013-12-08 04:22:44 +08:00
|
|
|
assert(CurrentLSI->CallOperator == S.CurContext &&
|
|
|
|
"The current call operator must be synchronized with Sema's CurContext");
|
|
|
|
|
|
|
|
const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
|
|
|
|
|
|
|
|
ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
|
|
|
|
S.FunctionScopes.data(), S.FunctionScopes.size());
|
|
|
|
|
|
|
|
// All the potentially captureable variables in the current nested
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
// lambda (within a generic outer lambda), must be captured by an
|
|
|
|
// outer lambda that is enclosed within a non-dependent context.
|
2013-12-08 04:22:44 +08:00
|
|
|
const unsigned NumPotentialCaptures =
|
|
|
|
CurrentLSI->getNumPotentialVariableCaptures();
|
|
|
|
for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
Expr *VarExpr = 0;
|
|
|
|
VarDecl *Var = 0;
|
|
|
|
CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
|
2013-12-08 04:22:44 +08:00
|
|
|
// If the variable is clearly identified as non-odr-used and the full
|
|
|
|
// expression is not instantiation dependent, only then do we not
|
|
|
|
// need to check enclosing lambda's for speculative captures.
|
|
|
|
// For e.g.:
|
|
|
|
// Even though 'x' is not odr-used, it should be captured.
|
|
|
|
// int test() {
|
|
|
|
// const int x = 10;
|
|
|
|
// auto L = [=](auto a) {
|
|
|
|
// (void) +x + a;
|
|
|
|
// };
|
|
|
|
// }
|
|
|
|
if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
!IsFullExprInstantiationDependent)
|
2013-12-08 04:22:44 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// If we have a capture-capable lambda for the variable, go ahead and
|
|
|
|
// capture the variable in that lambda (and all its enclosing lambdas).
|
|
|
|
if (const Optional<unsigned> Index =
|
|
|
|
getStackIndexOfNearestEnclosingCaptureCapableLambda(
|
|
|
|
FunctionScopesArrayRef, Var, S)) {
|
|
|
|
const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
|
|
|
|
MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
|
|
|
|
&FunctionScopeIndexOfCapturableLambda);
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
}
|
|
|
|
const bool IsVarNeverAConstantExpression =
|
|
|
|
VariableCanNeverBeAConstantExpression(Var, S.Context);
|
|
|
|
if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
|
|
|
|
// This full expression is not instantiation dependent or the variable
|
|
|
|
// can not be used in a constant expression - which means
|
|
|
|
// this variable must be odr-used here, so diagnose a
|
|
|
|
// capture violation early, if the variable is un-captureable.
|
|
|
|
// This is purely for diagnosing errors early. Otherwise, this
|
|
|
|
// error would get diagnosed when the lambda becomes capture ready.
|
|
|
|
QualType CaptureType, DeclRefType;
|
|
|
|
SourceLocation ExprLoc = VarExpr->getExprLoc();
|
|
|
|
if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
|
|
|
|
/*EllipsisLoc*/ SourceLocation(),
|
|
|
|
/*BuildAndDiagnose*/false, CaptureType,
|
|
|
|
DeclRefType, 0)) {
|
|
|
|
// We will never be able to capture this variable, and we need
|
|
|
|
// to be able to in any and all instantiations, so diagnose it.
|
|
|
|
S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
|
|
|
|
/*EllipsisLoc*/ SourceLocation(),
|
|
|
|
/*BuildAndDiagnose*/true, CaptureType,
|
|
|
|
DeclRefType, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-08 04:22:44 +08:00
|
|
|
// Check if 'this' needs to be captured.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
if (CurrentLSI->hasPotentialThisCapture()) {
|
2013-12-08 04:22:44 +08:00
|
|
|
// If we have a capture-capable lambda for 'this', go ahead and capture
|
|
|
|
// 'this' in that lambda (and all its enclosing lambdas).
|
|
|
|
if (const Optional<unsigned> Index =
|
|
|
|
getStackIndexOfNearestEnclosingCaptureCapableLambda(
|
|
|
|
FunctionScopesArrayRef, /*0 is 'this'*/ 0, S)) {
|
|
|
|
const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
|
|
|
|
S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
|
|
|
|
/*Explicit*/ false, /*BuildAndDiagnose*/ true,
|
|
|
|
&FunctionScopeIndexOfCapturableLambda);
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
}
|
|
|
|
}
|
2013-12-08 04:22:44 +08:00
|
|
|
|
|
|
|
// Reset all the potential captures at the end of each full-expression.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
CurrentLSI->clearPotentialCaptures();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-01-15 06:39:08 +08:00
|
|
|
ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
|
2013-01-25 06:11:45 +08:00
|
|
|
bool DiscardedValue,
|
2013-12-05 09:40:41 +08:00
|
|
|
bool IsConstexpr,
|
|
|
|
bool IsLambdaInitCaptureInitializer) {
|
2011-04-09 02:41:53 +08:00
|
|
|
ExprResult FullExpr = Owned(FE);
|
|
|
|
|
|
|
|
if (!FullExpr.get())
|
2010-12-15 09:34:56 +08:00
|
|
|
return ExprError();
|
2013-12-05 09:40:41 +08:00
|
|
|
|
|
|
|
// If we are an init-expression in a lambdas init-capture, we should not
|
|
|
|
// diagnose an unexpanded pack now (will be diagnosed once lambda-expr
|
|
|
|
// containing full-expression is done).
|
|
|
|
// template<class ... Ts> void test(Ts ... t) {
|
|
|
|
// test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
|
|
|
|
// return a;
|
|
|
|
// }() ...);
|
|
|
|
// }
|
|
|
|
// FIXME: This is a hack. It would be better if we pushed the lambda scope
|
|
|
|
// when we parse the lambda introducer, and teach capturing (but not
|
|
|
|
// unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
|
|
|
|
// corresponding class yet (that is, have LambdaScopeInfo either represent a
|
|
|
|
// lambda where we've entered the introducer but not the body, or represent a
|
|
|
|
// lambda where we've entered the body, depending on where the
|
|
|
|
// parser/instantiation has got to).
|
|
|
|
if (!IsLambdaInitCaptureInitializer &&
|
|
|
|
DiagnoseUnexpandedParameterPack(FullExpr.get()))
|
Variadic templates: extend Type, NestedNameSpecifier, TemplateName,
and TemplateArgument with an operation that determines whether there
are any unexpanded parameter packs within that construct. Use this
information to diagnose the appearance of the names of parameter packs
that have not been expanded (C++ [temp.variadic]p5). Since this
property is checked often (every declaration, ever expression
statement, etc.), we extend Type and Expr with a bit storing the
result of this computation, rather than walking the AST each time to
determine whether any unexpanded parameter packs occur.
This commit is deficient in several ways, which will be remedied with
future commits:
- Expr has a bit to store the presence of an unexpanded parameter
pack, but it is never set.
- The error messages don't point out where the unexpanded parameter
packs were named in the type/expression, but they should.
- We don't check for unexpanded parameter packs in all of the places
where we should.
- Testing is sparse, pending the resolution of the above three
issues.
llvm-svn: 121724
2010-12-14 06:49:22 +08:00
|
|
|
return ExprError();
|
|
|
|
|
2013-03-08 06:57:58 +08:00
|
|
|
// Top-level expressions default to 'id' when we're in a debugger.
|
2013-01-15 06:39:08 +08:00
|
|
|
if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
|
2013-03-08 06:57:58 +08:00
|
|
|
FullExpr.get()->getType() == Context.UnknownAnyTy) {
|
2011-12-15 08:53:32 +08:00
|
|
|
FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
|
|
|
|
if (FullExpr.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
}
|
2011-03-07 10:05:23 +08:00
|
|
|
|
2013-01-15 06:39:08 +08:00
|
|
|
if (DiscardedValue) {
|
|
|
|
FullExpr = CheckPlaceholderExpr(FullExpr.take());
|
|
|
|
if (FullExpr.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
|
|
|
|
FullExpr = IgnoredValueConversions(FullExpr.take());
|
|
|
|
if (FullExpr.isInvalid())
|
|
|
|
return ExprError();
|
|
|
|
}
|
2011-04-09 02:41:53 +08:00
|
|
|
|
2013-01-25 06:11:45 +08:00
|
|
|
CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
|
2013-11-12 11:56:08 +08:00
|
|
|
// At the end of this full expression (which could be a deeply nested
|
|
|
|
// lambda), if there is a potential capture within the nested lambda,
|
|
|
|
// have the outer capture-able lambda try and capture it.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
// Consider the following code:
|
|
|
|
// void f(int, int);
|
|
|
|
// void f(const int&, double);
|
|
|
|
// void foo() {
|
|
|
|
// const int x = 10, y = 20;
|
|
|
|
// auto L = [=](auto a) {
|
|
|
|
// auto M = [=](auto b) {
|
|
|
|
// f(x, b); <-- requires x to be captured by L and M
|
|
|
|
// f(y, a); <-- requires y to be captured by L, but not all Ms
|
|
|
|
// };
|
|
|
|
// };
|
|
|
|
// }
|
|
|
|
|
|
|
|
// FIXME: Also consider what happens for something like this that involves
|
|
|
|
// the gnu-extension statement-expressions or even lambda-init-captures:
|
|
|
|
// void f() {
|
|
|
|
// const int n = 0;
|
|
|
|
// auto L = [&](auto a) {
|
|
|
|
// +n + ({ 0; a; });
|
|
|
|
// };
|
|
|
|
// }
|
|
|
|
//
|
2013-11-12 11:56:08 +08:00
|
|
|
// Here, we see +n, and then the full-expression 0; ends, so we don't
|
|
|
|
// capture n (and instead remove it from our list of potential captures),
|
|
|
|
// and then the full-expression +n + ({ 0; }); ends, but it's too late
|
|
|
|
// for us to see that we need to capture n after all.
|
This patch implements capturing of variables within generic lambdas.
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
2013-11-07 13:17:06 +08:00
|
|
|
|
2013-11-12 11:48:27 +08:00
|
|
|
LambdaScopeInfo *const CurrentLSI = getCurLambda();
|
|
|
|
// FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
|
|
|
|
// even if CurContext is not a lambda call operator. Refer to that Bug Report
|
|
|
|
// for an example of the code that might cause this asynchrony.
|
|
|
|
// By ensuring we are in the context of a lambda's call operator
|
|
|
|
// we can fix the bug (we only need to check whether we need to capture
|
|
|
|
// if we are within a lambda's body); but per the comments in that
|
|
|
|
// PR, a proper fix would entail :
|
|
|
|
// "Alternative suggestion:
|
|
|
|
// - Add to Sema an integer holding the smallest (outermost) scope
|
|
|
|
// index that we are *lexically* within, and save/restore/set to
|
|
|
|
// FunctionScopes.size() in InstantiatingTemplate's
|
|
|
|
// constructor/destructor.
|
|
|
|
// - Teach the handful of places that iterate over FunctionScopes to
|
2013-12-08 04:22:44 +08:00
|
|
|
// stop at the outermost enclosing lexical scope."
|
|
|
|
const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
|
|
|
|
if (IsInLambdaDeclContext && CurrentLSI &&
|
2013-11-12 11:48:27 +08:00
|
|
|
CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
|
2013-12-08 04:22:44 +08:00
|
|
|
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
|
|
|
|
*this);
|
2010-12-06 16:20:24 +08:00
|
|
|
return MaybeCreateExprWithCleanups(FullExpr);
|
2009-05-18 02:41:29 +08:00
|
|
|
}
|
2010-11-02 10:33:08 +08:00
|
|
|
|
|
|
|
StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
|
|
|
|
if (!FullStmt) return StmtError();
|
|
|
|
|
2010-12-06 16:20:24 +08:00
|
|
|
return MaybeCreateStmtWithCleanups(FullStmt);
|
2010-11-02 10:33:08 +08:00
|
|
|
}
|
2011-05-07 04:48:22 +08:00
|
|
|
|
2011-10-25 09:33:02 +08:00
|
|
|
Sema::IfExistsResult
|
|
|
|
Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
|
|
|
|
CXXScopeSpec &SS,
|
|
|
|
const DeclarationNameInfo &TargetNameInfo) {
|
2011-05-07 04:48:22 +08:00
|
|
|
DeclarationName TargetName = TargetNameInfo.getName();
|
|
|
|
if (!TargetName)
|
2011-10-25 06:31:10 +08:00
|
|
|
return IER_DoesNotExist;
|
2011-10-25 09:33:02 +08:00
|
|
|
|
2011-10-25 06:31:10 +08:00
|
|
|
// If the name itself is dependent, then the result is dependent.
|
|
|
|
if (TargetName.isDependentName())
|
|
|
|
return IER_Dependent;
|
2011-10-25 09:33:02 +08:00
|
|
|
|
2011-05-07 04:48:22 +08:00
|
|
|
// Do the redeclaration lookup in the current scope.
|
|
|
|
LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
|
|
|
|
Sema::NotForRedeclaration);
|
2011-10-25 06:31:10 +08:00
|
|
|
LookupParsedName(R, S, &SS);
|
2011-05-07 04:48:22 +08:00
|
|
|
R.suppressDiagnostics();
|
2011-10-25 06:31:10 +08:00
|
|
|
|
|
|
|
switch (R.getResultKind()) {
|
|
|
|
case LookupResult::Found:
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
|
|
case LookupResult::FoundUnresolvedValue:
|
|
|
|
case LookupResult::Ambiguous:
|
|
|
|
return IER_Exists;
|
|
|
|
|
|
|
|
case LookupResult::NotFound:
|
|
|
|
return IER_DoesNotExist;
|
|
|
|
|
|
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
|
|
return IER_Dependent;
|
|
|
|
}
|
2012-01-17 14:56:22 +08:00
|
|
|
|
|
|
|
llvm_unreachable("Invalid LookupResult Kind!");
|
2011-05-07 04:48:22 +08:00
|
|
|
}
|
2011-10-25 09:33:02 +08:00
|
|
|
|
2011-10-25 11:44:56 +08:00
|
|
|
Sema::IfExistsResult
|
|
|
|
Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
|
|
|
|
bool IsIfExists, CXXScopeSpec &SS,
|
|
|
|
UnqualifiedId &Name) {
|
2011-10-25 09:33:02 +08:00
|
|
|
DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
|
2011-10-25 11:44:56 +08:00
|
|
|
|
|
|
|
// Check for unexpanded parameter packs.
|
|
|
|
SmallVector<UnexpandedParameterPack, 4> Unexpanded;
|
|
|
|
collectUnexpandedParameterPacks(SS, Unexpanded);
|
|
|
|
collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
|
|
|
|
if (!Unexpanded.empty()) {
|
|
|
|
DiagnoseUnexpandedParameterPacks(KeywordLoc,
|
|
|
|
IsIfExists? UPPC_IfExists
|
|
|
|
: UPPC_IfNotExists,
|
|
|
|
Unexpanded);
|
|
|
|
return IER_Error;
|
|
|
|
}
|
|
|
|
|
2011-10-25 09:33:02 +08:00
|
|
|
return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
|
|
|
|
}
|