llvm-project/clang/Analysis/RValues.cpp

439 lines
13 KiB
C++
Raw Normal View History

//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This files defines RValue, LValue, and NonLValue, classes that represent
// abstract r-values for use with path-sensitive value tracking.
//
//===----------------------------------------------------------------------===//
#include "RValues.h"
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// SymbolManager.
//===----------------------------------------------------------------------===//
SymbolID SymbolManager::getSymbol(ParmVarDecl* D) {
SymbolID& X = DataToSymbol[D];
if (!X.isInitialized()) {
X = SymbolToData.size();
SymbolToData.push_back(D);
}
return X;
}
SymbolManager::SymbolManager() {}
SymbolManager::~SymbolManager() {}
//===----------------------------------------------------------------------===//
// Values and ValueManager.
//===----------------------------------------------------------------------===//
ValueManager::~ValueManager() {
// Note that the dstor for the contents of APSIntSet will never be called,
// so we iterate over the set and invoke the dstor for each APSInt. This
// frees an aux. memory allocated to represent very large constants.
for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
I->getValue().~APSInt();
}
const APSInt& ValueManager::getValue(const APSInt& X) {
llvm::FoldingSetNodeID ID;
void* InsertPos;
typedef llvm::FoldingSetNodeWrapper<APSInt> FoldNodeTy;
X.Profile(ID);
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(X);
APSIntSet.InsertNode(P, InsertPos);
}
return *P;
}
const APSInt& ValueManager::getValue(uint64_t X, unsigned BitWidth,
bool isUnsigned) {
APSInt V(BitWidth, isUnsigned);
V = X;
return getValue(V);
}
const APSInt& ValueManager::getValue(uint64_t X, QualType T,
SourceLocation Loc) {
unsigned bits = Ctx.getTypeSize(T, Loc);
APSInt V(bits, T->isUnsignedIntegerType());
V = X;
return getValue(V);
}
const SymIntConstraint&
ValueManager::getConstraint(SymbolID sym, BinaryOperator::Opcode Op,
const llvm::APSInt& V) {
llvm::FoldingSetNodeID ID;
SymIntConstraint::Profile(ID, sym, Op, V);
void* InsertPos;
SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos);
if (!C) {
C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>();
new (C) SymIntConstraint(sym, Op, V);
SymIntCSet.InsertNode(C, InsertPos);
}
return *C;
}
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RValue RValue::Cast(ValueManager& ValMgr, Expr* CastExpr) const {
switch (getBaseKind()) {
default: assert(false && "Invalid RValue."); break;
case LValueKind: return cast<LValue>(this)->Cast(ValMgr, CastExpr);
case NonLValueKind: return cast<NonLValue>(this)->Cast(ValMgr, CastExpr);
case UninitializedKind: case InvalidKind: break;
}
return *this;
}
RValue LValue::Cast(ValueManager& ValMgr, Expr* CastExpr) const {
if (CastExpr->getType()->isPointerType())
return *this;
assert (CastExpr->getType()->isIntegerType());
if (!isa<lval::ConcreteInt>(*this))
return InvalidValue();
APSInt V = cast<lval::ConcreteInt>(this)->getValue();
QualType T = CastExpr->getType();
V.setIsUnsigned(T->isUnsignedIntegerType());
V.extOrTrunc(ValMgr.getContext().getTypeSize(T, CastExpr->getLocStart()));
return nonlval::ConcreteInt(ValMgr.getValue(V));
}
RValue NonLValue::Cast(ValueManager& ValMgr, Expr* CastExpr) const {
if (!isa<nonlval::ConcreteInt>(this))
return InvalidValue();
APSInt V = cast<nonlval::ConcreteInt>(this)->getValue();
QualType T = CastExpr->getType();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(ValMgr.getContext().getTypeSize(T, CastExpr->getLocStart()));
if (CastExpr->getType()->isPointerType())
return lval::ConcreteInt(ValMgr.getValue(V));
else
return nonlval::ConcreteInt(ValMgr.getValue(V));
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Non-LValues.
//===----------------------------------------------------------------------===//
NonLValue NonLValue::UnaryMinus(ValueManager& ValMgr, UnaryOperator* U) const {
switch (getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(this)->UnaryMinus(ValMgr, U);
default:
return cast<NonLValue>(InvalidValue());
}
}
NonLValue NonLValue::BitwiseComplement(ValueManager& ValMgr) const {
switch (getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(this)->BitwiseComplement(ValMgr);
default:
return cast<NonLValue>(InvalidValue());
}
}
#define NONLVALUE_DISPATCH_CASE(k1,k2,Op)\
case (k1##Kind*nonlval::NumKind+k2##Kind):\
return cast<k1>(*this).Op(ValMgr,cast<k2>(RHS));
#define NONLVALUE_DISPATCH(Op)\
switch (getSubKind()*nonlval::NumKind+RHS.getSubKind()){\
NONLVALUE_DISPATCH_CASE(nonlval::ConcreteInt,nonlval::ConcreteInt,Op)\
default:\
if (getBaseKind() == UninitializedKind ||\
RHS.getBaseKind() == UninitializedKind)\
return cast<NonLValue>(UninitializedValue());\
assert (!isValid() || !RHS.isValid() && "Missing case.");\
break;\
}\
return cast<NonLValue>(InvalidValue());
NonLValue NonLValue::Add(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Add)
}
NonLValue NonLValue::Sub(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Sub)
}
NonLValue NonLValue::Mul(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Mul)
}
NonLValue NonLValue::Div(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Div)
}
NonLValue NonLValue::Rem(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(Rem)
}
NonLValue NonLValue::EQ(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(EQ)
}
NonLValue NonLValue::NE(ValueManager& ValMgr, const NonLValue& RHS) const {
NONLVALUE_DISPATCH(NE)
}
#undef NONLVALUE_DISPATCH_CASE
#undef NONLVALUE_DISPATCH
//===----------------------------------------------------------------------===//
// Transfer function dispatch for LValues.
//===----------------------------------------------------------------------===//
NonLValue LValue::EQ(ValueManager& ValMgr, const LValue& RHS) const {
switch (getSubKind()) {
default:
assert(false && "EQ not implemented for this LValue.");
return cast<NonLValue>(InvalidValue());
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(RHS)) {
bool b = cast<lval::ConcreteInt>(this)->getValue() ==
cast<lval::ConcreteInt>(RHS).getValue();
return NonLValue::GetIntTruthValue(ValMgr, b);
}
else if (isa<lval::SymbolVal>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(RHS).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(this)->getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(this)->getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(RHS).getValue());
return nonlval::SymIntConstraintVal(C);
}
assert (!isa<lval::SymbolVal>(RHS) && "FIXME: Implement unification.");
break;
}
case lval::DeclValKind:
if (isa<lval::DeclVal>(RHS)) {
bool b = cast<lval::DeclVal>(*this) == cast<lval::DeclVal>(RHS);
return NonLValue::GetIntTruthValue(ValMgr, b);
}
break;
}
return NonLValue::GetIntTruthValue(ValMgr, false);
}
NonLValue LValue::NE(ValueManager& ValMgr, const LValue& RHS) const {
switch (getSubKind()) {
default:
assert(false && "NE not implemented for this LValue.");
return cast<NonLValue>(InvalidValue());
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(RHS)) {
bool b = cast<lval::ConcreteInt>(this)->getValue() !=
cast<lval::ConcreteInt>(RHS).getValue();
return NonLValue::GetIntTruthValue(ValMgr, b);
}
else if (isa<lval::SymbolVal>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(RHS).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(this)->getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(RHS)) {
const SymIntConstraint& C =
ValMgr.getConstraint(cast<lval::SymbolVal>(this)->getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(RHS).getValue());
return nonlval::SymIntConstraintVal(C);
}
assert (!isa<lval::SymbolVal>(RHS) && "FIXME: Implement sym !=.");
break;
}
case lval::DeclValKind:
if (isa<lval::DeclVal>(RHS)) {
bool b = cast<lval::DeclVal>(*this) == cast<lval::DeclVal>(RHS);
return NonLValue::GetIntTruthValue(ValMgr, b);
}
break;
}
return NonLValue::GetIntTruthValue(ValMgr, true);
}
//===----------------------------------------------------------------------===//
// Utility methods for constructing Non-LValues.
//===----------------------------------------------------------------------===//
NonLValue NonLValue::GetValue(ValueManager& ValMgr, uint64_t X, QualType T,
SourceLocation Loc) {
return nonlval::ConcreteInt(ValMgr.getValue(X, T, Loc));
}
NonLValue NonLValue::GetValue(ValueManager& ValMgr, IntegerLiteral* I) {
return nonlval::ConcreteInt(ValMgr.getValue(APSInt(I->getValue(),
I->getType()->isUnsignedIntegerType())));
}
RValue RValue::GetSymbolValue(SymbolManager& SymMgr, ParmVarDecl* D) {
QualType T = D->getType();
if (T->isPointerType() || T->isReferenceType())
return lval::SymbolVal(SymMgr.getSymbol(D));
else
return nonlval::SymbolVal(SymMgr.getSymbol(D));
}
//===----------------------------------------------------------------------===//
// Pretty-Printing.
//===----------------------------------------------------------------------===//
void RValue::print(std::ostream& Out) const {
switch (getBaseKind()) {
case InvalidKind:
Out << "Invalid";
break;
case NonLValueKind:
cast<NonLValue>(this)->print(Out);
break;
case LValueKind:
cast<LValue>(this)->print(Out);
break;
case UninitializedKind:
Out << "Uninitialized";
break;
default:
assert (false && "Invalid RValue.");
}
}
static void printOpcode(std::ostream& Out, BinaryOperator::Opcode Op) {
switch (Op) {
case BinaryOperator::EQ: Out << "=="; break;
case BinaryOperator::NE: Out << "!="; break;
default: assert(false && "Not yet implemented.");
}
}
void NonLValue::print(std::ostream& Out) const {
switch (getSubKind()) {
case nonlval::ConcreteIntKind:
Out << cast<nonlval::ConcreteInt>(this)->getValue().toString();
break;
case nonlval::SymbolValKind:
Out << '$' << cast<nonlval::SymbolVal>(this)->getSymbol();
break;
case nonlval::SymIntConstraintValKind: {
const nonlval::SymIntConstraintVal& C =
*cast<nonlval::SymIntConstraintVal>(this);
Out << '$' << C.getConstraint().getSymbol() << ' ';
printOpcode(Out, C.getConstraint().getOpcode());
Out << ' ' << C.getConstraint().getInt().toString();
break;
}
default:
assert (false && "Pretty-printed not implemented for this NonLValue.");
break;
}
}
void LValue::print(std::ostream& Out) const {
switch (getSubKind()) {
case lval::ConcreteIntKind:
Out << cast<lval::ConcreteInt>(this)->getValue().toString()
<< " (LValue)";
break;
case lval::SymbolValKind:
Out << '$' << cast<lval::SymbolVal>(this)->getSymbol();
break;
case lval::DeclValKind:
Out << '&'
<< cast<lval::DeclVal>(this)->getDecl()->getIdentifier()->getName();
break;
default:
assert (false && "Pretty-printed not implemented for this LValue.");
break;
}
}