llvm-project/clang/CodeGen/CGExpr.cpp

780 lines
28 KiB
C++
Raw Normal View History

//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
using namespace llvm;
using namespace clang;
using namespace CodeGen;
//===--------------------------------------------------------------------===//
// Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
QualType Ty;
RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
return ConvertScalarValueToBool(Val, Ty);
}
//===--------------------------------------------------------------------===//
// Conversions
//===--------------------------------------------------------------------===//
/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
/// the type specified by DstTy, following the rules of C99 6.3.
RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
QualType DstTy, SourceLocation Loc) {
ValTy = ValTy.getCanonicalType();
DstTy = DstTy.getCanonicalType();
if (ValTy == DstTy) return Val;
// Handle conversions to bool first, they are special: comparisons against 0.
if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
if (DestBT->getKind() == BuiltinType::Bool)
return RValue::get(ConvertScalarValueToBool(Val, ValTy));
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<PointerType>(DstTy)) {
const llvm::Type *DestTy = ConvertType(DstTy, Loc);
// The source value may be an integer, or a pointer.
assert(Val.isScalar() && "Can only convert from integer or pointer");
if (isa<llvm::PointerType>(Val.getVal()->getType()))
return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return RValue::get(Builder.CreatePtrToInt(Val.getVal(), DestTy, "conv"));
}
if (isa<PointerType>(ValTy)) {
// Must be an ptr to int cast.
const llvm::Type *DestTy = ConvertType(DstTy, Loc);
assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
}
// Finally, we have the arithmetic types: real int/float and complex
// int/float. Handle real->real conversions first, they are the most
// common.
if (Val.isScalar() && DstTy->isRealType()) {
// We know that these are representable as scalars in LLVM, convert to LLVM
// types since they are easier to reason about.
Value *SrcVal = Val.getVal();
const llvm::Type *DestTy = ConvertType(DstTy, Loc);
if (SrcVal->getType() == DestTy) return Val;
Value *Result;
if (isa<llvm::IntegerType>(SrcVal->getType())) {
bool InputSigned = ValTy->isSignedIntegerType();
if (isa<llvm::IntegerType>(DestTy))
Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
else if (InputSigned)
Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
else
Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
} else {
assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(DestTy)) {
if (DstTy->isSignedIntegerType())
Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
else
Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
} else {
assert(DestTy->isFloatingPoint() && "Unknown real conversion");
if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
else
Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
}
}
return RValue::get(Result);
}
assert(0 && "FIXME: We don't support complex conversions yet!");
}
/// ConvertScalarValueToBool - Convert the specified expression value to a
/// boolean (i1) truth value. This is equivalent to "Val == 0".
Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty) {
Ty = Ty.getCanonicalType();
Value *Result;
if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
switch (BT->getKind()) {
default: assert(0 && "Unknown scalar value");
case BuiltinType::Bool:
Result = Val.getVal();
// Bool is already evaluated right.
assert(Result->getType() == llvm::Type::Int1Ty &&
"Unexpected bool value type!");
return Result;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
// Code below handles simple integers.
break;
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble: {
// Compare against 0.0 for fp scalars.
Result = Val.getVal();
llvm::Value *Zero = Constant::getNullValue(Result->getType());
// FIXME: llvm-gcc produces a une comparison: validate this is right.
Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
return Result;
}
case BuiltinType::FloatComplex:
case BuiltinType::DoubleComplex:
case BuiltinType::LongDoubleComplex:
assert(0 && "comparisons against complex not implemented yet");
}
} else {
assert((isa<PointerType>(Ty) ||
cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) &&
"Unknown scalar type");
// Code below handles this fine.
}
// Usual case for integers, pointers, and enums: compare against zero.
Result = Val.getVal();
// Because of the type rules of C, we often end up computing a logical value,
// then zero extending it to int, then wanting it as a logical value again.
// Optimize this common case.
if (llvm::ZExtInst *ZI = dyn_cast<ZExtInst>(Result)) {
if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
Result = ZI->getOperand(0);
ZI->eraseFromParent();
return Result;
}
}
llvm::Value *Zero = Constant::getNullValue(Result->getType());
return Builder.CreateICmpNE(Result, Zero, "tobool");
}
//===----------------------------------------------------------------------===//
// LValue Expression Emission
//===----------------------------------------------------------------------===//
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
switch (E->getStmtClass()) {
default:
fprintf(stderr, "Unimplemented lvalue expr!\n");
E->dump();
return LValue::getAddr(UndefValue::get(
llvm::PointerType::get(llvm::Type::Int32Ty)));
case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
case Expr::UnaryOperatorClass:
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
}
}
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
LValue LV = EmitLValue(E);
QualType ExprTy = E->getType().getCanonicalType();
// FIXME: this is silly and obviously wrong for non-scalars.
assert(!LV.isBitfield());
return RValue::get(Builder.CreateLoad(LV.getAddress(), "tmp"));
}
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
QualType Ty) {
// FIXME: This is obviously bogus.
assert(!Dst.isBitfield() && "FIXME: Don't support store to bitfield yet");
assert(Src.isScalar() && "FIXME: Don't support store of aggregate yet");
// TODO: Handle volatility etc.
Value *Addr = Dst.getAddress();
const llvm::Type *SrcTy = Src.getVal()->getType();
const llvm::Type *AddrTy =
cast<llvm::PointerType>(Addr->getType())->getElementType();
if (AddrTy != SrcTy)
Addr = Builder.CreateBitCast(Addr, llvm::PointerType::get(SrcTy),
"storetmp");
Builder.CreateStore(Src.getVal(), Addr);
}
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
const Decl *D = E->getDecl();
if (isa<BlockVarDecl>(D)) {
Value *V = LocalDeclMap[D];
assert(V && "BlockVarDecl not entered in LocalDeclMap?");
return LValue::getAddr(V);
}
assert(0 && "Unimp declref");
}
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
// __extension__ doesn't affect lvalue-ness.
if (E->getOpcode() == UnaryOperator::Extension)
return EmitLValue(E->getSubExpr());
assert(E->getOpcode() == UnaryOperator::Deref &&
"'*' is the only unary operator that produces an lvalue");
return LValue::getAddr(EmitExpr(E->getSubExpr()).getVal());
}
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
RValue CodeGenFunction::EmitExpr(const Expr *E) {
assert(E && "Null expression?");
switch (E->getStmtClass()) {
default:
printf("Unimplemented expr!\n");
E->dump();
return RValue::get(UndefValue::get(llvm::Type::Int32Ty));
// l-values.
case Expr::DeclRefExprClass:
// FIXME: EnumConstantDecl's are not lvalues. This is wrong for them.
return EmitLoadOfLValue(E);
// Leaf expressions.
case Expr::IntegerLiteralClass:
return EmitIntegerLiteral(cast<IntegerLiteral>(E));
// Operators.
case Expr::ParenExprClass:
return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
case Expr::UnaryOperatorClass:
return EmitUnaryOperator(cast<UnaryOperator>(E));
case Expr::CastExprClass:
return EmitCastExpr(cast<CastExpr>(E));
case Expr::BinaryOperatorClass:
return EmitBinaryOperator(cast<BinaryOperator>(E));
}
}
RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
return RValue::get(ConstantInt::get(E->getValue()));
}
RValue CodeGenFunction::EmitCastExpr(const CastExpr *E) {
QualType SrcTy;
RValue Src = EmitExprWithUsualUnaryConversions(E->getSubExpr(), SrcTy);
// If the destination is void, just evaluate the source.
if (E->getType()->isVoidType())
return RValue::getAggregate(0);
return EmitConversion(Src, SrcTy, E->getType(), E->getLParenLoc());
}
//===----------------------------------------------------------------------===//
// Unary Operator Emission
//===----------------------------------------------------------------------===//
RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
QualType &ResTy) {
ResTy = E->getType().getCanonicalType();
if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
// Functions are promoted to their address.
ResTy = getContext().getPointerType(ResTy);
return RValue::get(EmitLValue(E).getAddress());
} else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
// C99 6.3.2.1p3
ResTy = getContext().getPointerType(ary->getElementType());
// FIXME: For now we assume that all source arrays map to LLVM arrays. This
// will not true when we add support for VLAs.
llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
assert(isa<llvm::PointerType>(V->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
->getElementType()) &&
"Doesn't support VLAs yet!");
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
} else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
// FIXME: this probably isn't right, pending clarification from Steve.
llvm::Value *Val = EmitExpr(E).getVal();
// If the input is a signed integer, sign extend to the destination.
if (ResTy->isSignedIntegerType()) {
Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
} else {
// This handles unsigned types, including bool.
Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
}
ResTy = getContext().IntTy;
return RValue::get(Val);
}
// Otherwise, this is a float, double, int, struct, etc.
return EmitExpr(E);
}
RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
switch (E->getOpcode()) {
default:
printf("Unimplemented unary expr!\n");
E->dump();
return RValue::get(UndefValue::get(llvm::Type::Int32Ty));
// FIXME: pre/post inc/dec
case UnaryOperator::AddrOf: return EmitUnaryAddrOf(E);
case UnaryOperator::Deref : return EmitLoadOfLValue(E);
case UnaryOperator::Plus : return EmitUnaryPlus(E);
case UnaryOperator::Minus : return EmitUnaryMinus(E);
case UnaryOperator::Not : return EmitUnaryNot(E);
case UnaryOperator::LNot : return EmitUnaryLNot(E);
// FIXME: SIZEOF/ALIGNOF(expr).
// FIXME: real/imag
case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
}
}
/// C99 6.5.3.2
RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
// The address of the operand is just its lvalue. It cannot be a bitfield.
return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
}
RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
// Unary plus just performs promotions on its arithmetic operand.
QualType Ty;
return EmitExprWithUsualUnaryConversions(E, Ty);
}
RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
// Unary minus performs promotions, then negates its arithmetic operand.
QualType Ty;
RValue V = EmitExprWithUsualUnaryConversions(E, Ty);
if (V.isScalar())
return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
// Unary not performs promotions, then complements its integer operand.
QualType Ty;
RValue V = EmitExprWithUsualUnaryConversions(E, Ty);
if (V.isScalar())
return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
}
/// C99 6.5.3.3
RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
// Compare operand to zero.
Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
// Invert value.
// TODO: Could dynamically modify easy computations here. For example, if
// the operand is an icmp ne, turn into icmp eq.
BoolVal = Builder.CreateNot(BoolVal, "lnot");
// ZExt result to int.
return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
}
//===--------------------------------------------------------------------===//
// Binary Operator Emission
//===--------------------------------------------------------------------===//
// FIXME describe.
QualType CodeGenFunction::
EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
RValue &RHS) {
QualType LHSType, RHSType;
LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
// If both operands have the same source type, we're done already.
if (LHSType == RHSType) return LHSType;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
return LHSType;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
if (LHSType->isComplexType() || RHSType->isComplexType()) {
assert(0 && "FIXME: complex types unimp");
#if 0
// if we have an integer operand, the result is the complex type.
if (rhs->isIntegerType())
return lhs;
if (lhs->isIntegerType())
return rhs;
return Context.maxComplexType(lhs, rhs);
#endif
}
// If neither operand is complex, they must be scalars.
llvm::Value *LHSV = LHS.getVal();
llvm::Value *RHSV = RHS.getVal();
// If the LLVM types are already equal, then they only differed in sign, or it
// was something like char/signed char or double/long double.
if (LHSV->getType() == RHSV->getType())
return LHSType;
// Now handle "real" floating types (i.e. float, double, long double).
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
// if we have an integer operand, the result is the real floating type, and
// the integer converts to FP.
if (RHSType->isIntegerType()) {
// Promote the RHS to an FP type of the LHS, with the sign following the
// RHS.
if (RHSType->isSignedIntegerType())
RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
else
RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
return LHSType;
}
if (LHSType->isIntegerType()) {
// Promote the LHS to an FP type of the RHS, with the sign following the
// LHS.
if (LHSType->isSignedIntegerType())
LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
else
LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
return RHSType;
}
// Otherwise, they are two FP types. Promote the smaller operand to the
// bigger result.
QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
if (BiggerType == LHSType)
RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
else
LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
return BiggerType;
}
// Finally, we have two integer types that are different according to C. Do
// a sign or zero extension if needed.
// Otherwise, one type is smaller than the other.
QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
if (LHSType == ResTy) {
if (RHSType->isSignedIntegerType())
RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
else
RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
} else {
assert(RHSType == ResTy && "Unknown conversion");
if (LHSType->isSignedIntegerType())
LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
else
LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
}
return ResTy;
}
RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
switch (E->getOpcode()) {
default:
fprintf(stderr, "Unimplemented expr!\n");
E->dump();
return RValue::get(UndefValue::get(llvm::Type::Int32Ty));
case BinaryOperator::Mul: return EmitBinaryMul(E);
case BinaryOperator::Div: return EmitBinaryDiv(E);
case BinaryOperator::Rem: return EmitBinaryRem(E);
case BinaryOperator::Add: return EmitBinaryAdd(E);
case BinaryOperator::Sub: return EmitBinarySub(E);
case BinaryOperator::Shl: return EmitBinaryShl(E);
case BinaryOperator::Shr: return EmitBinaryShr(E);
// FIXME: relational
case BinaryOperator::And: return EmitBinaryAnd(E);
case BinaryOperator::Xor: return EmitBinaryXor(E);
case BinaryOperator::Or : return EmitBinaryOr(E);
case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
case BinaryOperator::LOr: return EmitBinaryLOr(E);
case BinaryOperator::Assign: return EmitBinaryAssign(E);
// FIXME: Assignment.
case BinaryOperator::Comma: return EmitBinaryComma(E);
}
}
RValue CodeGenFunction::EmitBinaryMul(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryDiv(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar()) {
Value *RV;
if (LHS.getVal()->getType()->isFloatingPoint())
RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
else if (E->getType()->isUnsignedIntegerType())
RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
else
RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
return RValue::get(RV);
}
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryRem(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar()) {
Value *RV;
// Rem in C can't be a floating point type: C99 6.5.5p2.
if (E->getType()->isUnsignedIntegerType())
RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
else
RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
return RValue::get(RV);
}
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryAdd(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
// FIXME: This doesn't handle ptr+int etc yet.
if (LHS.isScalar())
return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinarySub(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
// FIXME: This doesn't handle ptr-int or ptr-ptr, etc yet.
if (LHS.isScalar())
return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
assert(0 && "FIXME: This doesn't handle complex operands yet");
}
RValue CodeGenFunction::EmitBinaryShl(const BinaryOperator *E) {
// For shifts, integer promotions are performed, but the usual arithmetic
// conversions are not. The LHS and RHS need not have the same type.
QualType ResTy;
Value *LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy).getVal();
Value *RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy).getVal();
// LLVM requires the LHS and RHS to be the same type, promote or truncate the
// RHS to the same size as the LHS.
if (LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
}
RValue CodeGenFunction::EmitBinaryShr(const BinaryOperator *E) {
// For shifts, integer promotions are performed, but the usual arithmetic
// conversions are not. The LHS and RHS need not have the same type.
QualType ResTy;
Value *LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy).getVal();
Value *RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy).getVal();
// LLVM requires the LHS and RHS to be the same type, promote or truncate the
// RHS to the same size as the LHS.
if (LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
if (E->getType()->isUnsignedIntegerType())
return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
else
return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
}
RValue CodeGenFunction::EmitBinaryAnd(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
}
RValue CodeGenFunction::EmitBinaryXor(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
}
RValue CodeGenFunction::EmitBinaryOr(const BinaryOperator *E) {
RValue LHS, RHS;
EmitUsualArithmeticConversions(E, LHS, RHS);
if (LHS.isScalar())
return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
}
RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
Value *LHSCond = EvaluateExprAsBool(E->getLHS());
BasicBlock *ContBlock = new BasicBlock("land_cont");
BasicBlock *RHSBlock = new BasicBlock("land_rhs");
BasicBlock *OrigBlock = Builder.GetInsertBlock();
Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
EmitBlock(RHSBlock);
Value *RHSCond = EvaluateExprAsBool(E->getRHS());
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
EmitBlock(ContBlock);
// Create a PHI node. If we just evaluted the LHS condition, the result is
// false. If we evaluated both, the result is the RHS condition.
PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
PN->reserveOperandSpace(2);
PN->addIncoming(ConstantInt::getFalse(), OrigBlock);
PN->addIncoming(RHSCond, RHSBlock);
// ZExt result to int.
return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
}
RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
Value *LHSCond = EvaluateExprAsBool(E->getLHS());
BasicBlock *ContBlock = new BasicBlock("lor_cont");
BasicBlock *RHSBlock = new BasicBlock("lor_rhs");
BasicBlock *OrigBlock = Builder.GetInsertBlock();
Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
EmitBlock(RHSBlock);
Value *RHSCond = EvaluateExprAsBool(E->getRHS());
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
EmitBlock(ContBlock);
// Create a PHI node. If we just evaluted the LHS condition, the result is
// true. If we evaluated both, the result is the RHS condition.
PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
PN->reserveOperandSpace(2);
PN->addIncoming(ConstantInt::getTrue(), OrigBlock);
PN->addIncoming(RHSCond, RHSBlock);
// ZExt result to int.
return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
}
RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
LValue LHS = EmitLValue(E->getLHS());
QualType RHSTy;
RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
// Convert the RHS to the type of the LHS.
// FIXME: I'm not thrilled about having to call getLocStart() here... :(
RHS = EmitConversion(RHS, RHSTy, E->getType(), E->getLocStart());
// Store the value into the LHS.
EmitStoreThroughLValue(RHS, LHS, E->getType());
// Return the converted RHS.
return RHS;
}
RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
EmitExpr(E->getLHS());
return EmitExpr(E->getRHS());
}