llvm-project/llvm/test/CodeGen/Mips/msa/f16-llvm-ir.ll

1148 lines
35 KiB
LLVM
Raw Normal View History

; RUN: llc -relocation-model=pic -march=mipsel -mcpu=mips32r5 \
; RUN: -mattr=+fp64,+msa -verify-machineinstrs < %s | FileCheck %s \
; RUN: --check-prefixes=ALL,MIPS32,MIPSR5,MIPS32-O32,MIPS32R5-O32
; RUN: llc -relocation-model=pic -march=mips64el -mcpu=mips64r5 \
; RUN: -mattr=+fp64,+msa -verify-machineinstrs -target-abi n32 < %s | FileCheck %s \
; RUN: --check-prefixes=ALL,MIPS64,MIPSR5,MIPS64-N32,MIPS64R5-N32
; RUN: llc -relocation-model=pic -march=mips64el -mcpu=mips64r5 \
; RUN: -mattr=+fp64,+msa -verify-machineinstrs -target-abi n64 < %s | FileCheck %s \
; RUN: --check-prefixes=ALL,MIPS64,MIPSR5,MIPS64-N64,MIPS64R5-N64
; RUN: llc -relocation-model=pic -march=mipsel -mcpu=mips32r6 \
; RUN: -mattr=+fp64,+msa -verify-machineinstrs < %s | FileCheck %s \
; RUN: --check-prefixes=ALL,MIPS32,MIPSR6,MIPSR6-O32
; RUN: llc -relocation-model=pic -march=mips64el -mcpu=mips64r6 \
; RUN: -mattr=+fp64,+msa -verify-machineinstrs -target-abi n32 < %s | FileCheck %s \
; RUN: --check-prefixes=ALL,MIPS64,MIPSR6,MIPS64-N32,MIPSR6-N32
; RUN: llc -relocation-model=pic -march=mips64el -mcpu=mips64r6 \
; RUN: -mattr=+fp64,+msa -verify-machineinstrs -target-abi n64 < %s | FileCheck %s \
; RUN: --check-prefixes=ALL,MIPS64,MIPSR6,MIPS64-N64,MIPSR6-N64
; Check the use of frame indexes in the msa pseudo f16 instructions.
@k = external global float
declare float @k2(half *)
define void @f3(i16 %b) {
entry:
; ALL-LABEL: f3:
; ALL: sh $4, [[O0:[0-9]+]]($sp)
; ALL-DAG: jalr $25
; MIPS32-DAG: addiu $4, $sp, [[O0]]
; MIPS64-N32: addiu $4, $sp, [[O0]]
; MIPS64-N64: daddiu $4, $sp, [[O0]]
; ALL: swc1 $f0
%0 = alloca half
%1 = bitcast i16 %b to half
store half %1, half * %0
%2 = call float @k2(half * %0)
store float %2, float * @k
ret void
}
define void @f(i16 %b) {
; ALL-LABEL: f:
; ALL: sh $4, [[O0:[0-9]+]]($sp)
; ALL: lh $[[R0:[0-9]+]], [[O0]]($sp)
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; ALL: swc1 $f[[F0]]
%1 = bitcast i16 %b to half
%2 = fpext half %1 to float
store float %2, float * @k
ret void
}
@g = external global i16, align 2
@h = external global half, align 2
; Check that fext f16 to double has a fexupr.w, fexupr.d sequence.
; Check that ftrunc double to f16 has fexdo.w, fexdo.h sequence.
; Check that MIPS64R5+ uses 64-bit floating point <-> 64-bit GPR transfers.
; We don't need to check if pre-MIPSR5 expansions occur, the MSA ASE requires
; MIPSR5. Additionally, fp64 mode / FR=1 is required to use MSA.
define void @fadd_f64() {
entry:
; ALL-LABEL: fadd_f64:
%0 = load half, half * @h, align 2
%1 = fpext half %0 to double
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: fexupr.d $w[[W2:[0-9]+]], $w[[W1]]
; MIPS32: copy_s.w $[[R1:[0-9]+]], $w[[W2]][0]
; MIPS32: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32: copy_s.w $[[R2:[0-9]+]], $w[[W2]][1]
; MIPS32: mthc1 $[[R2]], $f[[F0]]
; MIPS64: copy_s.d $[[R2:[0-9]+]], $w[[W2]][0]
; MIPS64: dmtc1 $[[R2]], $f[[F0:[0-9]+]]
%2 = load half, half * @h, align 2
%3 = fpext half %2 to double
%add = fadd double %1, %3
; ALL: add.d $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
%4 = fptrunc double %add to half
; MIPS32: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; MIPS32: fill.w $w[[W2:[0-9]+]], $[[R2]]
; MIPS32: mfhc1 $[[R3:[0-9]+]], $f[[F1]]
; MIPS32: insert.w $w[[W2]][1], $[[R3]]
; MIPS32: insert.w $w[[W2]][3], $[[R3]]
; MIPS64: dmfc1 $[[R2:[0-9]+]], $f[[F1]]
; MIPS64: fill.d $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.w $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: fexdo.h $w[[W4:[0-9]+]], $w[[W3]], $w[[W3]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W4]][0]
; ALL: sh $[[R3]]
store half %4, half * @h, align 2
ret void
}
define i32 @ffptoui() {
entry:
; ALL-LABEL: ffptoui:
%0 = load half, half * @h, align 2
%1 = fptoui half %0 to i32
; MIPS32: lwc1 $f[[FC:[0-9]+]], %lo($CPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64-N32: lwc1 $f[[FC:[0-9]+]], %got_ofst(.LCPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64-N64: lwc1 $f[[FC:[0-9]+]], %got_ofst(.LCPI{{[0-9]+}}_{{[0-9]+}})
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPSR6: cmp.lt.s $f[[F1:[0-9]+]], $f[[F0]], $f[[FC]]
; ALL: sub.s $f[[F2:[0-9]+]], $f[[F0]], $f[[FC]]
; ALL: mfc1 $[[R2:[0-9]]], $f[[F2]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: fexupr.w $w[[W4:[0-9]+]], $w[[W3]]
; ALL: fexupr.d $w[[W5:[0-9]+]], $w[[W4]]
; MIPS32: copy_s.w $[[R3:[0-9]+]], $w[[W5]][0]
; MIPS32: mtc1 $[[R3]], $f[[F3:[0-9]+]]
; MIPS32: copy_s.w $[[R4:[0-9]+]], $w[[W5]][1]
; MIPS32: mthc1 $[[R3]], $f[[F3]]
; MIPS64: copy_s.d $[[R2:[0-9]+]], $w[[W2]][0]
; MIPS64: dmtc1 $[[R2]], $f[[F3:[0-9]+]]
; ALL: trunc.w.d $f[[F4:[0-9]+]], $f[[F3]]
; ALL: mfc1 $[[R4:[0-9]+]], $f[[F4]]
; ALL: fexupr.d $w[[W6:[0-9]+]], $w[[W1]]
; MIPS32: copy_s.w $[[R5:[0-9]+]], $w[[W6]][0]
; MIPS32: mtc1 $[[R5]], $f[[F5:[0-9]+]]
; MIPS32: copy_s.w $[[R6:[0-9]+]], $w[[W6]][1]
; MIPS32: mthc1 $[[R6]], $f[[F5]]
; MIPS64: copy_s.d $[[R2:[0-9]+]], $w[[W2]][0]
; MIPS64: dmtc1 $[[R2]], $f[[F5:[0-9]+]]
; ALL: trunc.w.d $f[[F6:[0-9]]], $f[[F5]]
; ALL: mfc1 $[[R7:[0-9]]], $f[[F6]]
; MIPS32R5-O32: lw $[[R13:[0-9]+]], %got($CPI{{[0-9]+}}_{{[0-9]+}})
; MIPS32R5-O32: addiu $[[R14:[0-9]+]], $[[R13]], %lo($CPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64R5-N32: lw $[[R13:[0-9]+]], %got_page(.LCPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64R5-N32: addiu $[[R14:[0-9]+]], $[[R13]], %got_ofst(.LCPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64R5-N64: ld $[[R13:[0-9]+]], %got_page(.LCPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64R5-N64: daddiu $[[R14:[0-9]+]], $[[R13]], %got_ofst(.LCPI{{[0-9]+}}_{{[0-9]+}})
; ALL: lui $[[R8:[0-9]+]], 32768
; ALL: xor $[[R9:[0-9]+]], $[[R4]], $[[R8]]
; MIPSR5: lh $[[R15:[0-9]+]], 0($[[R14]])
; MIPSR5: fill.h $w[[W7:[0-9]+]], $[[R15]]
; MIPSR5: fexupr.w $w[[W8:[0-9]+]], $w[[W7]]
; MIPSR5: copy_s.w $[[R16:[0-9]+]], $w[[W8]][0]
; MIPSR5: mtc1 $[[R16]], $f[[F7:[0-9]+]]
; MIPSR5: c.olt.s $f[[F0]], $f[[F7]]
; MIPSR5: movt $[[R9]], $[[R7]], $fcc0
; MIPSR6: mfc1 $[[R10:[0-9]+]], $f[[F1]]
; MIPSR6: seleqz $[[R11:[0-9]]], $[[R9]], $[[R10]]
; MIPSR6: selnez $[[R12:[0-9]]], $[[R7]], $[[R10]]
; MIPSR6: or $2, $[[R12]], $[[R11]]
ret i32 %1
}
define i32 @ffptosi() {
entry:
; ALL-LABEL: ffptosi:
%0 = load half, half * @h, align 2
%1 = fptosi half %0 to i32
ret i32 %1
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: fexupr.d $w[[W2:[0-9]+]], $w[[W1]]
; MIPS32: copy_s.w $[[R2:[0-9]+]], $w[[W2]][0]
; MIPS32: mtc1 $[[R2]], $f[[F0:[0-9]+]]
; MIPS32: copy_s.w $[[R3:[0-9]+]], $w[[W2]][1]
; MIPS32: mthc1 $[[R3]], $f[[F0]]
; MIPS64: copy_s.d $[[R2:[0-9]+]], $w[[W2]][0]
; MIPS64: dmtc1 $[[R2]], $f[[F0:[0-9]+]]
; ALL: trunc.w.d $f[[F1:[0-9]+]], $f[[F0]]
; ALL: mfc1 $2, $f[[F1]]
}
define void @uitofp(i32 %a) {
entry:
; ALL-LABEL: uitofp:
; MIPS32-O32: ldc1 $f[[F0:[0-9]+]], %lo($CPI{{[0-9]+}}_{{[0-9]+}})
; MIPS32-O32: ldc1 $f[[F1:[0-9]+]], 0($sp)
; MIPS64-N32: ldc1 $f[[F0:[0-9]+]], %got_ofst(.LCPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64-N32: ldc1 $f[[F1:[0-9]+]], 8($sp)
; MIPS64-N64: ldc1 $f[[F0:[0-9]+]], %got_ofst(.LCPI{{[0-9]+}}_{{[0-9]+}})
; MIPS64-N64: ldc1 $f[[F1:[0-9]+]], 8($sp)
; MIPSR5: sub.d $f[[F2:[0-9]+]], $f[[F1]], $f[[F0]]
; MIPSR6-O32: sub.d $f[[F2:[0-9]+]], $f[[F0]], $f[[F1]]
; MIPSR6-N32: sub.d $f[[F2:[0-9]+]], $f[[F1]], $f[[F0]]
; MIPSR6-N64: sub.d $f[[F2:[0-9]+]], $f[[F1]], $f[[F0]]
; MIPS32: mfc1 $[[R0:[0-9]+]], $f[[F2]]
; MIPS32: fill.w $w[[W0:[0-9]+]], $[[R0]]
; MIPS32: mfhc1 $[[R1:[0-9]+]], $f[[F2]]
; MIPS32: insert.w $w[[W0]][1], $[[R1]]
; MIPS32: insert.w $w[[W0]][3], $[[R1]]
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; MIPS64-N64-DAG: ld $[[R3:[0-9]+]], %got_disp(h)
; MIPS64-N32-DAG: lw $[[R3:[0-9]+]], %got_disp(h)
; MIPS64-DAG: dmfc1 $[[R1:[0-9]+]], $f[[F2]]
; MIPS64-DAG: fill.d $w[[W0:[0-9]+]], $[[R1]]
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; ALL-DAG: fexdo.w $w[[W1:[0-9]+]], $w[[W0]], $w[[W0]]
; ALL-DAG: fexdo.h $w[[W2:[0-9]+]], $w[[W1]], $w[[W1]]
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695
2017-03-14 08:34:14 +08:00
; MIPS32-DAG: lw $[[R3:[0-9]+]], %got(h)
; ALL: copy_u.h $[[R2:[0-9]+]], $w[[W2]]
; ALL: sh $[[R2]], 0($[[R3]])
%0 = uitofp i32 %a to half
store half %0, half * @h, align 2
ret void
}
; Check that f16 is expanded to f32 and relevant transfer ops occur.
; We don't check f16 -> f64 expansion occurs, as we expand f16 to f32.
define void @fadd() {
entry:
; ALL-LABEL: fadd:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%2 = load i16, i16* @g, align 2
%3 = call float @llvm.convert.from.fp16.f32(i16 %2)
%add = fadd float %1, %3
; ALL: add.s $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
%4 = call i16 @llvm.convert.to.fp16.f32(float %add)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
; ALL: sh $[[R3]]
store i16 %4, i16* @g, align 2
ret void
}
; Function Attrs: nounwind readnone
declare float @llvm.convert.from.fp16.f32(i16)
; Function Attrs: nounwind readnone
declare i16 @llvm.convert.to.fp16.f32(float)
; Function Attrs: nounwind
define void @fsub() {
entry:
; ALL-LABEL: fsub:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%2 = load i16, i16* @g, align 2
%3 = call float @llvm.convert.from.fp16.f32(i16 %2)
%sub = fsub float %1, %3
; ALL: sub.s $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
%4 = call i16 @llvm.convert.to.fp16.f32(float %sub)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %4, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
define void @fmult() {
entry:
; ALL-LABEL: fmult:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%2 = load i16, i16* @g, align 2
%3 = call float @llvm.convert.from.fp16.f32(i16 %2)
%mul = fmul float %1, %3
; ALL: mul.s $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
%4 = call i16 @llvm.convert.to.fp16.f32(float %mul)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %4, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
define void @fdiv() {
entry:
; ALL-LABEL: fdiv:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%2 = load i16, i16* @g, align 2
%3 = call float @llvm.convert.from.fp16.f32(i16 %2)
%div = fdiv float %1, %3
; ALL: div.s $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
%4 = call i16 @llvm.convert.to.fp16.f32(float %div)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %4, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
define void @frem() {
entry:
; ALL-LABEL: frem:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%2 = load i16, i16* @g, align 2
%3 = call float @llvm.convert.from.fp16.f32(i16 %2)
%rem = frem float %1, %3
; MIPS32: lw $25, %call16(fmodf)($gp)
; MIPS64-N32: lw $25, %call16(fmodf)($gp)
; MIPS64-N64: ld $25, %call16(fmodf)($gp)
; ALL: jalr $25
%4 = call i16 @llvm.convert.to.fp16.f32(float %rem)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %4, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
@i1 = external global i16, align 1
define void @fcmp() {
entry:
; ALL-LABEL: fcmp:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%2 = load i16, i16* @g, align 2
%3 = call float @llvm.convert.from.fp16.f32(i16 %2)
%fcmp = fcmp oeq float %1, %3
; MIPSR5: addiu $[[R2:[0-9]+]], $zero, 1
; MIPSR5: c.un.s $f[[F0]], $f[[F0]]
; MIPSR5: movt $[[R2]], $zero, $fcc0
; MIPSR6: cmp.un.s $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
; MIPSR6: mfc1 $[[R3:[0-9]]], $f[[F1]]
; MIPSR6: not $[[R4:[0-9]+]], $[[R3]]
; MIPSR6: andi $[[R2:[0-9]+]], $[[R4]], 1
%4 = zext i1 %fcmp to i16
store i16 %4, i16* @i1, align 2
; ALL: sh $[[R2]]
ret void
}
declare float @llvm.powi.f32(float, i32)
define void @fpowi() {
entry:
; ALL-LABEL: fpowi:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
%powi = call float @llvm.powi.f32(float %1, i32 2)
; ALL: mul.s $f[[F1:[0-9]+]], $f[[F0]], $f[[F0]]
%2 = call i16 @llvm.convert.to.fp16.f32(float %powi)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
define void @fpowi_var(i32 %var) {
entry:
; ALL-LABEL: fpowi_var:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
%powi = call float @llvm.powi.f32(float %1, i32 %var)
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(__powisf2)($gp)
; MIPS64-N32-DAG: lw $25, %call16(__powisf2)($gp)
; MIPS64-N64-DAG: ld $25, %call16(__powisf2)($gp)
; ALL-DAG: jalr $25
%2 = call i16 @llvm.convert.to.fp16.f32(float %powi)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.pow.f32(float %Val, float %power)
define void @fpow(float %var) {
entry:
; ALL-LABEL: fpow:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
%powi = call float @llvm.pow.f32(float %1, float %var)
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(powf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(powf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(powf)($gp)
; ALL-DAG: jalr $25
%2 = call i16 @llvm.convert.to.fp16.f32(float %powi)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.log2.f32(float %Val)
define void @flog2() {
entry:
; ALL-LABEL: flog2:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(log2f)($gp)
; MIPS64-N32-DAG: lw $25, %call16(log2f)($gp)
; MIPS64-N64-DAG: ld $25, %call16(log2f)($gp)
; ALL-DAG: jalr $25
%log2 = call float @llvm.log2.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %log2)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.log10.f32(float %Val)
define void @flog10() {
entry:
; ALL-LABEL: flog10:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(log10f)($gp)
; MIPS64-N32-DAG: lw $25, %call16(log10f)($gp)
; MIPS64-N64-DAG: ld $25, %call16(log10f)($gp)
; ALL-DAG: jalr $25
%log10 = call float @llvm.log10.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %log10)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.sqrt.f32(float %Val)
define void @fsqrt() {
entry:
; ALL-LABEL: fsqrt:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; ALL: sqrt.s $f[[F1:[0-9]+]], $f[[F0]]
%sqrt = call float @llvm.sqrt.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %sqrt)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.sin.f32(float %Val)
define void @fsin() {
entry:
; ALL-LABEL: fsin:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(sinf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(sinf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(sinf)($gp)
; ALL-DAG: jalr $25
%sin = call float @llvm.sin.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %sin)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.cos.f32(float %Val)
define void @fcos() {
entry:
; ALL-LABEL: fcos:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(cosf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(cosf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(cosf)($gp)
; ALL-DAG: jalr $25
%cos = call float @llvm.cos.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %cos)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.exp.f32(float %Val)
define void @fexp() {
entry:
; ALL-LABEL: fexp:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(expf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(expf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(expf)($gp)
; ALL-DAG: jalr $25
%exp = call float @llvm.exp.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %exp)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.exp2.f32(float %Val)
define void @fexp2() {
entry:
; ALL-LABEL: fexp2:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(exp2f)($gp)
; MIPS64-N32-DAG: lw $25, %call16(exp2f)($gp)
; MIPS64-N64-DAG: ld $25, %call16(exp2f)($gp)
; ALL-DAG: jalr $25
%exp2 = call float @llvm.exp2.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %exp2)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.fma.f32(float, float, float)
define void @ffma(float %b, float %c) {
entry:
; ALL-LABEL: ffma:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(fmaf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(fmaf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(fmaf)($gp)
; ALL-DAG: jalr $25
%fma = call float @llvm.fma.f32(float %1, float %b, float %c)
%2 = call i16 @llvm.convert.to.fp16.f32(float %fma)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
; FIXME: For MIPSR6, this should produced the maddf.s instruction. MIPSR5 cannot
; fuse the operation such that the intermediate result is not rounded.
declare float @llvm.fmuladd.f32(float, float, float)
define void @ffmuladd(float %b, float %c) {
entry:
; ALL-LABEL: ffmuladd:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-O32: madd.s $f[[F1:[0-9]]], $f14, $f[[F0]], $f12
; MIPS32-N32: madd.s $f[[F1:[0-9]]], $f13, $f[[F0]], $f12
; MIPS32-N64: madd.s $f[[F1:[0-9]]], $f13, $f[[F0]], $f12
; MIPSR6: mul.s $f[[F2:[0-9]+]], $f[[F0]], $f12
; MIPSR6-O32: add.s $f[[F1:[0-9]+]], $f[[F2]], $f14
; MIPSR6-N32: add.s $f[[F1:[0-9]+]], $f[[F2]], $f13
; MIPSR6-N64: add.s $f[[F1:[0-9]+]], $f[[F2]], $f13
%fmuladd = call float @llvm.fmuladd.f32(float %1, float %b, float %c)
%2 = call i16 @llvm.convert.to.fp16.f32(float %fmuladd)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.fabs.f32(float %Val)
define void @ffabs() {
entry:
; ALL-LABEL: ffabs:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; ALL: abs.s $f[[F1:[0-9]+]], $f[[F0]]
%fabs = call float @llvm.fabs.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %fabs)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.minnum.f32(float %Val, float %b)
define void @fminnum(float %b) {
entry:
; ALL-LABEL: fminnum:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(fminf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(fminf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(fminf)($gp)
; ALL-DAG: jalr $25
%minnum = call float @llvm.minnum.f32(float %1, float %b)
%2 = call i16 @llvm.convert.to.fp16.f32(float %minnum)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.maxnum.f32(float %Val, float %b)
define void @fmaxnum(float %b) {
entry:
; ALL-LABEL: fmaxnum:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(fmaxf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(fmaxf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(fmaxf)($gp)
; ALL-DAG: jalr $25
%maxnum = call float @llvm.maxnum.f32(float %1, float %b)
%2 = call i16 @llvm.convert.to.fp16.f32(float %maxnum)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
; This expansion of fcopysign could be done without converting f16 to float.
declare float @llvm.copysign.f32(float %Val, float %b)
define void @fcopysign(float %b) {
entry:
; ALL-LABEL: fcopysign:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
%copysign = call float @llvm.copysign.f32(float %1, float %b)
%2 = call i16 @llvm.convert.to.fp16.f32(float %copysign)
; ALL: mfc1 $[[R2:[0-9]+]], $f12
; ALL: ext $[[R3:[0-9]+]], $3, 31, 1
; ALL: ins $[[R1]], $[[R3]], 31, 1
; ALL: fill.w $w[[W2:[0-9]+]], $[[R1]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.floor.f32(float %Val)
define void @ffloor() {
entry:
; ALL-LABEL: ffloor:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(floorf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(floorf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(floorf)($gp)
; ALL-DAG: jalr $25
%floor = call float @llvm.floor.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %floor)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.ceil.f32(float %Val)
define void @fceil() {
entry:
; ALL-LABEL: fceil:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(ceilf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(ceilf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(ceilf)($gp)
; ALL-DAG: jalr $25
%ceil = call float @llvm.ceil.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %ceil)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.trunc.f32(float %Val)
define void @ftrunc() {
entry:
; ALL-LABEL: ftrunc:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(truncf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(truncf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(truncf)($gp)
; ALL-DAG: jalr $25
%trunc = call float @llvm.trunc.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %trunc)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.rint.f32(float %Val)
define void @frint() {
entry:
; ALL-LABEL: frint:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(rintf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(rintf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(rintf)($gp)
; ALL-DAG: jalr $25
%rint = call float @llvm.rint.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %rint)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.nearbyint.f32(float %Val)
define void @fnearbyint() {
entry:
; ALL-LABEL: fnearbyint:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(nearbyintf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(nearbyintf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(nearbyintf)($gp)
; ALL-DAG: jalr $25
%nearbyint = call float @llvm.nearbyint.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %nearbyint)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}
declare float @llvm.round.f32(float %Val)
define void @fround() {
entry:
; ALL-LABEL: fround:
%0 = load i16, i16* @g, align 2
%1 = call float @llvm.convert.from.fp16.f32(i16 %0)
; ALL: lh $[[R0:[0-9]+]]
; ALL: fill.h $w[[W0:[0-9]+]], $[[R0]]
; ALL: fexupr.w $w[[W1:[0-9]+]], $w[[W0]]
; ALL: copy_s.w $[[R1:[0-9]+]], $w[[W1]][0]
; ALL-DAG: mtc1 $[[R1]], $f[[F0:[0-9]+]]
; MIPS32-DAG: lw $25, %call16(roundf)($gp)
; MIPS64-N32-DAG: lw $25, %call16(roundf)($gp)
; MIPS64-N64-DAG: ld $25, %call16(roundf)($gp)
; ALL-DAG: jalr $25
%round = call float @llvm.round.f32(float %1)
%2 = call i16 @llvm.convert.to.fp16.f32(float %round)
; ALL: mfc1 $[[R2:[0-9]+]], $f[[F1]]
; ALL: fill.w $w[[W2:[0-9]+]], $[[R2]]
; ALL: fexdo.h $w[[W3:[0-9]+]], $w[[W2]], $w[[W2]]
; ALL: copy_u.h $[[R3:[0-9]+]], $w[[W3]][0]
store i16 %2, i16* @g, align 2
; ALL: sh $[[R3]]
ret void
}